Christian Rinderknecht 36cecfb019 * Renamed AST.TStringLiteral into AST.TString
* Fixed parsing of "begin let x = e1 in e2; e3 end"
2020-05-20 16:36:44 +00:00

1086 lines
40 KiB
OCaml

[@@@warning "-45"]
open Trace
open Ast_imperative
module Raw = Parser.Cameligo.AST
module SMap = Map.String
module Option = Simple_utils.Option
(* TODO: move 1-parser/shared/Utils.ml{i} to Simple_utils/ *)
open Combinators
let nseq_to_list (hd, tl) = hd :: tl
let npseq_to_list (hd, tl) = hd :: (List.map snd tl)
let npseq_to_nelist (hd, tl) = hd, (List.map snd tl)
let pseq_to_list = function
| None -> []
| Some lst -> npseq_to_list lst
let get_value : 'a Raw.reg -> 'a = fun x -> x.value
module Errors = struct
let wrong_pattern expected_name actual =
let title () = "wrong pattern" in
let message () =
match actual with
| Raw.PVar v -> v.value
| Raw.PTuple _ -> "tuple"
| Raw.PRecord _ -> "record"
| Raw.PList _ -> "list"
| Raw.PBytes _ -> "bytes"
| _ -> "other"
in
let data = [
("expected", fun () -> expected_name);
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@
Raw.pattern_to_region actual)]
in error ~data title message
let unsupported_let_in_function (region : Region.t) (patterns : Raw.pattern list) =
let title () = "" in
let message () = "\nDefining functions with \"let ... in\" \
is not supported yet.\n" in
let patterns_loc =
List.fold_left (fun a p -> Region.cover a (Raw.pattern_to_region p))
region patterns in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ patterns_loc)]
in error ~data title message
let unknown_predefined_type name =
let title () = "Type constants" in
let message () =
Format.asprintf "Unknown predefined type \"%s\".\n"
name.Region.value in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region)]
in error ~data title message
let untyped_fun_param var =
let title () = "" in
let message () =
Format.asprintf "\nUntyped function parameters \
are not supported yet.\n" in
let param_loc = var.Region.region in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc)]
in error ~data title message
let untyped_recursive_function var =
let title () = "" in
let message () =
Format.asprintf "\nUntyped recursive functions \
are not supported yet.\n" in
let param_loc = var.Region.region in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc)]
in error ~data title message
let unsupported_tuple_pattern p =
let title () = "" in
let message () =
Format.asprintf "\nTuple patterns are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_cst_constr p =
let title () = "" in
let message () =
Format.asprintf "\nConstant constructors are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)]
in error ~data title message
let unsupported_non_var_pattern p =
let title () = "" in
let message () =
Format.asprintf "\nNon-variable patterns in constructors \
are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let abstracting_expr t =
let title () = "abstracting expression" in
let message () = "" in
let data = [
("expression" ,
(** TODO: The labelled arguments should be flowing from the CLI. *)
thunk @@ Parser_cameligo.ParserLog.expr_to_string
~offsets:true ~mode:`Point t)]
in error ~data title message
let only_constructors p =
let title () = "" in
let message () =
Format.asprintf "\nCurrently, only constructors are \
supported in patterns.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_sugared_lists region =
let title () = "" in
let message () =
Format.asprintf "\nCurrently, only empty lists and \
constructors (::) \
are supported in patterns.\n" in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ region)]
in error ~data title message
let corner_case description =
let title () = "Corner case" in
let message () = description in
error title message
let unknown_built_in name =
let title () = "\n Unknown built-in function" in
let message () = "" in
let data = [
("built-in", fun () -> name);
] in
error ~data title message
end
open Errors
open Operators.Concrete_to_imperative.Cameligo
let r_split = Location.r_split
let get_t_string_singleton_opt = function
| Raw.TString s -> Some s.value
