202 lines
5.5 KiB
OCaml
202 lines
5.5 KiB
OCaml
open Mini_c
|
|
open Trace
|
|
|
|
(* TODO hack to specialize map_expression to identity monad *)
|
|
let map_expression :
|
|
(expression -> expression) -> (expression -> expression) =
|
|
fun f e ->
|
|
match Helpers.map_expression (fun e -> ok (f e)) e with
|
|
| Ok (e, _) -> e
|
|
| Error _ -> assert false (* impossible *)
|
|
|
|
|
|
(* Conservative purity test: ok to treat pure things as impure, must
|
|
not treat impure things as pure. *)
|
|
|
|
(* true if the name names a pure constant -- i.e. if uses will be pure
|
|
assuming arguments are pure *)
|
|
let is_pure_constant : constant' -> bool =
|
|
function
|
|
| C_UNIT
|
|
| C_CAR | C_CDR | C_PAIR
|
|
| C_NIL | C_CONS
|
|
| C_NEG | C_OR | C_AND | C_XOR | C_NOT
|
|
| C_EQ | C_NEQ | C_LT | C_LE | C_GT | C_GE
|
|
| C_SOME
|
|
| C_UPDATE | C_MAP_FIND_OPT | C_MAP_ADD | C_MAP_UPDATE
|
|
| C_INT | C_ABS | C_IS_NAT
|
|
| C_ADDRESS
|
|
| C_SET_MEM | C_SET_ADD | C_SET_REMOVE | C_SLICE
|
|
| C_SHA256 | C_SHA512 | C_BLAKE2b | C_CHECK_SIGNATURE
|
|
| C_HASH_KEY | C_BYTES_PACK | C_CONCAT
|
|
-> true
|
|
(* unfortunately impure: *)
|
|
| C_BALANCE | C_AMOUNT | C_NOW | C_SOURCE | C_SENDER | C_CHAIN_ID
|
|
| C_ADD | C_SUB |C_MUL|C_DIV|C_MOD | C_LSL | C_LSR
|
|
(* impure: *)
|
|
| C_ASSERTION | C_ASSERT_INFERRED
|
|
| C_MAP_FIND
|
|
| C_FOLD_WHILE
|
|
| C_CALL
|
|
(* TODO... *)
|
|
| _
|
|
-> false
|
|
|
|
let rec is_pure : expression -> bool = fun e ->
|
|
match e.content with
|
|
| E_literal _
|
|
| E_closure _
|
|
| E_skip
|
|
| E_variable _
|
|
| E_make_none _
|
|
-> true
|
|
|
|
| E_if_bool (cond, bt, bf)
|
|
| E_if_none (cond, bt, (_, bf))
|
|
| E_if_cons (cond, bt, (_, bf))
|
|
| E_if_left (cond, (_, bt), (_, bf))
|
|
-> List.for_all is_pure [ cond ; bt ; bf ]
|
|
|
|
| E_let_in (_, _, e1, e2)
|
|
| E_sequence (e1, e2)
|
|
-> List.for_all is_pure [ e1 ; e2 ]
|
|
|
|
| E_constant (c)
|
|
-> is_pure_constant c.cons_name && List.for_all is_pure c.arguments
|
|
| E_record_update (e, _,up)
|
|
-> is_pure e && is_pure up
|
|
|
|
(* I'm not sure about these. Maybe can be tested better? *)
|
|
| E_application _
|
|
| E_iterator _
|
|
| E_fold _
|
|
-> false
|
|
|
|
(* Could be pure, but, divergence is an effect, so halting problem
|
|
is near... *)
|
|
| E_while _ -> false
|
|
|
|
let occurs_in : expression_variable -> expression -> bool =
|
|
fun x e ->
|
|
let fvs = Free_variables.expression [] e in
|
|
Free_variables.mem x fvs
|
|
|
|
let occurs_count : expression_variable -> expression -> int =
|
|
fun x e ->
|
|
let fvs = Free_variables.expression [] e in
|
|
Free_variables.mem_count x fvs
|
|
|
|
(* Let "inlining" mean transforming the code:
|
|
|
|
let x = e1 in e2
|
|
|
|
to:
|
|
|
|
e2[e1/x]
|
|
|
|
(where the latter signifies substituting e1 for x in e2.)
