(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* Hash Consed Patricia Trees *) module type Value = sig type t val equal : t -> t -> bool val hash : t -> int end module type Bits = sig type t val lnot : t -> t val (land) : t -> t -> t val (lxor) : t -> t -> t val (lor) : t -> t -> t val (lsr) : t -> int -> t val (lsl) : t -> int -> t val pred : t -> t val less_than : t -> t -> bool val highest_bit : t -> t val equal : t -> t -> bool val hash : t -> int val zero : t val one : t val size : int end module type Size = sig val size : int end module Bits(S:Size) : sig include Bits val of_z : Z.t -> t val to_z : t -> Z.t end module type S = sig type key type value type mask type t val equal : t -> t -> bool val empty : t val singleton : key:key -> value:value -> mask:mask -> t (** [add combine ~key ~value ?mask t] Add a new key in the tree. If mask is specified, then we consider the whole subtree stemming from key. Assumes that forall x, [combine x x = x] *) val add : (value -> value -> value) -> key:key -> value:value -> ?mask:mask -> t -> t (** [remove key t] Remove the entire subtree speficied by the mask associated with key in the tree. Otherwise remove only the key *) val remove : key -> t -> t (** [remove_exact key t] Remove the largest subtree stemming from key. Otherwise remove only the key *) val remove_exact : key -> t -> t val remove_prefix : key -> mask -> t -> t (** [mem key t] return true if the entire subtree speficied by the mask associated with key is in the tree *) val mem : key -> t -> bool (** [mem_exact key t] return true if the largest subtree stemming from key is in the tree *) val mem_exact : key -> t -> bool val find : key -> t -> value option (** [let new_tree = replace_subtree ~replaced value tree] If replaced is a subtree of tree (for instance provided by Map_reduce.reduce) let n and m be the smallest integers such that for all keys part of replaced, n is smaller and n + 2^m is strictly larger. Then new_tree is the map such that for each key, n <= key < n + 2^m, [find key new_tree] is [Some value] *) val replace_subtree : replaced:t -> value -> t -> t val fold : (key -> mask -> value -> 'a -> 'a) -> t -> 'a -> 'a module type Map_Reduce = sig type result val default : result val map : t -> key -> value -> result val reduce : t -> result -> result -> result end module Map_Reduce(M:Map_Reduce) : sig (** run has a constant amortized complexity *) val run : t -> M.result (** [filter f t] assumes that the composition of [f] and [reduce] is monotonic i.e. for any [t], if [f (reduce t x y) = true] then [f x = true] and [f y = true]. For efficiency reason, you should also ensure that if [f (reduce t x y) = false] then either [f x = false] or [f y = false]. It is not required for correctness, but is needed to get a constant amortized complexity. *) val filter : (M.result -> bool) -> t -> t end end module Make_LE(V:Value) : S with type key = int and type value = V.t and type mask = int module Make_BE(V:Value) : S with type key = int and type value = V.t and type mask = int module Make_BE_gen(V:Value)(B:Bits) : S with type key = B.t and type value = V.t and type mask = B.t module Make_BE_sized(V:Value)(S:Size) : S with type key = Bits(S).t and type value = V.t and type mask = Bits(S).t