| _ -> None
let rec pattern_to_var : Raw.pattern -> _ = fun p ->
match p with
| Raw.PPar p -> pattern_to_var p.value.inside
| Raw.PVar v -> ok v
| Raw.PWild r -> ok @@ ({ region = r ; value = "_" } : Raw.variable)
| _ -> fail @@ wrong_pattern "single var" p
let rec tuple_pattern_to_vars : Raw.pattern -> _ = fun pattern ->
match pattern with
| Raw.PPar pp -> tuple_pattern_to_vars pp.value.inside
| Raw.PTuple pt -> bind_map_list pattern_to_var (npseq_to_list pt.value)
| Raw.PVar _ | Raw.PWild _-> bind_list [pattern_to_var pattern]
| other -> (fail @@ wrong_pattern "parenthetical, tuple, or variable" other)
let rec pattern_to_typed_var : Raw.pattern -> _ = fun p ->
match p with
| Raw.PPar p -> pattern_to_typed_var p.value.inside
| Raw.PTyped tp -> (
let tp = tp.value in
let%bind v = pattern_to_var tp.pattern in
ok (v , Some tp.type_expr)
)
| Raw.PVar v -> ok (v , None)
| Raw.PWild r -> ok (({ region = r ; value = "_" } : Raw.variable) , None)
| _ -> fail @@ wrong_pattern "single typed variable" p
let rec expr_to_typed_expr : Raw.expr -> _ = function
EPar e -> expr_to_typed_expr e.value.inside
| EAnnot {value={inside=e,_,t; _}; _} -> ok (e, Some t)
| e -> ok (e , None)
let rec tuple_pattern_to_typed_vars : Raw.pattern -> _ = fun pattern ->
match pattern with
| Raw.PPar pp -> tuple_pattern_to_typed_vars pp.value.inside
| Raw.PTuple pt -> bind_map_list pattern_to_typed_var (npseq_to_list pt.value)
| Raw.PVar _ -> bind_list [pattern_to_typed_var pattern]
| other -> (fail @@ wrong_pattern "parenthetical, tuple, or variable" other)
let rec typed_pattern_to_typed_vars : Raw.pattern -> _ = fun pattern ->
match pattern with
| Raw.PPar pp -> typed_pattern_to_typed_vars pp.value.inside
| Raw.PTyped pt ->
let (p,t) = pt.value.pattern,pt.value.type_expr in
let%bind p = tuple_pattern_to_vars p in
let%bind t = compile_type_expression t in
let l = Location.lift pt.region in
ok @@ (p,t,l)
| other -> (fail @@ wrong_pattern "parenthetical or type annotation" other)
and unpar_pattern : Raw.pattern -> Raw.pattern = function
| PPar p -> unpar_pattern p.value.inside
| _ as p -> p
and compile_type_expression : Raw.type_expr -> type_expression result = fun te ->
trace (simple_info "abstracting this type expression...") @@
match te with
TPar x -> compile_type_expression x.value.inside
| TVar v -> (
let (v, loc) = r_split v in
match type_constants v with
| Some s -> ok @@ make_t ~loc @@ T_constant s
| None -> ok @@ make_t ~loc @@ T_variable (Var.of_name v)
)
| TFun x -> (
let (x,loc) = r_split x in
let%bind (type1 , type2) =
let (a , _ , b) = x in
let%bind a = compile_type_expression a in
let%bind b = compile_type_expression b in
ok (a , b)
in
ok @@ make_t ~loc @@ T_arrow {type1;type2}
)
| TApp x -> (
let (x,loc) = r_split x in
let (name, tuple) = x in
( match name.value with
| "michelson_or" ->
let lst = npseq_to_list tuple.value.inside in
(match lst with
| [a ; b ; c ; d ] -> (
let%bind b' =
trace_option (simple_error "second argument of michelson_or must be a string singleton") @@
get_t_string_singleton_opt b in
let%bind d' =
trace_option (simple_error "fourth argument of michelson_or must be a string singleton") @@
get_t_string_singleton_opt d in
let%bind a' = compile_type_expression a in
let%bind c' = compile_type_expression c in
ok @@ t_michelson_or ~loc a' b' c' d'
)
| _ -> simple_fail "michelson_or does not have the right number of argument")
| "michelson_pair" ->
let lst = npseq_to_list tuple.value.inside in
(match lst with
| [a ; b ; c ; d ] -> (
let%bind b' =
trace_option (simple_error "second argument of michelson_pair must be a string singleton") @@
get_t_string_singleton_opt b in
let%bind d' =
trace_option (simple_error "fourth argument of michelson_pair must be a string singleton") @@
get_t_string_singleton_opt d in
let%bind a' = compile_type_expression a in
let%bind c' = compile_type_expression c in
ok @@ t_michelson_pair ~loc a' b' c' d'
)
| _ -> simple_fail "michelson_pair does not have the right number of argument")
| _ ->
let lst = npseq_to_list tuple.value.inside in
