basic top level

This commit is contained in:
Galfour 2019-03-25 20:52:09 +00:00
parent 984fa24ca6
commit 10bcecc490
10 changed files with 86 additions and 1217 deletions

View File

@ -0,0 +1,6 @@
const foo : int = 42
function main (const i : int) : int is
begin
skip
end with i + foo

View File

@ -0,0 +1 @@
type

View File

@ -1,795 +0,0 @@
[@@@warning "-30"]
module I = AST
open Region
module SMap = Map.Make(String)
module O = struct
type asttodo = [`TODO] (* occurrences of asttodo will point to some part of the original parser AST *)
type name_and_region = {name: string; orig: Region.t}
type type_name = name_and_region
type var_name = name_and_region
type field_name = name_and_region
type pattern =
PVar of var_name
| PWild
| PInt of Z.t
| PBytes of Hex.t
| PString of string
| PUnit
| PFalse
| PTrue
| PNone
| PSome of pattern
| PCons of pattern * pattern
| PNull
| PRecord of (field_name * pattern) SMap.t
type type_constructor =
Option
| List
| Set
| Map
type type_expr_case =
Sum of (type_name * type_expr) SMap.t
| Record of (field_name * type_expr) SMap.t
| TypeApp of type_constructor * (type_expr list)
| Function of { arg: type_expr; ret: type_expr }
| Ref of type_expr
| String
| Bytes
| Int
| Unit
| Bool
and type_expr = { type_expr: type_expr_case; name: type_name option; orig: Region.t }
type typed_var = { name:var_name; ty:type_expr; orig: asttodo }
type type_decl = { name:type_name; ty:type_expr; orig: asttodo }
type expr =
App of { operator: operator; arguments: expr list }
| Var of var_name
| Constant of constant
| Record of (field_name * expr) list
| Lambda of lambda
and decl = { name:var_name; ty:type_expr; value: expr }
and lambda = {
parameter: typed_var;
declarations: decl list;
instructions: instr list;
result: expr;
}
and operator =
Function of var_name
| Constructor of var_name
| UpdateField of field_name
| GetField of field_name
| Or | And | Lt | Leq | Gt | Geq | Equal | Neq | Cat | Cons | Add | Sub | Mult | Div | Mod
| Neg | Not
| Set | List
| MapLookup
and constant =
Unit
| Int of Z.t | String of string | Bytes of Hex.t
| False | True
| Null of type_expr
| EmptySet of type_expr
| CNone of type_expr
and instr =
Assignment of { name: var_name; value: expr; orig: asttodo }
| While of { condition: expr; body: instr list; orig: asttodo }
| ForCollection of { list: expr; var: var_name; body: instr list; orig: asttodo }
| Match of { expr: expr; cases: (pattern * instr list) list; orig: asttodo }
| ProcedureCall of { expr: expr; orig: asttodo } (* expr returns unit, drop the result. Similar to OCaml's ";". *)
| Fail of { expr: expr; orig: asttodo }
type ast = {
types : type_decl list;
storage_decl : typed_var;
declarations : decl list;
orig : AST.t
}
end
(* open Sanity: *)
let (|>) v f = f v (* pipe f to v *)
let (@@) f v = f v (* apply f on v *)
let (@.) f g x = f (g x) (* compose *)
let map f l = List.rev (List.rev_map f l)
let mapi f l =
let f (i, l) elem =
(i + 1, (f i elem) :: l)
in snd (List.fold_left f (0,[]) l)
(* TODO: check that List.append is not broken
(i.e. check that it is tail-recursive) *)
let append_map f l = map f l |> List.flatten
let append l1 l2 = List.append l1 l2
let list_to_map l = List.fold_left (fun m (k,v) -> SMap.add k v m) SMap.empty l
let fold_map f a l =
let f (acc, l) elem =
let acc', elem' = f acc elem
in acc', (elem' :: l) in
let last_acc, last_l = List.fold_left f (a, []) l
in last_acc, List.rev last_l
(* Simplify the AST *)
let name_and_region_of_int i = O.{name = string_of_int i; orig = Region.ghost}
let s_nsepseq : ('a,'sep) Utils.nsepseq -> 'a list =
fun (first, rest) -> first :: (map snd rest)
let s_sepseq : ('a,'sep) Utils.sepseq -> 'a list =
function
None -> []
| Some nsepseq -> s_nsepseq nsepseq
let s_name {value=name; region} : O.var_name =
let () = ignore (region) in
{name;orig = region}
let name_to_string {value=name; region} : string =
let () = ignore (region) in
name
let type_expr (orig : Region.t) (e : O.type_expr_case) : O.type_expr =
{ type_expr = e; name = None; orig }
let s_type_constructor {value=name;region} : O.type_constructor =
let () = ignore (region) in
match name with
"Option" -> Option
| "List" -> List
| "Map" -> Map
| "Set" -> Set
(* TODO: escape the name, prevent any \x1b and other weird characters from appearing in the output *)
| _ -> failwith ("Unknown type constructor: " ^ name)
let named_list_to_map (l : (O.name_and_region * 'a) list) : (O.name_and_region * 'a) SMap.t =
List.fold_left
(fun m ((x,_) as p) ->
let {name;_} : O.name_and_region = x in
SMap.add name p m)
SMap.empty
l
let rec s_cartesian {value=sequence; region} : O.type_expr =
let () = ignore (region) in
s_nsepseq sequence
|>map s_type_expr
|> mapi (fun i p -> name_and_region_of_int i, p)
|> named_list_to_map
|> (fun x -> (Record x : O.type_expr_case))
|> type_expr region
and s_sum_type {value=sequence; region} : O.type_expr =
let () = ignore (region) in
type_expr region (Sum (map s_variant (s_nsepseq sequence) |> named_list_to_map))
and s_variant {value=(constr, kwd_of, cartesian); region} =
let () = ignore (kwd_of,region) in
(s_name constr, s_cartesian cartesian)
and s_record_type {value=(kwd_record, field_decls, kwd_end); region} : O.type_expr =
let () = ignore (kwd_record,region,kwd_end) in
type_expr region (Record (map s_field_decl (s_nsepseq field_decls) |> named_list_to_map) : O.type_expr_case)
and s_field_decl {value=(var, colon, type_expr); region} : O.type_name * O.type_expr =
let () = ignore (colon,region) in
((s_name var), (s_type_expr type_expr))
and s_type_app {value=(type_name,type_tuple); region} : O.type_expr =
let () = ignore (region) in
type_expr region (TypeApp (s_type_constructor type_name, s_type_tuple type_tuple))