|
|
|
|
Things which can go wrong for inlining:
|
|
|
|
- If `e1` is not pure, inlining may fail to preserve semantics.
|
|
- Free variables of `e1` may be shadowed in e2, at usages of `x`. This
|
|
is not a problem if the substitution is capture-avoiding.
|
|
- ?
|
|
*)
|
|
|
|
let is_variable : expression -> bool =
|
|
fun e ->
|
|
match e.content with
|
|
| E_variable _ -> true
|
|
| _ -> false
|
|
|
|
let should_inline : expression_variable -> expression -> expression -> bool =
|
|
fun x e1 e2 ->
|
|
occurs_count x e2 <= 1 || is_variable e1
|
|
|
|
let inline_let : bool ref -> expression -> expression =
|
|
fun changed e ->
|
|
match e.content with
|
|
| E_let_in ((x, _a), should_inline_here, e1, e2) ->
|
|
if is_pure e1 && (should_inline_here || should_inline x e1 e2)
|
|
then
|
|
let e2' = Subst.subst_expression ~body:e2 ~x:x ~expr:e1 in
|
|
(changed := true ; e2')
|
|
else
|
|
e
|
|
| _ -> e
|
|
|
|
let inline_lets : bool ref -> expression -> expression =
|
|
fun changed ->
|
|
map_expression (inline_let changed)
|
|
|
|
|
|
(* Let "beta" mean transforming the code:
|
|
|
|
(\x. e1) e2
|
|
|
|
to:
|
|
|
|
let x = e2 in e1
|
|
|
|
Things which can go wrong for beta reduction:
|
|
|
|
- Nothing?
|
|
*)
|
|
|
|
let beta : bool ref -> expression -> expression =
|
|
fun changed e ->
|
|
match e.content with
|
|
| E_application ({ content = E_closure { binder = x ; body = e1 } ; type_value = T_function (xtv, tv) }, e2) ->
|
|
(changed := true ;
|
|
Expression.make (E_let_in ((x, xtv), false, e2, e1)) tv)
|
|
|
|
(* also do CAR (PAIR x y) ↦ x, or CDR (PAIR x y) ↦ y, only if x and y are pure *)
|
|
| E_constant {cons_name = C_CAR| C_CDR as const; arguments = [ { content = E_constant {cons_name = C_PAIR; arguments = [ e1 ; e2 ]} ; type_value = _ } ]} ->
|
|
if is_pure e1 && is_pure e2
|
|
then (changed := true ;
|
|
match const with
|
|
| C_CAR -> e1
|
|
| C_CDR -> e2
|
|
| _ -> assert false)
|
|
else e
|
|
| _ -> e
|
|
|
|
let betas : bool ref -> expression -> expression =
|
|
fun changed ->
|
|
map_expression (beta changed)
|
|
|
|
let eta : bool ref -> expression -> expression =
|
|
fun changed e ->
|
|
match e.content with
|
|
| E_constant {cons_name = C_PAIR; arguments = [ { content = E_constant {cons_name = C_CAR; arguments = [ e1 ]} ; type_value = _ } ;
|
|
{ content = E_constant {cons_name = C_CDR; arguments = [ e2 ]} ; type_value = _ }]} ->
|
|
(match (e1.content, e2.content) with
|
|
| E_variable x1, E_variable x2 ->
|
|
if Var.equal x1 x2
|
|
then
|
|
(changed := true;
|
|
{ e with content = e1.content })
|
|
else e
|
|
| _ -> e)
|
|
| _ -> e
|
|
|
|
let etas : bool ref -> expression -> expression =
|
|
fun changed ->
|
|
map_expression (eta changed)
|
|
|
|
let contract_check =
|
|
let all = [Michelson_restrictions.self_in_lambdas] in
|
|
let all_e = List.map Helpers.map_sub_level_expression all in
|
|
bind_chain all_e
|
|
|
|
let rec all_expression : expression -> expression =
|
|
fun e ->
|
|
let changed = ref false in
|
|
let e = inline_lets changed e in
|
|
let e = betas changed e in
|
|
let e = etas changed e in
|
|
if !changed
|
|
then all_expression e
|
|
else e
|