let%bind lst' = bind_map_list compile_type_expression lst in
let%bind cst =
trace_option (unknown_predefined_type name) @@
type_operators name.value in
t_operator ~loc cst lst' )
)
| TProd p -> (
let%bind tpl = compile_list_type_expression @@ npseq_to_list p.value in
ok tpl
)
| TRecord r ->
let (r, loc) = r_split r in
let aux = fun (x, y) -> let%bind y = compile_type_expression y in ok (x, y) in
let order = fun i (x,y) -> ((x,i),y) in
let apply (x:Raw.field_decl Raw.reg) =
(x.value.field_name.value, x.value.field_type) in
let%bind lst =
bind_list
@@ List.map aux
@@ List.mapi order
@@ List.map apply
@@ npseq_to_list r.ne_elements in
let m = List.fold_left (fun m ((x,i), y) -> LMap.add (Label x) {field_type=y;field_decl_pos=i} m) LMap.empty lst in
ok @@ make_t ~loc @@ T_record m
| TSum s ->
let (s,loc) = r_split s in
let aux i (v:Raw.variant Raw.reg) =
let args =
match v.value.arg with
None -> []
| Some (_, TProd product) -> npseq_to_list product.value
| Some (_, t_expr) -> [t_expr] in
let%bind te = compile_list_type_expression @@ args in
ok ((v.value.constr.value,i), te) in
let%bind lst = bind_list
@@ List.mapi aux
@@ npseq_to_list s in
let m = List.fold_left (fun m ((x,i), y) -> CMap.add (Constructor x) {ctor_type=y;ctor_decl_pos=i} m) CMap.empty lst in
ok @@ make_t ~loc @@ T_sum m
| TString _s -> simple_fail "we don't support singleton string type"
and compile_list_type_expression (lst:Raw.type_expr list) : type_expression result =
match lst with
| [] -> ok @@ t_unit ()
| [hd] -> compile_type_expression hd
| lst ->
let%bind lst = bind_map_list compile_type_expression lst in
ok @@ t_tuple lst
let rec compile_expression :
Raw.expr -> expr result = fun t ->
let return x = ok x in
let compile_projection = fun (p:Raw.projection Region.reg) ->
let (p , loc) = r_split p in
let var =
let name = Var.of_name p.struct_name.value in
e_variable name in
let path = p.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
FieldName property -> property.value
| Component index -> Z.to_string (snd index.value)
in
List.map aux @@ npseq_to_list path in
return @@ List.fold_left (e_record_accessor ~loc ) var path'
in
let compile_path : Raw.path -> string * label list = fun p ->
match p with
| Raw.Name v -> (v.value , [])
| Raw.Path p -> (
let p' = p.value in
let var = p'.struct_name.value in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> Label property.value
| Component index -> Label (Z.to_string (snd index.value))
in
List.map aux @@ npseq_to_list path in
(var , path')
)
in
let compile_update = fun (u:Raw.update Region.reg) ->
let (u, loc) = r_split u in
let (name, path) = compile_path u.record in
let record = match path with
| [] -> e_variable (Var.of_name name)
| _ ->
let aux expr (Label l) = e_record_accessor expr l in
List.fold_left aux (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in
let%bind updates' =
let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in
let%bind expr = compile_expression f.field_expr in
ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in
bind_map_list aux @@ npseq_to_list updates
in
let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_record_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_record_accessor ~loc record hd) tl) in
ok @@ e_record_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
in
trace (abstracting_expr t) @@
match t with
Raw.ELetIn e ->
let Raw.{kwd_rec; binding; body; attributes; _} = e.value in
let region = e.region in
let loc = Location.lift region in
let inline = List.exists (fun (a: Raw.attribute) -> a.value = "inline") attributes in
let Raw.{binders; lhs_type; let_rhs; _} = binding in
begin match binders with
| (p, []) ->
let%bind variables = tuple_pattern_to_typed_vars p in
let%bind ty_opt =
bind_map_option (fun (re,te) -> let%bind te = compile_type_expression te in ok(Location.lift re,te)) lhs_type in
let%bind rhs = compile_expression let_rhs in
let rhs_b = Var.fresh ~name: "rhs" () in
let rhs',rhs_b_expr =
match ty_opt with
None -> rhs, e_variable ~loc rhs_b
| Some (lt,ty) -> (e_annotation ~loc:lt rhs ty), e_annotation ~loc:lt (e_variable ~loc rhs_b) ty in