and s_type_tuple ({value=(lpar, sequence, rpar); region} : (I.type_name, I.comma) Utils.nsepseq I.par) : O.type_expr list =
let () = ignore (lpar,rpar,region) in
(* TODO: the grammar should allow any type expr, not just type_name in the tuple elements *)
map s_type_expr (map (fun a -> I.TAlias a) (s_nsepseq sequence))
and s_par_type {value=(lpar, type_expr, rpar); region} : O.type_expr =
let () = ignore (lpar,rpar,region) in
s_type_expr type_expr
and s_type_alias name : O.type_expr =
let () = ignore () in
type_expr name.region (TypeApp (s_type_constructor name, []))
and s_type_expr (orig : I.type_expr) : O.type_expr = match orig with
Prod cartesian -> s_cartesian cartesian
| Sum sum_type -> s_sum_type sum_type
| Record record_type -> s_record_type record_type
| TypeApp type_app -> s_type_app type_app
| ParType par_type -> s_par_type par_type
| TAlias type_alias -> s_type_alias type_alias
let s_type_decl I.{value={kwd_type;name;kwd_is;type_expr;terminator}; region} : O.type_decl =
let () = ignore (kwd_type,kwd_is,terminator,region) in
let ty = s_type_expr type_expr in
O.{ name = s_name name; ty = { ty with name = Some (s_name name) }; orig = `TODO }
let s_storage_decl I.{value={kwd_storage; name; colon; store_type; terminator}; region} : O.typed_var =
let () = ignore (kwd_storage,colon,terminator,region) in
O.{ name = s_name name; ty = s_type_expr store_type; orig = `TODO }
let s_operations_decl I.{value={kwd_operations;name;colon;op_type;terminator}; region} : O.typed_var =
let () = ignore (kwd_operations,colon,terminator,region) in
O.{ name = s_name name; ty = s_type_expr op_type; orig = `TODO }
let s_empty_list {value=(l, (lbracket, rbracket, colon, type_expr), r); region} : O.expr =
let () = ignore (l, lbracket, rbracket, colon, r, region) in
Constant (Null (s_type_expr type_expr))
let s_empty_set {value=(l, (lbrace, rbrace, colon, type_expr), r); region} : O.expr =
let () = ignore (l, lbrace, rbrace, colon, r, region) in
Constant (EmptySet (s_type_expr type_expr))
let s_none {value=(l, (c_None, colon, type_expr), r); region} : O.expr =
let () = ignore (l, c_None, colon, r, region) in
Constant (CNone (s_type_expr type_expr))
let parameters_to_tuple (parameters : (string * O.type_expr) list) : O.type_expr =
(* TODO: use records with named fields to have named arguments. *)
let parameter_tuple : O.type_expr_case =
Record (mapi (fun i (_name,ty) -> name_and_region_of_int i, ty) parameters |> named_list_to_map) in
O.{ type_expr = parameter_tuple; name = None; orig = Region.ghost }
and parameters_to_decls singleparam (parameters : (string * O.type_expr) list) : O.decl list =
let f i (name,ty) =
O.{ name = {name; orig=Region.ghost};
ty = ty;
value = App { operator = O.GetField (name_and_region_of_int i);
arguments = [Var singleparam] } }
in mapi f parameters
let rec bin l operator r = O.App { operator; arguments = [s_expr l; s_expr r] }
and una operator v = O.App { operator; arguments = [s_expr v] }
and s_expr : I.expr -> O.expr =
function
Or {value=(l, bool_or, r); region} -> let () = ignore (region, bool_or) in bin l Or r
| And {value=(l, bool_and, r); region} -> let () = ignore (region,bool_and) in bin l And r
| Lt {value=(l, lt, r); region} -> let () = ignore (region, lt) in bin l Lt r
| Leq {value=(l, leq, r); region} -> let () = ignore (region, leq) in bin l Leq r
| Gt {value=(l, gt, r); region} -> let () = ignore (region, gt) in bin l Gt r
| Geq {value=(l, geq, r); region} -> let () = ignore (region, geq) in bin l Geq r
| Equal {value=(l, equal, r); region} -> let () = ignore (region, equal) in bin l Equal r
| Neq {value=(l, neq, r); region} -> let () = ignore (region, neq) in bin l Neq r
| Cat {value=(l, cat, r); region} -> let () = ignore (region, cat) in bin l Cat r
| Cons {value=(l, cons, r); region} -> let () = ignore (region, cons) in bin l Cons r
| Add {value=(l, plus, r); region} -> let () = ignore (region, plus) in bin l Add r
| Sub {value=(l, minus, r); region} -> let () = ignore (region, minus) in bin l Sub r
| Mult {value=(l, times, r); region} -> let () = ignore (region, times) in bin l Mult r
| Div {value=(l, slash, r); region} -> let () = ignore (region, slash) in bin l Div r
| Mod {value=(l, kwd_mod, r); region} -> let () = ignore (region, kwd_mod) in bin l Mod r
| Neg {value=(minus, expr); region} -> let () = ignore (region, minus) in una Neg expr
| Not {value=(kwd_not, expr); region} -> let () = ignore (region, kwd_not) in una Not expr
| Int {value=(lexeme, z); region} -> let () = ignore (region, lexeme) in Constant (Int z)
| Var lexeme -> Var (s_name lexeme)
| String {value=s; region} -> let () = ignore (region) in Constant (String s)
| Bytes {value=(lexeme, mbytes); region} -> let () = ignore (region, lexeme) in Constant (Bytes mbytes)
| False c_False -> let () = ignore (c_False) in Constant (False)
| True c_True -> let () = ignore (c_True) in Constant (True)
| Unit c_Unit -> let () = ignore (c_Unit) in Constant (Unit)
| Tuple {value=(l,tuple,r); region} -> let () = ignore (l,r,region) in s_tuple_expr (tuple |> s_nsepseq |> map s_expr)
| List list -> s_list list
| EmptyList empty_list -> s_empty_list empty_list
| Set set -> s_set set
| EmptySet empty_set -> s_empty_set empty_set
| NoneExpr none_expr -> s_none none_expr
| FunCall fun_call -> s_fun_call fun_call
| ConstrApp constr_app -> s_constr_app constr_app
| SomeApp some_app -> s_some_app some_app
| MapLookUp map_lookup -> s_map_lookup map_lookup
| ParExpr {value=(lpar,expr,rpar); region} -> let () = ignore (lpar,rpar,region) in s_expr expr
and s_tuple_expr tuple : O.expr =
Record (mapi (fun i e -> name_and_region_of_int i, e) tuple)
and s_map_lookup I.{value = {map_name; selector; index}; region} : O.expr =
let {value = lbracket, index_expr, rbracket; region=region2} = index in
