[@@@warning "-45"] open Trace open Ast_imperative module Raw = Parser.Cameligo.AST module SMap = Map.String module Option = Simple_utils.Option (* TODO: move 1-parser/shared/Utils.ml{i} to Simple_utils/ *) open Combinators let nseq_to_list (hd, tl) = hd :: tl let npseq_to_list (hd, tl) = hd :: (List.map snd tl) let npseq_to_nelist (hd, tl) = hd, (List.map snd tl) let pseq_to_list = function | None -> [] | Some lst -> npseq_to_list lst let get_value : 'a Raw.reg -> 'a = fun x -> x.value module Errors = struct let wrong_pattern expected_name actual = let title () = "wrong pattern" in let message () = match actual with | Raw.PVar v -> v.value | Raw.PTuple _ -> "tuple" | Raw.PRecord _ -> "record" | Raw.PList _ -> "list" | Raw.PBytes _ -> "bytes" | _ -> "other" in let data = [ ("expected", fun () -> expected_name); ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ Raw.pattern_to_region actual)] in error ~data title message let unsupported_let_in_function (region : Region.t) (patterns : Raw.pattern list) = let title () = "" in let message () = "\nDefining functions with \"let ... in\" \ is not supported yet.\n" in let patterns_loc = List.fold_left (fun a p -> Region.cover a (Raw.pattern_to_region p)) region patterns in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ patterns_loc)] in error ~data title message let unknown_predefined_type name = let title () = "Type constants" in let message () = Format.asprintf "Unknown predefined type \"%s\".\n" name.Region.value in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region)] in error ~data title message let untyped_fun_param var = let title () = "" in let message () = Format.asprintf "\nUntyped function parameters \ are not supported yet.\n" in let param_loc = var.Region.region in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc)] in error ~data title message let untyped_recursive_function var = let title () = "" in let message () = Format.asprintf "\nUntyped recursive functions \ are not supported yet.\n" in let param_loc = var.Region.region in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc)] in error ~data title message let unsupported_tuple_pattern p = let title () = "" in let message () = Format.asprintf "\nTuple patterns are not supported yet.\n" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_cst_constr p = let title () = "" in let message () = Format.asprintf "\nConstant constructors are not supported yet.\n" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)] in error ~data title message let unsupported_non_var_pattern p = let title () = "" in let message () = Format.asprintf "\nNon-variable patterns in constructors \ are not supported yet.\n" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let abstracting_expr t = let title () = "abstracting expression" in let message () = "" in let data = [ ("expression" , (** TODO: The labelled arguments should be flowing from the CLI. *) thunk @@ Parser_cameligo.ParserLog.expr_to_string ~offsets:true ~mode:`Point t)] in error ~data title message let only_constructors p = let title () = "" in let message () = Format.asprintf "\nCurrently, only constructors are \ supported in patterns.\n" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_sugared_lists region = let title () = "" in let message () = Format.asprintf "\nCurrently, only empty lists and \ constructors (::) \ are supported in patterns.\n" in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ region)] in error ~data title message let corner_case description = let title () = "Corner case" in let message () = description in error title message let unknown_built_in name = let title () = "\n Unknown built-in function" in let message () = "" in let data = [ ("built-in", fun () -> name); ] in error ~data title message end open Errors open Operators.Concrete_to_imperative.Cameligo let r_split = Location.r_split let get_t_string_singleton_opt = function | Raw.TString s -> Some s.value | _ -> None let rec pattern_to_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_var