let%bind body = compile_expression body in
let prepare_variable (ty_var: Raw.variable * Raw.type_expr option) =
let variable, ty_opt = ty_var in
let var_expr = Var.of_name variable.value in
let%bind ty_expr_opt =
match ty_opt with
| Some ty -> bind_map_option compile_type_expression (Some ty)
| None -> ok None
in ok (var_expr, ty_expr_opt)
in
let%bind prep_vars = bind_list (List.map prepare_variable variables) in
let%bind () =
if (List.length prep_vars) = 0
then fail @@ corner_case "let ... in without variables passed parsing stage"
else ok ()
in
let rhs_b_expr = (* We only want to evaluate the rhs first if multi-bind *)
if List.length prep_vars = 1
then rhs' else rhs_b_expr
in
let rec chain_let_in variables body : expression =
match variables with
| hd :: [] ->
if (List.length prep_vars = 1)
then e_let_in ~loc hd inline rhs_b_expr body
else e_let_in ~loc hd inline (e_record_accessor ~loc rhs_b_expr (string_of_int ((List.length prep_vars) - 1))) body
| hd :: tl ->
e_let_in ~loc hd
inline
(e_record_accessor ~loc rhs_b_expr (string_of_int ((List.length prep_vars) - (List.length tl) - 1)))
(chain_let_in tl body)
| [] -> body (* Precluded by corner case assertion above *)
in
let%bind ty_opt = match ty_opt with
| None -> (match let_rhs with
| EFun {value={binders;lhs_type}} ->
let f_args = nseq_to_list (binders) in
let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in
let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in
let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in
ok @@ (List.fold_right' aux lhs_type' ty)
| _ -> ok None
)
| Some (_,t) -> ok @@ Some t
in
let%bind ret_expr = if List.length prep_vars = 1
then ok (chain_let_in prep_vars body)
(* Bind the right hand side so we only evaluate it once *)
else ok (e_let_in (rhs_b, ty_opt) inline rhs' (chain_let_in prep_vars body))
in
let%bind ret_expr = match kwd_rec with
| None -> ok @@ ret_expr
| Some _ ->
match ret_expr.expression_content with
| E_let_in li -> (
let%bind lambda =
let rec aux rhs = match rhs.expression_content with
| E_lambda l -> ok @@ l
| E_ascription a -> aux a.anno_expr
| _ -> fail @@ corner_case "recursive only supported for lambda"
in
aux rhs'
in
let fun_name = fst @@ List.hd prep_vars in
let%bind fun_type = match ty_opt with
| Some t -> ok @@ t
| None -> match rhs'.expression_content with
| E_ascription a -> ok a.type_annotation
| _ -> fail @@ untyped_recursive_function e
in
let expression_content = E_recursive {fun_name;fun_type;lambda} in
let expression_content = E_let_in {li with rhs = {li.rhs with expression_content}} in
ok @@ {ret_expr with expression_content}
)
| _ -> fail @@ corner_case "impossible"
in
ok ret_expr
(* let f p1 ps... = rhs in body *)
| (f, p1 :: ps) ->
fail @@ unsupported_let_in_function e.region (f :: p1 :: ps)
end
| Raw.EAnnot a ->
let Raw.{inside=expr, _, type_expr; _}, loc = r_split a in
let%bind expr' = compile_expression expr in
let%bind type_expr' = compile_type_expression type_expr in
return @@ e_annotation ~loc expr' type_expr'
| EVar c ->
let (c',loc) = r_split c in
(match constants c' with
| None -> return @@ e_variable ~loc (Var.of_name c.value)
| Some s -> return @@ e_constant s [])
| ECall x -> (
let ((e1 , e2) , loc) = r_split x in
let%bind args = bind_map_list compile_expression (nseq_to_list e2) in
let rec chain_application (f: expression) (args: expression list) =
match args with
| hd :: tl -> chain_application (e_application ~loc f hd) tl
| [] -> f
in
match e1 with
| EVar f -> (
let (f , f_loc) = r_split f in
match constants f with
| None -> return @@ chain_application (e_variable ~loc:f_loc (Var.of_name f)) args
| Some s -> return @@ e_constant ~loc s args
)
| e1 ->
let%bind e1' = compile_expression e1 in
return @@ chain_application e1' args
)
| EPar x -> compile_expression x.value.inside
| EUnit reg ->
let (_ , loc) = r_split reg in
return @@ e_literal ~loc Literal_unit
| EBytes x ->
let (x , loc) = r_split x in
return @@ e_literal ~loc (Literal_bytes (Hex.to_bytes @@ snd x))