let () = ignore (selector, lbracket, rbracket, region2, region) in
App { operator = MapLookup; arguments = [Var (s_name map_name); s_expr index_expr] }
and s_some_app {value=(c_Some, {value=(l,arguments,r); region=region2}); region} : O.expr =
let () = ignore (c_Some,l,r,region2,region) in
match s_nsepseq arguments with
[] -> failwith "tuple cannot be empty"
| [a] -> s_expr a
| l -> s_tuple_expr (map s_expr l)
and s_list {value=(l, list, r); region} : O.expr =
let () = ignore (l, r, region) in
App { operator = List; arguments = map s_expr (s_nsepseq list) }
and s_set {value=(l, set, r); region} : O.expr =
let () = ignore (l, r, region) in
App { operator = Set; arguments = map s_expr (s_nsepseq set) }
and s_pattern {value=sequence; region} : O.pattern =
let () = ignore (region) in
s_pattern_conses (s_nsepseq sequence)
and s_pattern_conses : I.core_pattern list -> O.pattern = function
[] -> assert false
| [p] -> s_core_pattern p
| hd :: tl -> PCons (s_core_pattern hd, s_pattern_conses tl)
and s_case ({value=(pattern, arrow, instruction); region} : I.case) : O.pattern * O.instr list =
let () = ignore (arrow,region) in
s_pattern pattern, s_instruction instruction
and s_core_pattern : I.core_pattern -> O.pattern = function
PVar var -> PVar (s_name var)
| PWild wild -> let () = ignore (wild) in PWild
| PInt {value=(si,i);region} -> let () = ignore (si,region) in PInt i
| PBytes {value=(sb,b);region} -> let () = ignore (sb,region) in PBytes b
| PString {value=s;region} -> let () = ignore (region) in PString s
| PUnit region -> let () = ignore (region) in PUnit
| PFalse region -> let () = ignore (region) in PFalse
| PTrue region -> let () = ignore (region) in PTrue
| PNone region -> let () = ignore (region) in PNone
| PSome psome -> s_psome psome
| PList pattern -> s_list_pattern pattern
| PTuple ptuple -> s_ptuple ptuple
and s_list_pattern = function
Sugar sugar -> s_sugar sugar
| Raw raw -> s_raw raw
and s_sugar {value=(lbracket, sequence, rbracket); region} : O.pattern =
let () = ignore (lbracket, rbracket, region) in
List.fold_left (fun acc p -> O.PCons (s_core_pattern p, acc))
O.PNull
(s_sepseq sequence);
and s_raw {value=(lpar, (core_pattern, cons, pattern), rpar); region} =
let () = ignore (lpar, cons, rpar, region) in
O.PCons (s_core_pattern core_pattern, s_pattern pattern)
and s_ptuple {value=(lpar, sequence, rpar); region} =
let () = ignore (lpar, rpar, region) in
s_nsepseq sequence
|> map s_core_pattern
|> mapi (fun i p -> name_and_region_of_int i, p)
|> fun x -> O.PRecord (x |> named_list_to_map)
and s_psome {value=(c_Some,{value=(l,psome,r);region=region2});region} : O.pattern =
let () = ignore (c_Some,l,r,region2,region) in
PSome (s_core_pattern psome)
and s_const_decl I.{value={kwd_const;name;colon;const_type;equal;init;terminator}; region} : O.decl =
let () = ignore (kwd_const,colon,equal,terminator,region) in
O.{ name = s_name name; ty = s_type_expr const_type; value = s_expr init }
and s_param_const {value=(kwd_const,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_const,colon,region) in
name_to_string variable, s_type_expr type_expr
and s_param_var {value=(kwd_var,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_var,colon,region) in
name_to_string variable, s_type_expr type_expr
and s_param_decl : I.param_decl -> string * O.type_expr = function
ParamConst p -> s_param_const p
| ParamVar p -> s_param_var p
and s_parameters ({value=(lpar,param_decl,rpar);region} : I.parameters) : (string * O.type_expr) list =
let () = ignore (lpar,rpar,region) in
let l = (s_nsepseq param_decl) in
map s_param_decl l
and s_var_decl I.{value={kwd_var;name;colon;var_type;ass;init;terminator}; region} : O.decl =
let () = ignore (kwd_var,colon,ass,terminator,region) in
O.{
name = s_name name;
ty = s_type_expr var_type;
value = s_expr init
}
and s_local_decl : I.local_decl -> O.decl = function
LocalLam decl -> s_lambda_decl decl
| LocalConst decl -> s_const_decl decl
| LocalVar decl -> s_var_decl decl
and s_instructions ({value=sequence; region} : I.instructions) : O.instr list =
let () = ignore (region) in
append_map s_instruction (s_nsepseq sequence)
and s_instruction : I.instruction -> O.instr list = function
Single instr -> s_single_instr instr
| Block block -> (s_block block)
and s_conditional I.{kwd_if;test;kwd_then;ifso;kwd_else;ifnot} : O.instr =
let () = ignore (kwd_if,kwd_then,kwd_else) in
let test = s_expr test in
let ifso = O.PTrue, s_instruction ifso in
let ifnot = O.PFalse, s_instruction ifnot in
Match {
expr = test;
cases = [ifso; ifnot];
orig = `TODO
}
and s_match_instr I.{kwd_match;expr;kwd_with;lead_vbar;cases;kwd_end} : O.instr =
let {value=cases;region} = cases in
let () = ignore (kwd_match,kwd_with,lead_vbar,kwd_end,region) in
Match { expr = s_expr expr; cases = map s_case (s_nsepseq cases); orig = `TODO }
and s_ass_instr {value=(variable,ass,expr); region} : O.instr =
let () = ignore (ass,region) in
Assignment { name = s_name variable; value = s_expr expr; orig = `TODO }
and s_while_loop {value=(kwd_while, expr, block); region} : O.instr list =
let () = ignore (kwd_while,region) in
[While {condition = s_expr expr; body = s_block block; orig = `TODO}]
and s_for_loop : I.for_loop -> O.instr list = function
ForInt for_int -> s_for_int for_int
| ForCollect for_collect -> s_for_collect for_collect
and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : I.for_int reg) : O.instr list =
let {value=(variable,ass_kwd,expr);region = ass_region} = ass in
let () = ignore (kwd_for,ass_region,ass_kwd,kwd_to,region) in
let name = s_name variable in
let condition, operator = match down with Some kwd_down -> ignore kwd_down; O.Gt, O.Sub
| None -> O.Lt, O.Add in
let step = s_step step
in [