p.value.inside | Raw.PVar v -> ok v | Raw.PWild r -> ok @@ ({ region = r ; value = "_" } : Raw.variable) | _ -> fail @@ wrong_pattern "single var" p let rec tuple_pattern_to_vars : Raw.pattern -> _ = fun pattern -> match pattern with | Raw.PPar pp -> tuple_pattern_to_vars pp.value.inside | Raw.PTuple pt -> bind_map_list pattern_to_var (npseq_to_list pt.value) | Raw.PVar _ | Raw.PWild _-> bind_list [pattern_to_var pattern] | other -> (fail @@ wrong_pattern "parenthetical, tuple, or variable" other) let rec pattern_to_typed_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_typed_var p.value.inside | Raw.PTyped tp -> ( let tp = tp.value in let%bind v = pattern_to_var tp.pattern in ok (v , Some tp.type_expr) ) | Raw.PVar v -> ok (v , None) | Raw.PWild r -> ok (({ region = r ; value = "_" } : Raw.variable) , None) | _ -> fail @@ wrong_pattern "single typed variable" p let rec expr_to_typed_expr : Raw.expr -> _ = function EPar e -> expr_to_typed_expr e.value.inside | EAnnot {value={inside=e,_,t; _}; _} -> ok (e, Some t) | e -> ok (e , None) let rec tuple_pattern_to_typed_vars : Raw.pattern -> _ = fun pattern -> match pattern with | Raw.PPar pp -> tuple_pattern_to_typed_vars pp.value.inside | Raw.PTuple pt -> bind_map_list pattern_to_typed_var (npseq_to_list pt.value) | Raw.PVar _ -> bind_list [pattern_to_typed_var pattern] | other -> (fail @@ wrong_pattern "parenthetical, tuple, or variable" other) let rec typed_pattern_to_typed_vars : Raw.pattern -> _ = fun pattern -> match pattern with | Raw.PPar pp -> typed_pattern_to_typed_vars pp.value.inside | Raw.PTyped pt -> let (p,t) = pt.value.pattern,pt.value.type_expr in let%bind p = tuple_pattern_to_vars p in let%bind t = compile_type_expression t in let l = Location.lift pt.region in ok @@ (p,t,l) | other -> (fail @@ wrong_pattern "parenthetical or type annotation" other) and unpar_pattern : Raw.pattern -> Raw.pattern = function | PPar p -> unpar_pattern p.value.inside | _ as p -> p and compile_type_expression : Raw.type_expr -> type_expression result = fun te -> trace (simple_info "abstracting this type expression...") @@ match te with TPar x -> compile_type_expression x.value.inside | TVar v -> ( let (v, loc) = r_split v in match type_constants v with | Some s -> ok @@ make_t ~loc @@ T_constant s | None -> ok @@ make_t ~loc @@ T_variable (Var.of_name v) ) | TFun x -> ( let (x,loc) = r_split x in let%bind (type1 , type2) = let (a , _ , b) = x in let%bind a = compile_type_expression a in let%bind b = compile_type_expression b in ok (a , b) in ok @@ make_t ~loc @@ T_arrow {type1;type2} ) | TApp x -> ( let (x,loc) = r_split x in let (name, tuple) = x in ( match name.value with | "michelson_or" -> let lst = npseq_to_list tuple.value.inside in (match lst with | [a ; b ; c ; d ] -> ( let%bind b' = trace_option (simple_error "second argument of michelson_or must be a string singleton") @@ get_t_string_singleton_opt b in let%bind d' = trace_option (simple_error "fourth argument of michelson_or must be a string singleton") @@ get_t_string_singleton_opt d in let%bind a' = compile_type_expression a in let%bind c' = compile_type_expression c in ok @@ t_michelson_or ~loc a' b' c' d' ) | _ -> simple_fail "michelson_or does not have the right number of argument") | "michelson_pair" -> let lst = npseq_to_list tuple.value.inside in (match lst with | [a ; b ; c ; d ] -> ( let%bind b' = trace_option (simple_error "second argument of michelson_pair must be a string singleton") @@ get_t_string_singleton_opt b in let%bind d' = trace_option (simple_error "fourth argument of michelson_pair must be a string singleton") @@ get_t_string_singleton_opt d in let%bind a' = compile_type_expression a in let%bind c' = compile_type_expression c in ok @@ t_michelson_pair ~loc a' b' c' d' ) | _ -> simple_fail "michelson_pair does not have the right number of argument") | _ -> let lst = npseq_to_list tuple.value.inside in let%bind lst' = bind_map_list compile_type_expression lst in let%bind cst = trace_option (unknown_predefined_type