ligo/src/lib_stdlib/hashPtree.mli
2018-06-30 17:41:32 +02:00

146 lines
5.3 KiB
OCaml

(*****************************************************************************)
(* *)
(* Open Source License *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* Permission is hereby granted, free of charge, to any person obtaining a *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)
(* and/or sell copies of the Software, and to permit persons to whom the *)
(* Software is furnished to do so, subject to the following conditions: *)
(* *)
(* The above copyright notice and this permission notice shall be included *)
(* in all copies or substantial portions of the Software. *)
(* *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)
(* DEALINGS IN THE SOFTWARE. *)
(* *)
(*****************************************************************************)
(* Hash Consed Patricia Trees *)
module type Value = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
module type Bits = sig
type t
val lnot : t -> t
val (land) : t -> t -> t
val (lxor) : t -> t -> t
val (lor) : t -> t -> t
val (lsr) : t -> int -> t
val (lsl) : t -> int -> t
val pred : t -> t
val less_than : t -> t -> bool
val highest_bit : t -> t
val equal : t -> t -> bool
val hash : t -> int
val zero : t
val one : t
val size : int
end
module type Size = sig
val size : int
end
module Bits(S:Size) : sig
include Bits
val of_z : Z.t -> t
val to_z : t -> Z.t
end
module type S = sig
type key
type value
type mask
type t
val equal : t -> t -> bool
val empty : t
val singleton : key:key -> value:value -> mask:mask -> t
(** [add combine ~key ~value ?mask t]
Add a new key in the tree. If mask is specified, then we consider the whole
subtree stemming from key.
Assumes that forall x, [combine x x = x]
*)
val add : (value -> value -> value) -> key:key -> value:value ->
?mask:mask -> t -> t
(** [remove key t] Remove the entire subtree speficied by the mask associated with
key in the tree. Otherwise remove only the key *)
val remove : key -> t -> t
(** [remove_exact key t] Remove the largest subtree
stemming from key. Otherwise remove only the key *)
val remove_exact : key -> t -> t
val remove_prefix : key -> mask -> t -> t
(** [mem key t] return true if the entire subtree speficied by the mask associated with
key is in the tree *)
val mem : key -> t -> bool
(** [mem_exact key t] return true if the largest subtree stemming from key is in the tree *)
val mem_exact : key -> t -> bool
val find : key -> t -> value option
(** [let new_tree = replace_subtree ~replaced value tree]
If replaced is a subtree of tree (for instance provided
by Map_reduce.reduce)
let n and m be the smallest integers such that for all
keys part of replaced, n is smaller and n + 2^m is strictly larger.
Then new_tree is the map such that for each key, n <= key < n + 2^m,
[find key new_tree] is [Some value] *)
val replace_subtree : replaced:t -> value -> t -> t
val fold : (key -> mask -> value -> 'a -> 'a) -> t -> 'a -> 'a
module type Map_Reduce = sig
type result
val default : result
val map : t -> key -> value -> result
val reduce : t -> result -> result -> result
end
module Map_Reduce(M:Map_Reduce) : sig
(** run has a constant amortized complexity *)
val run : t -> M.result
(** [filter f t] assumes that the composition of [f] and [reduce]
is monotonic i.e.
for any [t], if [f (reduce t x y) = true] then [f x = true]
and [f y = true].
For efficiency reason, you should also ensure that
if [f (reduce t x y) = false] then either [f x = false] or
[f y = false].
It is not required for correctness, but is needed to get a
constant amortized complexity.
*)
val filter : (M.result -> bool) -> t -> t
end
end
module Make_LE(V:Value) : S with type key = int and type value = V.t and type mask = int
module Make_BE(V:Value) : S with type key = int and type value = V.t and type mask = int
module Make_BE_gen(V:Value)(B:Bits) : S with type key = B.t and type value = V.t and type mask = B.t
module Make_BE_sized(V:Value)(S:Size) : S with type key = Bits(S).t and type value = V.t and type mask = Bits(S).t