Assignment { name; value = s_expr expr; orig = `TODO };
(* TODO: lift the declaration of the variable, to avoid creating a nested scope here. *)
While {
condition = App { operator = condition;
arguments = [Var name; s_expr bound]};
body = append (s_block block)
[O.Assignment { name;
value = App { operator;
arguments = [Var name; step]};
orig = `TODO }];
orig = `TODO
}
]
and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : I.for_collect reg) : O.instr list =
let () = ignore (kwd_for,kwd_in) in
let for_instr =
match s_bind_to bind_to with
Some _ ->
failwith "TODO: For on maps is not supported yet!"
| None ->
O.ForCollection {
list = s_expr expr;
var = s_name var;
body = s_block block;
orig = `TODO
}
in [for_instr]
and s_step : (I.kwd_step * I.expr) option -> O.expr = function
Some (kwd_step, expr) -> let () = ignore (kwd_step) in s_expr expr
| None -> Constant (Int (Z.of_int 1))
and s_bind_to : (I.arrow * I.variable) option -> O.var_name option = function
Some (arrow, variable) -> let () = ignore (arrow) in Some (s_name variable)
| None -> None
and s_loop : I.loop -> O.instr list = function
While while_loop -> s_while_loop while_loop
| For for_loop -> s_for_loop for_loop
and s_fun_call {value=(fun_name, arguments); region} : O.expr =
let () = ignore (region) in
let {value=fun_name_string;_} = fun_name in
let firstchar = String.sub fun_name_string 0 1 in
(* If it starts with a capital letter, then it is a constructor *)
if String.equal firstchar (String.uppercase_ascii firstchar) then
App { operator = Constructor (s_name fun_name); arguments = s_arguments arguments }
else
App { operator = Function (s_name fun_name); arguments = s_arguments arguments }
and s_constr_app {value=(constr, arguments); region} : O.expr =
let () = ignore (region) in
App { operator = Function (s_name constr); arguments = s_arguments arguments }
and s_arguments {value=(lpar, sequence, rpar); region} : O.expr list =
(* TODO: should return a tuple *)
let () = ignore (lpar,rpar,region) in
match map s_expr (s_nsepseq sequence) with
[] -> [Constant Unit]
| [single_argument] -> [single_argument]
| args -> [s_tuple_expr args] ;
and s_fail ((kwd_fail, expr) : (I.kwd_fail * I.expr)) : O.instr =
let () = ignore (kwd_fail) in
Fail { expr = s_expr expr; orig = `TODO }
and s_single_instr : I.single_instr -> O.instr list = function
Cond {value; _} -> [s_conditional value]
| Match {value; _} -> [s_match_instr value]
| Ass instr -> [s_ass_instr instr]
| Loop loop -> s_loop loop
| ProcCall fun_call -> [ProcedureCall { expr = s_fun_call fun_call; orig = `TODO }]
| Null kwd_null -> let () = ignore (kwd_null) in
[]
| Fail {value; _} -> [s_fail value]
and s_block I.{value={opening;instr;terminator;close}; _} : O.instr list =
let () = ignore (opening,terminator,close) in
s_instructions instr
and gensym =
let i = ref 0 in
fun ty ->
i := !i + 1;
(* TODO: Region.ghost *)
({name = {name=(string_of_int !i) ^ "gensym"; orig = Region.ghost}; ty; orig = `TODO} : O.typed_var)
and s_fun_decl I.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_decls;block;kwd_with;return;terminator}; region} : O.decl =
let () = ignore (kwd_function,colon,kwd_is,kwd_with,terminator,region) in
let tuple_type = s_parameters param |> parameters_to_tuple in
let single_argument = gensym tuple_type in
let ({name = single_argument_xxx; ty = _; orig = `TODO} : O.typed_var) = single_argument in
O.{
name = s_name name;
ty = type_expr region (Function { arg = tuple_type;
ret = s_type_expr ret_type });
value = Lambda {
parameter = single_argument;
declarations = append
(s_parameters param |> parameters_to_decls single_argument_xxx)
(map s_local_decl local_decls);
instructions = s_block block;
result = s_expr return
}
}
and s_proc_decl I.{value={kwd_procedure;name;param;kwd_is;local_decls;block;terminator}; region} =
let () = ignore (kwd_procedure,kwd_is,terminator,region) in
let tuple_type = s_parameters param |> parameters_to_tuple in
let single_argument = gensym tuple_type in
let ({name = single_argument_xxx; ty = _; orig = `TODO} : O.typed_var) = single_argument in
O.{
name = s_name name;
ty = type_expr region (Function { arg = tuple_type;
ret = type_expr region Unit });
value = Lambda {
parameter = single_argument;
declarations = append
(s_parameters param |> parameters_to_decls single_argument_xxx)
(map s_local_decl local_decls);
instructions = s_block block;
result = O.Constant O.Unit
}
}
and s_entry_decl I.{value={kwd_entrypoint;name;param;kwd_is;local_decls;block;terminator}; region} =
let () = ignore (kwd_entrypoint,kwd_is,terminator,region) in
let tuple_type = s_parameters param |> parameters_to_tuple in
let single_argument = gensym tuple_type in
let ({name = single_argument_xxx; ty = _; orig = `TODO} : O.typed_var) = single_argument in
O.{
name = s_name name;
ty = type_expr region (Function { arg = tuple_type;
ret = type_expr region Unit });
value = Lambda {
parameter = single_argument;
declarations = append
(s_parameters param |> parameters_to_decls single_argument_xxx)
(map s_local_decl local_decls);
instructions = s_block block;
result = O.Constant O.Unit
}
}
and s_lambda_decl : I.lambda_decl -> O.decl = function
FunDecl fun_decl -> s_fun_decl fun_decl
| EntryDecl entry_decl -> s_entry_decl entry_decl
| ProcDecl proc_decl -> s_proc_decl proc_decl
type tmp_ast = {
types : O.type_decl list;
storage_decl : O.typed_var option;
operations_decl : O.typed_var option;
declarations : O.decl list;
}
let s_declaration (ast : tmp_ast) : I.declaration -> tmp_ast = function
TypeDecl t -> { ast with types = (s_type_decl t) :: ast.types }
| ConstDecl c -> { ast with declarations = (s_const_decl c) :: ast.declarations }
| StorageDecl s -> { ast with storage_decl = Some (s_storage_decl s) }