| ETuple tpl -> compile_tuple_expression @@ (npseq_to_list tpl.value)
| ERecord r ->
let (r , loc) = r_split r in
let%bind fields = bind_list
@@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = compile_expression v in ok (k.value, v))
@@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr))
@@ npseq_to_list r.ne_elements in
return @@ e_record_ez ~loc fields
| EProj p -> compile_projection p
| EUpdate u -> compile_update u
| EConstr (ESomeApp a) ->
let (_, args), loc = r_split a in
let%bind arg = compile_expression args in
return @@ e_constant ~loc C_SOME [arg]
| EConstr (ENone reg) ->
let loc = Location.lift reg in
return @@ e_none ~loc ()
| EConstr (EConstrApp c) ->
let (c_name, args), loc = r_split c in
let c_name, _c_loc = r_split c_name in
let args =
match args with
None -> []
| Some arg -> [arg] in
let%bind arg = compile_tuple_expression @@ args
in return @@ e_constructor ~loc c_name arg
| EArith (Add c) ->
compile_binop "ADD" c
| EArith (Sub c) ->
compile_binop "SUB" c
| EArith (Mult c) ->
compile_binop "TIMES" c
| EArith (Div c) ->
compile_binop "DIV" c
| EArith (Mod c) ->
compile_binop "MOD" c
| EArith (Int n) -> (
let (n , loc) = r_split n in
let n = snd @@ n in
return @@ e_literal ~loc (Literal_int n)
)
| EArith (Nat n) -> (
let (n , loc) = r_split n in
let n = snd @@ n in
return @@ e_literal ~loc (Literal_nat n)
)
| EArith (Mutez n) -> (
let (n , loc) = r_split n in
let n = snd @@ n in
return @@ e_literal ~loc (Literal_mutez n)
)
| EArith (Neg e) -> compile_unop "NEG" e
| EString (String s) -> (
let (s , loc) = r_split s in
return @@ e_literal ~loc (Literal_string (Standard s))
)
| EString (Verbatim v) -> (
let (v , loc) = r_split v in
return @@ e_literal ~loc (Literal_string (Verbatim v))
)
| EString (Cat c) ->
let (c, loc) = r_split c in
let%bind string_left = compile_expression c.arg1 in
let%bind string_right = compile_expression c.arg2 in
return @@ e_string_cat ~loc string_left string_right
| ELogic l -> compile_logic_expression l
| EList l -> compile_list_expression l
| ECase c -> (
let (c , loc) = r_split c in
let%bind e = compile_expression c.expr in
let%bind lst =
let aux (x : Raw.expr Raw.case_clause) =
let%bind expr = compile_expression x.rhs in
ok (x.pattern, expr) in
bind_list
@@ List.map aux
@@ List.map get_value
@@ npseq_to_list c.cases.value in
let default_action () =
let%bind cases = compile_cases lst in
return @@ e_matching ~loc e cases in
(* Hack to take care of patterns introduced by `parser/cameligo/Parser.mly` in "norm_fun_expr". TODO: Still needed? *)
match lst with
| [ (pattern , rhs) ] -> (
match pattern with
| Raw.PPar p -> (
let p' = p.value.inside in
match p' with
| Raw.PTyped x -> (
let x' = x.value in
match x'.pattern with
| Raw.PVar y ->
let var_name = Var.of_name y.value in
let%bind type_expr = compile_type_expression x'.type_expr in
return @@ e_let_in (var_name , Some type_expr) false e rhs
| _ -> default_action ()
)
| _ -> default_action ()
)
| _ -> default_action ()
)
| _ -> default_action ()
)
| EFun lamb -> compile_fun lamb
| ESeq s -> (
let (s , loc) = r_split s in
let items : Raw.expr list = pseq_to_list s.elements in
(match List.rev items with
[] -> return @@ e_skip ~loc ()
| expr::more ->
let expr' = compile_expression expr in
let apply e1 e2 =
let%bind a = compile_expression e2 in
let%bind e1' = e1 in
return @@ e_sequence a e1'
in List.fold_left apply expr' more)
)
| ECond c -> (
let (c , loc) = r_split c in
let%bind expr = compile_expression c.test in
let%bind match_true = compile_expression c.ifso in
let%bind match_false = compile_expression c.ifnot in
return @@ e_cond ~loc expr match_true match_false
)
and compile_fun lamb' : expr result =
let return x = ok x in
let (lamb , loc) = r_split lamb' in
let%bind params' =
let params = nseq_to_list lamb.binders in
let params = (* Handle case where we have tuple destructure in params *)
(* So basically the transformation we're doing is:
let sum (result, i: int * int) : int = result + i
TO:
let sum (#P: int * int) : int =
let result, i = #P in result + i