name) @@ type_operators name.value in t_operator ~loc cst lst' ) ) | TProd p -> ( let%bind tpl = compile_list_type_expression @@ npseq_to_list p.value in ok tpl ) | TRecord r -> let (r, loc) = r_split r in let aux = fun (x, y) -> let%bind y = compile_type_expression y in ok (x, y) in let order = fun i (x,y) -> ((x,i),y) in let apply (x:Raw.field_decl Raw.reg) = (x.value.field_name.value, x.value.field_type) in let%bind lst = bind_list @@ List.map aux @@ List.mapi order @@ List.map apply @@ npseq_to_list r.ne_elements in let m = List.fold_left (fun m ((x,i), y) -> LMap.add (Label x) {field_type=y;field_decl_pos=i} m) LMap.empty lst in ok @@ make_t ~loc @@ T_record m | TSum s -> let (s,loc) = r_split s in let aux i (v:Raw.variant Raw.reg) = let args = match v.value.arg with None -> [] | Some (_, TProd product) -> npseq_to_list product.value | Some (_, t_expr) -> [t_expr] in let%bind te = compile_list_type_expression @@ args in ok ((v.value.constr.value,i), te) in let%bind lst = bind_list @@ List.mapi aux @@ npseq_to_list s in let m = List.fold_left (fun m ((x,i), y) -> CMap.add (Constructor x) {ctor_type=y;ctor_decl_pos=i} m) CMap.empty lst in ok @@ make_t ~loc @@ T_sum m | TString _s -> simple_fail "we don't support singleton string type" and compile_list_type_expression (lst:Raw.type_expr list) : type_expression result = match lst with | [] -> ok @@ t_unit () | [hd] -> compile_type_expression hd | lst -> let%bind lst = bind_map_list compile_type_expression lst in ok @@ t_tuple lst let rec compile_expression : Raw.expr -> expr result = fun t -> let return x = ok x in let compile_projection = fun (p:Raw.projection Region.reg) -> let (p , loc) = r_split p in let var = let name = Var.of_name p.struct_name.value in e_variable name in let path = p.field_path in let path' = let aux (s:Raw.selection) = match s with FieldName property -> property.value | Component index -> Z.to_string (snd index.value) in List.map aux @@ npseq_to_list path in return @@ List.fold_left (e_record_accessor ~loc ) var path' in let compile_path : Raw.path -> string * label list = fun p -> match p with | Raw.Name v -> (v.value , []) | Raw.Path p -> ( let p' = p.value in let var = p'.struct_name.value in let path = p'.field_path in let path' = let aux (s:Raw.selection) = match s with | FieldName property -> Label property.value | Component index -> Label (Z.to_string (snd index.value)) in List.map aux @@ npseq_to_list path in (var , path') ) in let compile_update = fun (u:Raw.update Region.reg) -> let (u, loc) = r_split u in let (name, path) = compile_path u.record in let record = match path with | [] -> e_variable (Var.of_name name) | _ -> let aux expr (Label l) = e_record_accessor expr l in List.fold_left aux (e_variable (Var.of_name name)) path in let updates = u.updates.value.ne_elements in let%bind updates' = let aux (f:Raw.field_path_assign Raw.reg) = let (f,_) = r_split f in let%bind expr = compile_expression f.field_expr in ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr) in bind_map_list aux @@ npseq_to_list updates in let aux ur (path, expr) = let rec aux record = function | [] -> failwith "error in parsing" | hd :: [] -> ok @@ e_record_update ~loc record hd expr | hd :: tl -> let%bind expr = (aux (e_record_accessor ~loc record hd) tl) in ok @@ e_record_update ~loc record hd expr in aux ur path in bind_fold_list aux record updates' in trace (abstracting_expr t) @@ match t with Raw.ELetIn e -> let Raw.{kwd_rec; binding; body; attributes; _} = e.value in let region = e.region in let loc = Location.lift region in let inline = List.exists (fun (a: Raw.attribute) -> a.value = "inline") attributes in let Raw.