| OpDecl o -> { ast with operations_decl = Some (s_operations_decl o) }
| LambdaDecl l -> { ast with declarations = (s_lambda_decl l) :: ast.declarations }
let s_ast (ast : I.ast) : O.ast =
let I.{decl=(decl1,decls);eof} = ast in
let () = ignore (eof) in
let {types; storage_decl; operations_decl; declarations} =
List.fold_left s_declaration
{ types = [];
storage_decl = None;
operations_decl = None;
declarations = [] }
( decl1 :: decls ) in
let storage_decl = match storage_decl with
Some x -> x
| None -> failwith "Missing storage declaration" in
let () = match operations_decl with
Some _ -> failwith "Operations declaration is not allowed anymore TODO"
| None -> ()
in {types; storage_decl; declarations; orig = ast}
(* let s_token region lexeme = *)
(* printf "%s: %s\n"(compact region) lexeme *)
(* and s_var {region; value=lexeme} = *)
(* printf "%s: Ident \"%s\"\n" (compact region) lexeme *)
(* and s_constr {region; value=lexeme} = *)
(* printf "%s: Constr \"%s\"\n" *)
(* (compact region) lexeme *)
(* and s_string {region; value=lexeme} = *)
(* printf "%s: String \"%s\"\n" *)
(* (compact region) lexeme *)
(* and s_bytes {region; value = lexeme, abstract} = *)
(* printf "%s: Bytes (\"%s\", \"0x%s\")\n" *)
(* (compact region) lexeme *)
(* (Hex.to_string abstract) *)
(* and s_int {region; value = lexeme, abstract} = *)
(* printf "%s: Int (\"%s\", %s)\n" *)
(* (compact region) lexeme *)
(* (Z.to_string abstract) *)
(* and s_parameters {value=node; _} = *)
(* let lpar, sequence, rpar = node in *)
(* s_token lpar "("; *)
(* s_nsepseq ";" s_param_decl sequence; *)
(* s_token rpar ")" *)
(* and s_param_decl = function *)
(* ParamConst param_const -> s_param_const param_const *)
(* | ParamVar param_var -> s_param_var param_var *)
(* and s_region_cases {value=sequence; _} = *)
(* s_nsepseq "|" s_case sequence *)
(* and s_expr = function *)
(* Or {value = expr1, bool_or, expr2; _} -> *)
(* s_expr expr1; s_token bool_or "||"; s_expr expr2 *)
(* | And {value = expr1, bool_and, expr2; _} -> *)
(* s_expr expr1; s_token bool_and "&&"; s_expr expr2 *)
(* | Lt {value = expr1, lt, expr2; _} -> *)
(* s_expr expr1; s_token lt "<"; s_expr expr2 *)
(* | Leq {value = expr1, leq, expr2; _} -> *)
(* s_expr expr1; s_token leq "<="; s_expr expr2 *)
(* | Gt {value = expr1, gt, expr2; _} -> *)
(* s_expr expr1; s_token gt ">"; s_expr expr2 *)
(* | Geq {value = expr1, geq, expr2; _} -> *)
(* s_expr expr1; s_token geq ">="; s_expr expr2 *)
(* | Equal {value = expr1, equal, expr2; _} -> *)
(* s_expr expr1; s_token equal "="; s_expr expr2 *)
(* | Neq {value = expr1, neq, expr2; _} -> *)
(* s_expr expr1; s_token neq "=/="; s_expr expr2 *)
(* | Cat {value = expr1, cat, expr2; _} -> *)
(* s_expr expr1; s_token cat "^"; s_expr expr2 *)
(* | Cons {value = expr1, cons, expr2; _} -> *)
(* s_expr expr1; s_token cons "<:"; s_expr expr2 *)
(* | Add {value = expr1, add, expr2; _} -> *)
(* s_expr expr1; s_token add "+"; s_expr expr2 *)
(* | Sub {value = expr1, sub, expr2; _} -> *)
(* s_expr expr1; s_token sub "-"; s_expr expr2 *)
(* | Mult {value = expr1, mult, expr2; _} -> *)
(* s_expr expr1; s_token mult "*"; s_expr expr2 *)
(* | Div {value = expr1, div, expr2; _} -> *)
(* s_expr expr1; s_token div "/"; s_expr expr2 *)
(* | Mod {value = expr1, kwd_mod, expr2; _} -> *)
(* s_expr expr1; s_token kwd_mod "mod"; s_expr expr2 *)
(* | Neg {value = minus, expr; _} -> *)
(* s_token minus "-"; s_expr expr *)
(* | Not {value = kwd_not, expr; _} -> *)
(* s_token kwd_not "not"; s_expr expr *)
(* | Int i -> s_int i *)
(* | Var var -> s_var var *)
(* | String s -> s_string s *)
(* | Bytes b -> s_bytes b *)
(* | False region -> s_token region "False" *)
(* | True region -> s_token region "True" *)
(* | Unit region -> s_token region "Unit" *)
(* | Tuple tuple -> s_tuple tuple *)
(* | List list -> s_list list *)
(* | EmptyList elist -> s_empty_list elist *)
(* | Set set -> s_set set *)
(* | EmptySet eset -> s_empty_set eset *)
(* | NoneExpr nexpr -> s_none_expr nexpr *)
(* | FunCall fun_call -> s_fun_call fun_call *)
(* | ConstrApp capp -> s_constr_app capp *)
(* | SomeApp sapp -> s_some_app sapp *)
(* | MapLookUp lookup -> s_map_lookup lookup *)
(* | ParExpr pexpr -> s_par_expr pexpr *)
(* and s_list {value=node; _} = *)
(* let lbra, sequence, rbra = node in *)
(* s_token lbra "["; *)
(* s_nsepseq "," s_expr sequence; *)
(* s_token rbra "]" *)
(* and s_empty_list {value=node; _} = *)
(* let lpar, (lbracket, rbracket, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token lbracket "["; *)
(* s_token rbracket "]"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_set {value=node; _} = *)
(* let lbrace, sequence, rbrace = node in *)
(* s_token lbrace "{"; *)
(* s_nsepseq "," s_expr sequence; *)
(* s_token rbrace "}" *)
(* and s_empty_set {value=node; _} = *)
(* let lpar, (lbrace, rbrace, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token lbrace "{"; *)
(* s_token rbrace "}"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_none_expr {value=node; _} = *)
(* let lpar, (c_None, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token c_None "None"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_constr_app {value=node; _} = *)
(* let constr, arguments = node in *)
(* s_constr constr; *)
(* s_tuple arguments *)
(* and s_some_app {value=node; _} = *)
(* let c_Some, arguments = node in *)
(* s_token c_Some "Some"; *)
(* s_tuple arguments *)
(* and s_par_expr {value=node; _} = *)
(* let lpar, expr, rpar = node in *)
(* s_token lpar "("; *)
(* s_expr expr; *)
(* s_token rpar ")" *)
(* and s_psome {value=node; _} = *)
(* let c_Some, patterns = node in *)
(* s_token c_Some "Some"; *)
(* s_patterns patterns *)
(* and s_terminator = function *)
(* Some semi -> s_token semi ";" *)
(* | None -> () *)