In this first section we replace `result, i` with `#P`. *)
match lamb.binders with
(* TODO: currently works only if there is one param *)
| (Raw.PPar pp, []) ->
let pt = pp.value.inside in
(match pt with
| Raw.PTyped pt ->
begin
let pt_pattern = unpar_pattern pt.value.pattern in
match pt_pattern with
| Raw.PVar _ -> params
| Raw.PTuple t ->
[Raw.PTyped
{region=t.region;
value=
{ pt.value with pattern=
Raw.PVar {region=pt.region;
value="#P"}}}]
| _ -> params
end
| _ -> params)
| _ -> params
in
let%bind p_params = bind_map_list pattern_to_typed_var params in
let aux ((var : Raw.variable) , ty_opt) =
match var.value , ty_opt with
| "storage" , None ->
ok (var , t_variable "storage")
| _ , None ->
fail @@ untyped_fun_param var
| _ , Some ty -> (
let%bind ty' = compile_type_expression ty in
ok (var , ty')
)
in
bind_map_list aux p_params
in
let%bind body =
if (List.length params' > 1) then ok lamb.body
else
let original_params = nseq_to_list lamb.binders in
let%bind destruct =
match original_params with
| hd :: _ -> ok @@ hd
| [] -> fail @@ corner_case "Somehow have no parameters in function during tuple param destructure"
in
match destruct with (* Handle tuple parameter destructuring *)
(* In this section we create a let ... in that binds the original parameters *)
| Raw.PPar pp ->
(match unpar_pattern pp.value.inside with
| Raw.PTyped pt ->
let vars = pt.value in
(match unpar_pattern vars.pattern with
| PTuple vars ->
let let_in_binding: Raw.let_binding =
{binders = (PTuple vars, []) ;
lhs_type=None;
eq=Region.ghost;
let_rhs=(Raw.EVar {region=pt.region; value="#P"});
}
in
let let_in: Raw.let_in =
{kwd_let= Region.ghost;
kwd_rec= None;
binding= let_in_binding;
kwd_in= Region.ghost;
body= lamb.body;
attributes = []
}
in
ok (Raw.ELetIn
{
region=pt.region;
value=let_in
})
| Raw.PVar _ -> ok lamb.body
| _ -> ok lamb.body)
| _ -> ok lamb.body)
| _ -> ok lamb.body
in
let%bind (body , body_type) = expr_to_typed_expr body in
let%bind output_type =
bind_map_option compile_type_expression body_type in
let%bind body = compile_expression body in
let rec layer_arguments (arguments: (Raw.variable * type_expression) list) =
match arguments with
| hd :: tl ->
let (binder , input_type) =
(Var.of_name (fst hd).value , snd hd) in
e_lambda ~loc (binder) (Some input_type) output_type (layer_arguments tl)
| [] -> body
in
let ret_lamb = layer_arguments params' in
return @@ ret_lamb
and compile_logic_expression ?te_annot (t:Raw.logic_expr) : expr result =
let return x = ok @@ make_option_typed x te_annot in
match t with
| BoolExpr (False reg) -> (
let loc = Location.lift reg in
return @@ e_bool ~loc false
)
| BoolExpr (True reg) -> (
let loc = Location.lift reg in
return @@ e_bool ~loc true
)
| BoolExpr (Or b) ->
compile_binop "OR" b
| BoolExpr (And b) ->
compile_binop "AND" b
| BoolExpr (Not b) ->
compile_unop "NOT" b
| CompExpr (Lt c) ->
compile_binop "LT" c
| CompExpr (Gt c) ->
compile_binop "GT" c
| CompExpr (Leq c) ->
compile_binop "LE" c
| CompExpr (Geq c) ->
compile_binop "GE" c
| CompExpr (Equal c) ->
compile_binop "EQ" c
| CompExpr (Neq c) ->
compile_binop "NEQ" c
and compile_list_expression (t:Raw.list_expr) : expression result =
let return x = ok @@ x in
match t with
ECons c -> compile_binop "CONS" c
| EListComp lst -> (
let (lst , loc) = r_split lst in
let%bind lst' =
bind_map_list compile_expression @@
pseq_to_list lst.elements in
return @@ e_list ~loc lst'
)
and compile_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result =
let return x = ok @@ x in
let (args , loc) = r_split t in
let%bind a = compile_expression args.arg1 in
let%bind b = compile_expression args.arg2 in
let%bind name = trace_option (unknown_built_in name) @@ constants name in
return @@ e_constant ~loc name [ a ; b ]
and compile_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result =
let return x = ok @@ x in
let (t , loc) = r_split t in
let%bind a = compile_expression t.arg in
let%bind name = trace_option (unknown_built_in name) @@ constants name in
return @@ e_constant ~loc name [ a ]
and compile_tuple_expression ?loc (lst:Raw.expr list) : expression result =