{binders; lhs_type; let_rhs; _} = binding in begin match binders with | (p, []) -> let%bind variables = tuple_pattern_to_typed_vars p in let%bind ty_opt = bind_map_option (fun (re,te) -> let%bind te = compile_type_expression te in ok(Location.lift re,te)) lhs_type in let%bind rhs = compile_expression let_rhs in let rhs_b = Var.fresh ~name: "rhs" () in let rhs',rhs_b_expr = match ty_opt with None -> rhs, e_variable ~loc rhs_b | Some (lt,ty) -> (e_annotation ~loc:lt rhs ty), e_annotation ~loc:lt (e_variable ~loc rhs_b) ty in let%bind body = compile_expression body in let prepare_variable (ty_var: Raw.variable * Raw.type_expr option) = let variable, ty_opt = ty_var in let var_expr = Var.of_name variable.value in let%bind ty_expr_opt = match ty_opt with | Some ty -> bind_map_option compile_type_expression (Some ty) | None -> ok None in ok (var_expr, ty_expr_opt) in let%bind prep_vars = bind_list (List.map prepare_variable variables) in let%bind () = if (List.length prep_vars) = 0 then fail @@ corner_case "let ... in without variables passed parsing stage" else ok () in let rhs_b_expr = (* We only want to evaluate the rhs first if multi-bind *) if List.length prep_vars = 1 then rhs' else rhs_b_expr in let rec chain_let_in variables body : expression = match variables with | hd :: [] -> if (List.length prep_vars = 1) then e_let_in ~loc hd inline rhs_b_expr body else e_let_in ~loc hd inline (e_record_accessor ~loc rhs_b_expr (string_of_int ((List.length prep_vars) - 1))) body | hd :: tl -> e_let_in ~loc hd inline (e_record_accessor ~loc rhs_b_expr (string_of_int ((List.length prep_vars) - (List.length tl) - 1))) (chain_let_in tl body) | [] -> body (* Precluded by corner case assertion above *) in let%bind ty_opt = match ty_opt with | None -> (match let_rhs with | EFun {value={binders;lhs_type}} -> let f_args = nseq_to_list (binders) in let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in ok @@ (List.fold_right' aux lhs_type' ty) | _ -> ok None ) | Some (_,t) -> ok @@ Some t in let%bind ret_expr = if List.length prep_vars = 1 then ok (chain_let_in prep_vars body) (* Bind the right hand side so we only evaluate it once *) else ok (e_let_in (rhs_b, ty_opt) inline rhs' (chain_let_in prep_vars body)) in let%bind ret_expr = match kwd_rec with | None -> ok @@ ret_expr | Some _ -> match ret_expr.expression_content with | E_let_in li -> ( let%bind lambda = let rec aux rhs = match rhs.expression_content with | E_lambda l -> ok @@ l | E_ascription a -> aux a.anno_expr | _ -> fail @@ corner_case "recursive only supported for lambda" in aux rhs' in let fun_name = fst @@ List.hd prep_vars in let%bind fun_type = match ty_opt with | Some t -> ok @@ t | None -> match rhs'.expression_content with | E_ascription a -> ok a.type_annotation | _ -> fail @@ untyped_recursive_function e in let expression_content = E_recursive {fun_name;fun_type;lambda} in let expression_content = E_let_in {li with rhs = {li.rhs with expression_content}} in ok @@ {ret_expr with expression_content} ) | _ -> fail @@ corner_case "impossible" in ok ret_expr (* let f p1 ps... = rhs in body *) | (f, p1 :: ps) -> fail @@ unsupported_let_in_function e.region (f :: p1 :: ps) end | Raw.EAnnot a -> let Raw.{inside=expr, _, type_expr; _}, loc = r_split a in let%bind expr' = compile_expression expr in let%bind type_expr' = compile_type_expression type_expr in return @@ e_annotation ~loc expr' type_expr' | EVar c -> let (c',loc) = r_split c in (match constants c' with | None -> return @@ e_variable ~loc (Var.of_name c.value) | Some s -> return @@ e_constant s []) | ECall x -> ( let ((e1 , e2) , loc) = r_split x in let%bind args = bind_map_list compile_expression (nseq_to_list e2) in let rec chain_application (f: expression) (args: expression list) = match args with | hd :: tl -> chain_application (e_application ~loc f hd) tl | [] -> f in match e1 with | EVar f -> ( let (f , f_loc) = r_split f in match constants f with | None -> return @@ chain_application (e_variable ~loc:f_loc (Var.of_name f)) args | Some s -> return @@ e_constant ~loc s args ) | e1 -> let%bind e1' = compile_expression e1 in return @@ chain_application e1' args ) | EPar x -> compile_expression x.value.inside | EUnit reg -> let (_ , loc) = r_split reg in return @@ e_literal ~loc Literal_unit | EBytes x -> let (x , loc) = r_split x in return @@ e_literal ~loc (Literal_bytes (Hex.to_bytes @@ snd x)) | ETuple tpl -> compile_tuple_expression @@ (npseq_to_list tpl.value) | ERecord r -> let (r , loc) = r_split r in let%bind fields = bind_list @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = compile_expression v in ok (k.value, v)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ npseq_to_list r.ne_elements in return @@ e_record_ez ~loc fields | EProj p -> compile_projection p | EUpdate u -> compile_update u | EConstr (ESomeApp a) -> let (_, args), loc = r_split a in let%bind arg = compile_expression args in return @@ e_constant ~loc C_SOME [arg] | EConstr (ENone reg) -> let loc = Location.lift reg in return @@ e_none ~loc () | EConstr (EConstrApp c) -> let (c_name, args), loc = r_split c in let c_name, _c_loc = r_split c_name in let args = match args with None -> [] | Some arg -> [arg] in let%bind arg = compile_tuple_expression @@ args in return @@ e_constructor ~loc c_name arg | EArith (Add c) -> compile_binop "ADD" c | EArith (Sub c) -> compile_binop "SUB" c | EArith (Mult c) -> compile_binop "TIMES" c | EArith (Div c) -> compile_binop "DIV" c | EArith (Mod c) -> compile_binop "MOD" c | EArith (Int n) -> ( let (n , loc) = r_split n in let n = snd @@ n in return @@ e_literal ~loc (Literal_int n) ) | EArith (Nat n) -> ( let (n , loc) = r_split n in let n = snd @@ n in return @@ e_literal ~loc (Literal_nat n) ) | EArith (Mutez n) -> ( let (n , loc) = r_split n in let n = snd @@ n in return @@ e_literal ~loc (Literal_mutez n) ) | EArith (Neg e) -> compile_unop "NEG" e | EString (String s) -> ( let (s , loc) = r_split s in return @@ e_literal ~loc (Literal_string (Standard s)) ) | EString (Verbatim v) -> ( let (v , loc) = r_split v in return @@ e_literal ~loc (Literal_string (Verbatim v)) ) | EString (Cat c) -> let (c, loc) = r_split c in let%bind string_left = compile_expression c.arg1 in let%bind string_right = compile_expression c.arg2 in return @@ e_string_cat ~loc string_left string_right | ELogic l -> compile_logic_expression l | EList l -> compile_list_expression l | ECase c -> ( let (c , loc) = r_split c in let%bind e = compile_expression c.expr in let%bind lst = let aux (x : Raw.expr Raw.case_clause) = let%bind expr = compile_expression x.rhs in ok (x.pattern, expr) in bind_list @@ List.map aux @@ List.map get_value @@ npseq_to_list c.cases.value in let default_action () = let%bind cases = compile_cases lst in return @@ e_matching ~loc e cases in (* Hack to take care of patterns introduced by `parser/cameligo/Parser.mly` in "norm_fun_expr". TODO: Still needed? *) match lst with | [ (pattern , rhs) ] -> ( match pattern with | Raw.PPar p -> ( let p' = p.value.inside in match p' with | Raw.PTyped x -> ( let x' = x.value in match x'.pattern with | Raw.PVar y -> let var_name = Var.of_name y.value in let%bind type_expr = compile_type_expression x'.type_expr in return @@ e_let_in (var_name , Some type_expr) false e rhs | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | EFun lamb -> compile_fun lamb | ESeq s -> ( let (s , loc) = r_split s in let items : Raw.expr list = pseq_to_list s.elements in (match List.rev items with [] -> return @@ e_skip ~loc () | expr::more -> let expr' = compile_expression expr in let apply e1 e2 = let%bind a = compile_expression e2 in let%bind e1' = e1 in return @@ e_sequence a e1' in List.fold_left apply expr' more) ) | ECond c -> ( let (c , loc) = r_split c in let%bind expr = compile_expression c.test in let%bind match_true = compile_expression c.ifso in let%bind match_false = compile_expression c.ifnot in return @@ e_cond ~loc expr match_true match_false ) and compile_fun lamb' : expr result = let return x = ok x in let (lamb , loc) = r_split lamb' in let%bind params' = let params = nseq_to_list lamb.binders in let params = (* Handle case where we have tuple destructure in params *) (* So basically the transformation we're doing is: let sum (result, i: int * int) : int = result + i TO: let sum (#P: int * int) : int = let result, i = #P in result + i In this first section we