View File

@ -1,274 +0,0 @@
[@@@warning "-27"] (* TODO *)
[@@@warning "-32"] (* TODO *)
[@@@warning "-30"]
module SMap = Map.Make(String)
module I = AST2.O
module O = struct
type asttodo = [`TODO] (* occurrences of asttodo will point to some part of the original parser AST *)
type name_and_region = {name: string; orig: Region.t}
type type_name = name_and_region
type var_name = name_and_region
type field_name = name_and_region
type pattern =
PVar of var_name
| PWild
| PInt of Z.t
| PBytes of Hex.t
| PString of string
| PUnit
| PFalse
| PTrue
| PNone
| PSome of pattern
| PCons of pattern * pattern
| PNull
| PRecord of (field_name * pattern) SMap.t
type type_constructor =
Option
| List
| Set
| Map
type type_expr_case =
Sum of (type_name * type_expr) SMap.t
| Record of (field_name * type_expr) SMap.t
| TypeApp of type_constructor * (type_expr list)
| Function of { arg: type_expr; ret: type_expr }
| Ref of type_expr
| String
| Bytes
| Int
| Unit
| Bool
and type_expr = { type_expr: type_expr_case; name: type_name option; orig: Region.t }
type typed_var = { name:var_name; ty:type_expr; orig: asttodo }
type type_decl = { name: type_name; ty:type_expr; orig: asttodo }
type expr_case =
App of { operator: operator; arguments: expr list }
| Var of typed_var
| Constant of constant
| Record of (field_name * expr) list
| Lambda of lambda
and expr = { expr: expr_case; ty:type_expr; orig: asttodo }
and decl = { var: typed_var; value: expr; orig: asttodo }
and lambda = {
parameter: typed_var;
declarations: decl list;
instructions: instr list;
result: expr;
}
and operator_case =
Function of var_name
| Constructor of var_name
| UpdateField of field_name
| GetField of field_name
| Or | And | Lt | Leq | Gt | Geq | Equal | Neq | Cat | Cons | Add | Sub | Mult | Div | Mod
| Neg | Not
| Set
| MapLookup
and operator = { operator: operator_case; ty:type_expr; orig: asttodo }
and constant =
Unit
| Int of Z.t | String of string | Bytes of Hex.t
| False | True
| Null
| EmptySet
| CNone
and instr =
Assignment of { name: var_name; value: expr; orig: asttodo }
| While of { condition: expr; body: instr list; orig: asttodo }
| ForCollection of { list: expr; var: var_name; body: instr list; orig: asttodo }
| Match of { expr: expr; cases: (pattern * instr list) list; orig: asttodo }
| ProcedureCall of { expr: expr; orig: asttodo } (* expr returns unit, drop the result. Similar to OCaml's ";". *)
| Fail of { expr: expr; orig: asttodo }
type ast = {
types : type_decl list;
storage_decl : typed_var;
declarations : decl list;
orig : AST.t
}
end
type te = O.type_expr list SMap.t
type ve = O.type_expr list SMap.t
type tve = te * ve
let fold_map f a l =
let f (acc, l) elem =
let acc', elem' = f acc elem
in acc', (elem' :: l) in
let last_acc, last_l = List.fold_left f (a, []) l
in last_acc, List.rev last_l
let map f l = List.rev (List.rev_map f l)
let shadow (name : string) (typ : O.type_expr) (env : O.type_expr list SMap.t)
: O.type_expr list SMap.t =
SMap.update name (function None -> Some [typ] | Some tl -> Some (typ :: tl)) env
let lookup (name : string) (env : O.type_expr list SMap.t) : O.type_expr =
match SMap.find name env with
latest :: shadowed -> latest
| [] -> failwith "Unbound variable"
let string_of_name ({name;_} : I.name_and_region) = name
let a_name_and_region ({name; orig} : I.name_and_region) : O.name_and_region =
{name; orig}
let a_type_constructor (tve : tve) : I.type_constructor -> O.type_constructor = function
Option -> Option
| List -> List
| Set -> Set
| Map -> Map
let a_type_expr_case (tve : tve) : I.type_expr_case -> O.type_expr_case = function
Sum lt -> failwith "TODO"
| Record lt -> failwith "TODO"
| TypeApp (tc, args) -> failwith "TODO"
| Function {arg;ret} -> failwith "TODO"
| Ref t -> failwith "TODO"
| String -> String
| Int -> Int
| Unit -> Unit
| Bool -> Bool
let a_type_expr (tve : tve) ({type_expr;name;orig} : I.type_expr) : O.type_expr =
let type_expr = a_type_expr_case tve type_expr in
let name = match name with
None -> None
|Some name -> Some (a_name_and_region name)
in {type_expr;name;orig}
let a_type (te,ve : tve) ({name;ty;orig} : I.type_decl) : tve * O.type_decl =
let ty = a_type_expr (te,ve) ty in
let tve = shadow (string_of_name name) ty te, ve in
let name = (a_name_and_region name) in
tve, {name; ty; orig}
let a_types (tve : tve) (l : I.type_decl list) : tve * O.type_decl list =
fold_map a_type tve l
let a_storage_decl : tve -> I.typed_var -> tve * O.typed_var =
failwith "TODO"
let type_expr_case_equal (t1 : O.type_expr_case) (t2 : O.type_expr_case) : bool = match t1,t2 with
Sum m1, Sum m2 -> failwith "TODO" (* of (O.name_and_region * O.type_expr) SMap.t *)
| Record m1, Record m2 -> failwith "TODO" (* of (O.name_and_region * O.type_expr) SMap.t *)
| TypeApp (tc1, args1), TypeApp (tc2, args2) -> failwith "TODO" (* of O.type_constructor * O.type_expr list *)
| Function {arg=arg1;ret=ret1}, Function {arg=arg2;ret=ret2} -> failwith "TODO" (* of { arg : O.type_expr; ret : O.type_expr; } *)
| Ref t1, Ref t2 -> failwith "TODO" (* of O.type_expr *)
| String, String -> true
| Int, Int -> true
| Unit, Unit -> true
| Bool, Bool -> true
| _ -> false
let type_expr_equal (t1 : O.type_expr) (t2 : O.type_expr) : bool =
type_expr_case_equal t1.type_expr t2.type_expr
let check_type_expr_equal (expected : O.type_expr) (actual : O.type_expr) : unit =
if type_expr_equal expected actual then
()
else
failwith "got [actual] but expected [expected]"
let a_var_expr (te,ve : tve) (expected : O.type_expr) (var_name : I.name_and_region) : O.expr_case =
check_type_expr_equal expected (lookup (string_of_name var_name) ve);
Var { name = a_name_and_region var_name;
ty = expected;
orig = `TODO }
let a_constant_expr (tve : tve) (expected : O.type_expr) (constant : I.constant) : O.expr_case =
let to_type_expr type_expr_case : O.type_expr =
{ type_expr = type_expr_case; name = None; orig = Region.ghost } in
let actual : O.type_expr = match constant with
Unit -> to_type_expr Unit
| Int _ -> to_type_expr Int
| String _ -> to_type_expr String
| Bytes _ -> to_type_expr Bytes
| False -> to_type_expr Bool
| True -> to_type_expr Bool
| Null t -> a_type_expr tve t
| EmptySet t -> a_type_expr tve t
| CNone t -> a_type_expr tve t
in
check_type_expr_equal expected actual;
let c : O.constant = match constant with
Unit -> Unit
| Int i -> Int i
| String s -> String s
| Bytes b -> Bytes b
| False -> False
| True -> True
| Null _ -> Null
| EmptySet _ -> EmptySet
| CNone _ -> CNone
in Constant c
let map_to_list m =
List.rev (SMap.fold (fun field_name_string p l -> p :: l) m [])
let a_field tve (expected,expr) =
failwith "TODO"
let a_record (tve : tve) (expected : O.type_expr) (record : (I.field_name * I.expr) list)
: O.expr_case =
let {type_expr = expected; _} : O.type_expr = expected in
let expected = match expected with
Record fields -> fields
| _ -> failwith "expected some_type but got record" in
let expected_and_field =
List.combine
(map_to_list expected)
record (* TODO SHOULD BE (map_to_list record) *) in
Record (map (a_field tve) expected_and_field)
let a_expr_case (te,ve : tve) (expected : O.type_expr) : I.expr -> O.expr_case = function
App {operator;arguments} -> failwith "TODO"
| Var var_name -> a_var_expr (te,ve) expected var_name
| Constant constant -> a_constant_expr (te,ve) expected constant
| Record record -> a_record (te,ve) expected record
| Lambda lambda -> failwith "TODO"
let a_expr (te,ve : tve) (expected : O.type_expr) (e : I.expr) : O.expr =
let expr_case = a_expr_case (te,ve) expected e in
{ expr = expr_case; ty = expected; orig = `TODO }
let a_declaration (te,ve : tve) ({name;ty;value} : I.decl) : tve * O.decl =
let ty = a_type_expr (te,ve) ty in
let value = a_expr (te,ve) ty value in
let ve = shadow (string_of_name name) ty ve in
let name = a_name_and_region name in
(te,ve), {var={name;ty;orig=`TODO};value;orig = `TODO}
let a_declarations (tve : tve) (l : I.decl list) : tve * O.decl list =
fold_map a_declaration tve l
let a_ast I.{types; storage_decl; declarations; orig} =
let tve = SMap.empty, SMap.empty in
let tve, types = a_types tve types in
let tve, storage_decl = a_storage_decl tve storage_decl in
let tve, declarations = a_declarations tve declarations in
let _ = tve in
O.{types; storage_decl; declarations; orig}
let annotate : I.ast -> O.ast = a_ast