let return x = ok @@ x in
match lst with
| [] -> return @@ e_literal ?loc Literal_unit
| [hd] -> compile_expression hd
| lst ->
let%bind lst = bind_list @@ List.map compile_expression lst in
return @@ e_tuple ?loc lst
and compile_declaration : Raw.declaration -> declaration Location.wrap list result =
fun t ->
let open! Raw in
let loc : 'a . 'a Raw.reg -> _ -> _ =
fun x v -> Location.wrap ~loc:(File x.region) v in
match t with
| TypeDecl x ->
let {name;type_expr} : Raw.type_decl = x.value in
let%bind type_expression = compile_type_expression type_expr in
ok @@ [loc x @@ Declaration_type (Var.of_name name.value , type_expression)]
| Let x -> (
let (region, recursive, let_binding, attributes), _ = r_split x in
let inline = List.exists (fun (a: Raw.attribute) -> a.value = "inline") attributes in
let binding = let_binding in
let {binders; lhs_type; let_rhs} = binding in
let (hd, _) = binders in
match hd with
| PTuple pt ->
let process_variable (var_pair: pattern * Raw.expr) =
(let (par_var, rhs_expr) = var_pair in
let%bind (v, v_type) = pattern_to_typed_var par_var in
let%bind v_type_expression =
match v_type with
| Some v_type -> ok (to_option (compile_type_expression v_type))
| None -> ok None
in
let%bind compile_rhs_expr = compile_expression rhs_expr in
ok @@ loc x @@ Declaration_constant (Var.of_name v.value, v_type_expression, inline, compile_rhs_expr) )
in let%bind variables = ok @@ npseq_to_list pt.value
in let%bind expr_bind_lst =
match let_rhs with
| ETuple et -> ok @@ npseq_to_list et.value
| EVar v -> (* Handle variable bound to tuple *)
let name = v.value in
let rec gen_access_tuple ?(i: int = 0)
?(accesses: Raw.expr list = []) (name: string)
: Raw.expr list =
let build_access_expr : Raw.expr = EProj
{region = v.region;
value =
{ struct_name = v;
selector = Region.ghost ;
field_path =
(
(Component
{region = v.region;
value = name, Z.of_int i;} : Raw.selection)
, []);
}
}
in
if i = (List.length variables) then accesses
else
let accesses =
build_access_expr :: accesses
in
gen_access_tuple name ~i: (i + 1) ~accesses
in ok (gen_access_tuple name)
(* TODO: Improve this error message *)
| other -> fail @@ abstracting_expr other
in let%bind decls =
(* TODO: Rewrite the gen_access_tuple so there's no List.rev *)
bind_map_list process_variable (List.combine variables (List.rev expr_bind_lst))
in ok @@ decls
| PPar {region = _ ; value = { lpar = _ ; inside = pt; rpar = _; } } ->
(* Extract parenthetical multi-bind *)
let (wild, recursive, _, attributes) = fst @@ r_split x in
compile_declaration
(Let {
region = x.region;
value = (wild, recursive, {binders = (pt, []);
lhs_type = lhs_type;
eq = Region.ghost ;
let_rhs = let_rhs}, attributes)}
: Raw.declaration)
| _ ->
let%bind (var, args) =
let%bind (hd, tl) =
let hd, tl = binders in ok (hd, tl) in
let%bind var = pattern_to_var hd in
ok (var , tl)
in
let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in
let%bind let_rhs,lhs_type = match args with
| [] -> ok (let_rhs, lhs_type')
| param1::others ->
let fun_ = {
kwd_fun = Region.ghost;
binders = param1, others;
lhs_type;
arrow = Region.ghost;
body = let_rhs
} in
let f_args = nseq_to_list (param1,others) in
let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in
let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in
ok (Raw.EFun {region; value=fun_},List.fold_right' aux lhs_type' ty)
in
let%bind rhs' = compile_expression let_rhs in
let%bind lhs_type = match lhs_type with
| None -> (match let_rhs with
| EFun {value={binders;lhs_type}} ->
let f_args = nseq_to_list (binders) in
let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in
let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in
let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in
ok @@ (List.fold_right' aux lhs_type' ty)
| _ -> ok None
)
| Some t -> ok @@ Some t
in
let binder = Var.of_name var.value in
let%bind rhs' = match recursive with
None -> ok @@ rhs'
| Some _ -> match rhs'.expression_content with
E_lambda lambda ->
(match lhs_type with
None -> fail @@ untyped_recursive_function var