replace `result, i` with `#P`. *) match lamb.binders with (* TODO: currently works only if there is one param *) | (Raw.PPar pp, []) -> let pt = pp.value.inside in (match pt with | Raw.PTyped pt -> begin let pt_pattern = unpar_pattern pt.value.pattern in match pt_pattern with | Raw.PVar _ -> params | Raw.PTuple t -> [Raw.PTyped {region=t.region; value= { pt.value with pattern= Raw.PVar {region=pt.region; value="#P"}}}] | _ -> params end | _ -> params) | _ -> params in let%bind p_params = bind_map_list pattern_to_typed_var params in let aux ((var : Raw.variable) , ty_opt) = match var.value , ty_opt with | "storage" , None -> ok (var , t_variable "storage") | _ , None -> fail @@ untyped_fun_param var | _ , Some ty -> ( let%bind ty' = compile_type_expression ty in ok (var , ty') ) in bind_map_list aux p_params in let%bind body = if (List.length params' > 1) then ok lamb.body else let original_params = nseq_to_list lamb.binders in let%bind destruct = match original_params with | hd :: _ -> ok @@ hd | [] -> fail @@ corner_case "Somehow have no parameters in function during tuple param destructure" in match destruct with (* Handle tuple parameter destructuring *) (* In this section we create a let ... in that binds the original parameters *) | Raw.PPar pp -> (match unpar_pattern pp.value.inside with | Raw.PTyped pt -> let vars = pt.value in (match unpar_pattern vars.pattern with | PTuple vars -> let let_in_binding: Raw.let_binding = {binders = (PTuple vars, []) ; lhs_type=None; eq=Region.ghost; let_rhs=(Raw.EVar {region=pt.region; value="#P"}); } in let let_in: Raw.let_in = {kwd_let= Region.ghost; kwd_rec= None; binding= let_in_binding; kwd_in= Region.ghost; body= lamb.body; attributes = [] } in ok (Raw.ELetIn { region=pt.region; value=let_in }) | Raw.PVar _ -> ok lamb.body | _ -> ok lamb.body) | _ -> ok lamb.body) | _ -> ok lamb.body in let%bind (body , body_type) = expr_to_typed_expr body in let%bind output_type = bind_map_option compile_type_expression body_type in let%bind body = compile_expression body in let rec layer_arguments (arguments: (Raw.variable * type_expression) list) = match arguments with | hd :: tl -> let (binder , input_type) = (Var.of_name (fst hd).value , snd hd) in e_lambda ~loc (binder) (Some input_type) output_type (layer_arguments tl) | [] -> body in let ret_lamb = layer_arguments params' in return @@ ret_lamb and compile_logic_expression ?te_annot (t:Raw.logic_expr) : expr result = let return x = ok @@ make_option_typed x te_annot in match t with | BoolExpr (False reg) -> ( let loc = Location.lift reg in return @@ e_bool ~loc false ) | BoolExpr (True reg) -> ( let loc = Location.lift reg in return @@ e_bool ~loc true ) | BoolExpr (Or b) -> compile_binop "OR" b | BoolExpr (And b) -> compile_binop "AND" b | BoolExpr (Not b) -> compile_unop "NOT" b | CompExpr (Lt c) -> compile_binop "LT" c | CompExpr (Gt c) -> compile_binop "GT" c | CompExpr (Leq c) -> compile_binop "LE" c | CompExpr (Geq c) -> compile_binop "GE" c | CompExpr (Equal c) -> compile_binop "EQ" c | CompExpr (Neq c) -> compile_binop "NEQ" c and compile_list_expression (t:Raw.list_expr) : expression result = let return x = ok @@ x in match t with ECons c -> compile_binop "CONS" c | EListComp lst -> ( let (lst , loc) = r_split lst in let%bind lst' = bind_map_list compile_expression @@ pseq_to_list lst.elements in return @@ e_list ~loc lst' ) and compile_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result = let return x = ok @@ x in let (args , loc) = r_split t in let%bind a = compile_expression args.arg1 in let%bind b = compile_expression args.arg2 in let%bind name = trace_option (unknown_built_in name) @@ constants name in return @@ e_constant ~loc name [ a ; b ] and compile_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result = let return x = ok @@ x in let (t , loc) = r_split t in let%bind a = compile_expression t.arg in let%bind name = trace_option (unknown_built_in name) @@ constants name in return @@ e_constant ~loc name [ a ] and