View File

@ -1,108 +0,0 @@
[@@@warning "-30"]
module SMap : Map.S with type key = string
module I = AST2.O
module O : sig
type asttodo = [`TODO] (* occurrences of asttodo will point to some part of the original parser AST *)
type name_and_region = {name: string; orig: Region.t}
type type_name = name_and_region
type var_name = name_and_region
type field_name = name_and_region
type pattern =
PVar of var_name
| PWild
| PInt of Z.t
| PBytes of Hex.t
| PString of string
| PUnit
| PFalse
| PTrue
| PNone
| PSome of pattern
| PCons of pattern * pattern
| PNull
| PRecord of (field_name * pattern) SMap.t
type type_constructor =
Option
| List
| Set
| Map
type type_expr_case =
Sum of (type_name * type_expr) SMap.t
| Record of (field_name * type_expr) SMap.t
| TypeApp of type_constructor * (type_expr list)
| Function of { arg: type_expr; ret: type_expr }
| Ref of type_expr
| String
| Bytes
| Int
| Unit
| Bool
and type_expr = { type_expr: type_expr_case; name: type_name option; orig: Region.t }
type typed_var = { name:var_name; ty:type_expr; orig: asttodo }
type type_decl = { name:type_name; ty:type_expr; orig: asttodo }
type expr_case =
App of { operator: operator; arguments: expr list }
| Var of typed_var
| Constant of constant
| Record of (field_name * expr) list
| Lambda of lambda
and expr = { expr: expr_case; ty:type_expr; orig: asttodo }
and decl = { var: typed_var; value: expr; orig: asttodo }
and lambda = {
parameter: typed_var;
declarations: decl list;
instructions: instr list;
result: expr;
}
and operator_case =
Function of var_name
| Constructor of var_name
| UpdateField of field_name
| GetField of field_name
| Or | And | Lt | Leq | Gt | Geq | Equal | Neq | Cat | Cons | Add | Sub | Mult | Div | Mod
| Neg | Not
| Set
| MapLookup
and operator = { operator: operator_case; ty:type_expr; orig: asttodo }
and constant =
Unit
| Int of Z.t | String of string | Bytes of Hex.t
| False | True
| Null
| EmptySet
| CNone
and instr =
Assignment of { name: var_name; value: expr; orig: asttodo }
| While of { condition: expr; body: instr list; orig: asttodo }
| ForCollection of { list: expr; var: var_name; body: instr list; orig: asttodo }
| Match of { expr: expr; cases: (pattern * instr list) list; orig: asttodo }
| ProcedureCall of { expr: expr; orig: asttodo } (* expr returns unit, drop the result. Similar to OCaml's ";". *)
| Fail of { expr: expr; orig: asttodo }
type ast = {
types : type_decl list;
storage_decl : typed_var;
declarations : decl list;
orig : AST.t
}
end
val annotate : I.ast -> O.ast

View File

@ -0,0 +1 @@
let version = "UNKNOWN"

View File

@ -1,7 +1,3 @@
module Parser = Parser module Parser = Parser
module Lexer = Lexer.Make(LexToken) module Lexer = Lexer.Make(LexToken)
module AST = AST module AST = AST
module AST2 = AST2
module Typed = Typecheck2
let ast_to_typed_ast ast = ast |> AST2.s_ast |> Typed.annotate

View File

@ -80,6 +80,7 @@ let type_expression ?(env:Typer.Environment.t = Typer.Environment.empty)
let untype_expression (e:AST_Typed.annotated_expression) : AST_Simplified.annotated_expression result = Typer.untype_annotated_expression e let untype_expression (e:AST_Typed.annotated_expression) : AST_Simplified.annotated_expression result = Typer.untype_annotated_expression e
let transpile (p:AST_Typed.program) : Mini_c.program result = Transpiler.translate_program p let transpile (p:AST_Typed.program) : Mini_c.program result = Transpiler.translate_program p
let transpile_entry (p:AST_Typed.program) (name:string) : Mini_c.anon_function result = Transpiler.translate_entry p name
let transpile_expression ?(env:Mini_c.Environment.t = Mini_c.Environment.empty) let transpile_expression ?(env:Mini_c.Environment.t = Mini_c.Environment.empty)
(e:AST_Typed.annotated_expression) : Mini_c.expression result = Transpiler.translate_annotated_expression env e (e:AST_Typed.annotated_expression) : Mini_c.expression result = Transpiler.translate_annotated_expression env e
let transpile_value ?(env:Mini_c.Environment.t = Mini_c.Environment.empty) let transpile_value ?(env:Mini_c.Environment.t = Mini_c.Environment.empty)
@ -93,18 +94,26 @@ let untranspile_value (v : Mini_c.value) (e:AST_Typed.type_value) : AST_Typed.an
let easy_run_main (path:string) (input:string) : AST_Typed.annotated_expression result = let easy_run_main (path:string) (input:string) : AST_Typed.annotated_expression result =
let%bind raw = parse_file path in let%bind raw = parse_file path in
let%bind simpl = simplify raw in let%bind simpl = simplify raw in
let%bind typed = type_ simpl in let%bind typed =
let%bind typed_main = Ast_typed.get_entry typed "main" in trace (simple_error "typing") @@
let%bind main_result_type = match (snd typed_main).type_value with type_ simpl in
| Type_function (_, result) -> ok result let%bind mini_c_main =
| _ -> simple_fail "main doesn't have fun type" in trace (simple_error "transpile mini_c main") @@
let%bind mini_c_main = Transpiler.translate_main (fst typed_main) (snd typed_main) in transpile_entry typed "main" in
let%bind raw_expr = parse_expression input in let%bind raw_expr = parse_expression input in
let%bind simpl_expr = simplify_expr raw_expr in let%bind simpl_expr = simplify_expr raw_expr in
let%bind typed_expr = type_expression simpl_expr in let%bind typed_expr = type_expression simpl_expr in
let%bind mini_c_value = transpile_value typed_expr in let%bind mini_c_value = transpile_value typed_expr in
let%bind mini_c_result = Mini_c.Run.run_entry mini_c_main mini_c_value in let%bind mini_c_result =
let%bind typed_result = untranspile_value mini_c_result main_result_type in trace (simple_error "run mini_c") @@
Mini_c.Run.run_entry mini_c_main mini_c_value in
let%bind typed_result =
let%bind main_result_type =
let%bind typed_main = Ast_typed.get_entry typed "main" in
match (snd typed_main).type_value with
| Type_function (_, result) -> ok result
| _ -> simple_fail "main doesn't have fun type" in
untranspile_value mini_c_result main_result_type in
ok typed_result ok typed_result