| Some (lhs_type) ->
let expression_content = E_recursive {fun_name=binder;fun_type=lhs_type;lambda} in
ok @@ {rhs' with expression_content})
| _ -> ok @@ rhs'
in
ok @@ [loc x @@ (Declaration_constant (Var.of_name var.value , lhs_type , inline, rhs'))]
)
and compile_cases : type a . (Raw.pattern * a) list -> (a, unit) matching_content result =
fun t ->
let open Raw in
let rec get_var (t:Raw.pattern) =
match t with
| PVar v -> ok v.value
| PPar p -> get_var p.value.inside
| _ -> fail @@ unsupported_non_var_pattern t in
let rec get_tuple (t:Raw.pattern) =
match t with
| PTuple v -> npseq_to_list v.value
| PPar p -> get_tuple p.value.inside
| x -> [ x ] in
let get_single (t:Raw.pattern) =
let t' = get_tuple t in
let%bind () =
trace_strong (unsupported_tuple_pattern t) @@
Assert.assert_list_size t' 1 in
ok (List.hd t') in
let rec get_constr (t:Raw.pattern) =
match t with
PPar p -> get_constr p.value.inside
| PConstr v ->
let const, pat_opt =
match v with
PConstrApp {value; region} ->
(match value with
| constr, None ->
constr, Some (PVar {value = "unit"; region})
| _ -> value)
| PSomeApp {value=region,pat; _} ->
{value="Some"; region}, Some pat
| PNone region ->
{value="None"; region}, None in
let%bind pat =
trace_option (unsupported_cst_constr t) @@ pat_opt in
let%bind single_pat = get_single pat in
let%bind var = get_var single_pat in
ok (const.value, var)
| _ -> fail @@ only_constructors t in
let rec get_constr_opt (t:Raw.pattern) =
match t with
PPar p -> get_constr_opt p.value.inside
| PConstr v ->
let const, pat_opt =
match v with
PConstrApp {value; _} -> value
| PSomeApp {value=region,pat; _} ->
{value="Some"; region}, Some pat
| PNone region ->
{value="None"; region}, None in
let%bind var_opt =
match pat_opt with
| None -> ok None
| Some pat ->
let%bind single_pat = get_single pat in
let%bind var = get_var single_pat in
ok (Some var)
in ok (const.value , var_opt)
| _ -> fail @@ only_constructors t in
let%bind patterns =
let aux (x , y) =
let xs = get_tuple x in
trace_strong (unsupported_tuple_pattern x) @@
Assert.assert_list_size xs 1 >>? fun () ->
ok (List.hd xs , y)
in
bind_map_list aux t in
match patterns with
| [(PFalse _, f) ; (PTrue _, t)]
| [(PTrue _, t) ; (PFalse _, f)] ->
ok @@ Match_variant ([((Constructor "true", Var.of_name "_"), t); ((Constructor "false", Var.of_name "_"), f)], ())
| [(PList (PCons c), cons); (PList (PListComp sugar_nil), nil)]
| [(PList (PListComp sugar_nil), nil); (PList (PCons c), cons)] ->
let%bind () =
trace_strong (unsupported_sugared_lists sugar_nil.region)
@@ Assert.assert_list_empty
@@ pseq_to_list
@@ sugar_nil.value.elements in
let%bind (a, b) =
let a, _, b = c.value in
let%bind a = get_var a in
let%bind b = get_var b in
ok (a, b) in
ok @@ Match_list {match_cons=(Var.of_name a, Var.of_name b, cons, ()); match_nil=nil}
| lst ->
let error x =
let title () = "Pattern" in
(** TODO: The labelled arguments should be flowing from the CLI. *)
let content () =
Printf.sprintf "Pattern : %s"
(Parser_cameligo.ParserLog.pattern_to_string
~offsets:true ~mode:`Point x) in
error title content
in
let as_variant () =
trace (simple_info "currently, only booleans, lists, options, and constructors \
are supported in patterns") @@
let%bind constrs =
let aux (x, y) =
let%bind x' = trace (error x) @@ get_constr x
in ok (x', y)
in bind_map_list aux lst
in ok @@ ez_match_variant constrs in
let as_option () =
let aux (x, y) =
let%bind x' = trace (error x) @@ get_constr_opt x
in ok (x', y) in
let%bind constrs = bind_map_list aux lst in
match constrs with
| [ (("Some", Some some_var), some_expr);
(("None" , None) , none_expr) ]
| [ (("None", None), none_expr);
(("Some", Some some_var), some_expr) ] ->
ok @@ Match_option {
match_some = (Var.of_name some_var, some_expr, ());
match_none = none_expr }
| _ -> simple_fail "bad option pattern"
in bind_or (as_option () , as_variant ())
let compile_program : Raw.ast -> program result = fun t ->
let%bind decls = bind_map_list compile_declaration @@ nseq_to_list t.decl in
ok @@ List.concat @@ decls