compile_tuple_expression ?loc (lst:Raw.expr list) : expression result = let return x = ok @@ x in match lst with | [] -> return @@ e_literal ?loc Literal_unit | [hd] -> compile_expression hd | lst -> let%bind lst = bind_list @@ List.map compile_expression lst in return @@ e_tuple ?loc lst and compile_declaration : Raw.declaration -> declaration Location.wrap list result = fun t -> let open! Raw in let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in match t with | TypeDecl x -> let {name;type_expr} : Raw.type_decl = x.value in let%bind type_expression = compile_type_expression type_expr in ok @@ [loc x @@ Declaration_type (Var.of_name name.value , type_expression)] | Let x -> ( let (region, recursive, let_binding, attributes), _ = r_split x in let inline = List.exists (fun (a: Raw.attribute) -> a.value = "inline") attributes in let binding = let_binding in let {binders; lhs_type; let_rhs} = binding in let (hd, _) = binders in match hd with | PTuple pt -> let process_variable (var_pair: pattern * Raw.expr) = (let (par_var, rhs_expr) = var_pair in let%bind (v, v_type) = pattern_to_typed_var par_var in let%bind v_type_expression = match v_type with | Some v_type -> ok (to_option (compile_type_expression v_type)) | None -> ok None in let%bind compile_rhs_expr = compile_expression rhs_expr in ok @@ loc x @@ Declaration_constant (Var.of_name v.value, v_type_expression, inline, compile_rhs_expr) ) in let%bind variables = ok @@ npseq_to_list pt.value in let%bind expr_bind_lst = match let_rhs with | ETuple et -> ok @@ npseq_to_list et.value | EVar v -> (* Handle variable bound to tuple *) let name = v.value in let rec gen_access_tuple ?(i: int = 0) ?(accesses: Raw.expr list = []) (name: string) : Raw.expr list = let build_access_expr : Raw.expr = EProj {region = v.region; value = { struct_name = v; selector = Region.ghost ; field_path = ( (Component {region = v.region; value = name, Z.of_int i;} : Raw.selection) , []); } } in if i = (List.length variables) then accesses else let accesses = build_access_expr :: accesses in gen_access_tuple name ~i: (i + 1) ~accesses in ok (gen_access_tuple name) (* TODO: Improve this error message *) | other -> fail @@ abstracting_expr other in let%bind decls = (* TODO: Rewrite the gen_access_tuple so there's no List.rev *) bind_map_list process_variable (List.combine variables (List.rev expr_bind_lst)) in ok @@ decls | PPar {region = _ ; value = { lpar = _ ; inside = pt; rpar = _; } } -> (* Extract parenthetical multi-bind *) let (wild, recursive, _, attributes) = fst @@ r_split x in compile_declaration (Let { region = x.region; value = (wild, recursive, {binders = (pt, []); lhs_type = lhs_type; eq = Region.ghost ; let_rhs = let_rhs}, attributes)} : Raw.declaration) | _ -> let%bind (var, args) = let%bind (hd, tl) = let hd, tl = binders in ok (hd, tl) in let%bind var = pattern_to_var hd in ok (var , tl) in let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in let%bind let_rhs,lhs_type = match args with | [] -> ok (let_rhs, lhs_type') | param1::others -> let fun_ = { kwd_fun = Region.ghost; binders = param1, others; lhs_type; arrow = Region.ghost; body = let_rhs } in let f_args = nseq_to_list (param1,others) in let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in ok (Raw.EFun {region; value=fun_},List.fold_right' aux lhs_type' ty) in let%bind rhs' = compile_expression let_rhs in let%bind lhs_type = match lhs_type with | None -> (match let_rhs with | EFun {value={binders;lhs_type}} -> let f_args = nseq_to_list (binders) in let%bind lhs_type' = bind_map_option (fun x -> compile_type_expression (snd x)) lhs_type in let%bind ty = bind_map_list typed_pattern_to_typed_vars f_args in let aux acc (_,ty,loc) = Option.map (t_function ~loc ty) acc in ok @@ (List.fold_right' aux lhs_type' ty) | _ -> ok None ) | Some t -> ok @@ Some t in let binder = Var.of_name var.value in let%bind rhs' = match recursive with None -> ok @@ rhs' | Some _ -> match rhs'.expression_content with E_lambda lambda -> (match lhs_type with None -> fail @@ untyped_recursive_function var | Some (lhs_type) -> let expression_content = E_recursive {fun_name=binder;fun_type=lhs_type;lambda} in ok @@ {rhs' with expression_content}) | _ -> ok @@ rhs' in ok @@ [loc x @@ (Declaration_constant (Var.of_name var.value , lhs_type , inline, rhs'))] ) and compile_cases : type a . (Raw.pattern * a) list -> (a, unit) matching_content result = fun t -> let open Raw in let rec get_var (t:Raw.pattern) = match t with | PVar v -> ok v.value | PPar p -> get_var p.value.inside | _ -> fail @@ unsupported_non_var_pattern t in let rec get_tuple (t:Raw.pattern) = match t with | PTuple v -> npseq_to_list v.value | PPar p -> get_tuple p.value.inside | x -> [ x ] in let get_single (t:Raw.pattern) = let t' = get_tuple t in let%bind () = trace_strong (unsupported_tuple_pattern t) @@ Assert.assert_list_size t' 1 in ok (List.hd t') in let rec get_constr (t:Raw.pattern) = match t with PPar p -> get_constr p.value.inside | PConstr v -> let const, pat_opt = match v with PConstrApp {value; region} -> (match value with | constr, None -> constr, Some (PVar {value = "unit"; region}) | _ -> value) | PSomeApp {value=region,pat; _} -> {value="Some"; region}, Some pat | PNone region -> {value="None"; region}, None in let%bind pat = trace_option (unsupported_cst_constr t) @@ pat_opt in let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (const.value, var) | _ -> fail @@ only_constructors t in let rec get_constr_opt (t:Raw.pattern) = match t with PPar p -> get_constr_opt p.value.inside | PConstr v -> let const, pat_opt = match v with PConstrApp {value; _} -> value | PSomeApp {value=region,pat; _} -> {value="Some"; region}, Some pat | PNone region -> {value="None"; region}, None in let%bind var_opt = match pat_opt with | None -> ok None | Some pat -> let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (Some var) in ok (const.value , var_opt) | _ -> fail @@ only_constructors t in let%bind patterns = let aux (x , y) = let xs = get_tuple x in trace_strong (unsupported_tuple_pattern x) @@ Assert.assert_list_size xs 1 >>? fun () -> ok (List.hd xs , y) in bind_map_list aux t in match patterns with | [(PFalse _, f) ; (PTrue _, t)] | [(PTrue _, t) ; (PFalse _, f)] -> ok @@ Match_variant ([((Constructor "true", Var.of_name "_"), t); ((Constructor "false", Var.of_name "_"), f)], ()) | [(PList (PCons c), cons); (PList (PListComp sugar_nil), nil)] | [(PList (PListComp sugar_nil), nil); (PList (PCons c), cons)] -> let%bind () = trace_strong (unsupported_sugared_lists sugar_nil.region) @@ Assert.assert_list_empty @@ pseq_to_list @@ sugar_nil.value.elements in let%bind (a, b) = let a, _, b = c.value in let%bind a = get_var a in let%bind b = get_var b in ok (a, b) in ok @@ Match_list {match_cons=(Var.of_name a, Var.of_name b, cons, ()); match_nil=nil} | lst -> let error x = let title () = "Pattern" in (** TODO: The labelled arguments should be flowing from the CLI. *) let content () = Printf.sprintf "Pattern : %s" (Parser_cameligo.ParserLog.pattern_to_string ~offsets:true ~mode:`Point x) in error title content in let as_variant () = trace (simple_info "currently, only booleans, lists, options, and constructors \ are supported in patterns") @@ let%bind constrs = let aux (x, y) = let%bind x' = trace (error x) @@ get_constr x in ok (x', y) in bind_map_list aux lst in ok @@ ez_match_variant constrs in let as_option () = let aux (x, y) = let%bind x' = trace (error x) @@ get_constr_opt x in ok (x', y) in let%bind constrs = bind_map_list aux lst in match constrs with | [ (("Some", Some some_var), some_expr); (("None" , None) , none_expr) ] | [ (("None", None), none_expr); (("Some", Some some_var), some_expr) ] -> ok @@ Match_option { match_some = (Var.of_name some_var, some_expr, ()); match_none = none_expr } | _ -> simple_fail "bad option pattern" in bind_or (as_option () , as_variant ()) let compile_program : Raw.ast -> program result = fun t -> let%bind decls = bind_map_list compile_declaration @@ nseq_to_list t.decl in ok @@ List.concat @@ decls