View File

@ -12,24 +12,25 @@ let pass (source:string) : unit result =
let%bind typed = let%bind typed =
trace (simple_error "typing") @@ trace (simple_error "typing") @@
type_ simplified in type_ simplified in
let%bind mini_c = let%bind _mini_c =
trace (simple_error "transpiling") @@ trace (simple_error "transpiling") @@
transpile typed in transpile typed in
Format.printf "mini_c code : %a" Mini_c.PP.program mini_c ;
ok () ok ()
let basic () : unit result = let basic () : unit result =
Format.printf "basic test" ;
pass "./contracts/toto.ligo" pass "./contracts/toto.ligo"
let function_ () : unit result = let function_ () : unit result =
Format.printf "function test" ;
let%bind _ = pass "./contracts/function.ligo" in let%bind _ = pass "./contracts/function.ligo" in
let%bind result = easy_run_main "./contracts/function.ligo" "2" in let%bind _ = easy_run_main "./contracts/function.ligo" "2" in
Format.printf "result : %a" AST_Typed.PP.annotated_expression result ; ok ()
let declarations () : unit result =
let%bind _ = easy_run_main "./contracts/declarations.ligo" "2" in
ok () ok ()
let main = "Integration (End to End)", [ let main = "Integration (End to End)", [
test "basic" basic ; test "basic" basic ;
test "function" function_ ; test "function" function_ ;
test "declarations" declarations ;
] ]

View File

@ -47,7 +47,6 @@ let rec translate_type (t:AST.type_value) : type_value result =
ok (`Function (param', result')) ok (`Function (param', result'))
let rec translate_block env (b:AST.block) : block result = let rec translate_block env (b:AST.block) : block result =
let env' = Environment.extend env in
let%bind (instructions, env') = let%bind (instructions, env') =
let rec aux e acc lst = match lst with let rec aux e acc lst = match lst with
| [] -> ok (acc, e) | [] -> ok (acc, e)
@ -56,7 +55,7 @@ let rec translate_block env (b:AST.block) : block result =
| Some ((_, e') as i) -> aux e'.post_environment (i :: acc) tl | Some ((_, e') as i) -> aux e'.post_environment (i :: acc) tl
| None -> aux e acc tl | None -> aux e acc tl
in in
let%bind (lst, e) = aux env' [] b in let%bind (lst, e) = aux env [] b in
ok (List.rev lst, e) ok (List.rev lst, e)
in in
ok (instructions, environment_wrap env env') ok (instructions, environment_wrap env env')
@ -198,31 +197,39 @@ and translate_annotated_expression (env:Environment.t) (ae:AST.annotated_express
ok (Predicate (name, lst'), tv, env) ok (Predicate (name, lst'), tv, env)
| Lambda l -> translate_lambda env l tv | Lambda l -> translate_lambda env l tv
and translate_lambda_shallow env l tv =
let { binder ; input_type ; output_type ; body ; result } : AST.lambda = l in
(* Shallow capture. Capture the whole environment. Extend it with a new scope. Append it the input. *)
let%bind input = translate_type input_type in
let sub_env = Environment.extend env in
let full_env = Environment.add (binder, input) sub_env in
let%bind (_, e) as body = translate_block full_env body in
let%bind result = translate_annotated_expression e.post_environment result in
let capture_type = Shallow_capture sub_env in
let input = Environment.to_mini_c_type full_env in
let%bind output = translate_type output_type in
let content = {binder;input;output;body;result;capture_type} in
ok (Function_expression content, tv, env)
and translate_lambda env l tv = and translate_lambda env l tv =
let { binder ; input_type ; output_type ; body ; result } : AST.lambda = l in let { binder ; input_type ; output_type ; body ; result } : AST.lambda = l in
(* Try to type it in an empty env, if it succeeds, transpiles it as a quote value, else, as a closure expression. *) (* Try to type it in an empty env, if it succeeds, transpiles it as a quote value, else, as a closure expression. *)
let%bind empty_env = let%bind init_env =
let%bind input = translate_type input_type in let%bind input = translate_type input_type in
ok Environment.(add (binder, input) empty) in ok Environment.(add (binder, input) empty) in
match to_option (translate_block empty_env body), to_option (translate_annotated_expression empty_env result) with match to_option (translate_block init_env body) with
| Some body, Some result -> | Some ((_, e) as body) -> (
let capture_type = No_capture in match to_option (translate_annotated_expression e.post_environment result) with
let%bind input = translate_type input_type in | Some result -> (
let%bind output = translate_type output_type in let capture_type = No_capture in
let content = {binder;input;output;body;result;capture_type} in let%bind input = translate_type input_type in
ok (Literal (`Function {capture=None;content}), tv, env) let%bind output = translate_type output_type in
| _ -> let content = {binder;input;output;body;result;capture_type} in
(* Shallow capture. Capture the whole environment. Extend it with a new scope. Append it the input. *) ok (Literal (`Function {capture=None;content}), tv, env)
let%bind input = translate_type input_type in )
let sub_env = Environment.extend env in | _ -> translate_lambda_shallow init_env l tv
let full_env = Environment.add (binder, input) sub_env in )
let%bind (_, e) as body = translate_block full_env body in | _ -> translate_lambda_shallow init_env l tv
let%bind result = translate_annotated_expression e.post_environment result in
let capture_type = Shallow_capture sub_env in
let input = Environment.to_mini_c_type full_env in
let%bind output = translate_type output_type in
let content = {binder;input;output;body;result;capture_type} in
ok (Function_expression content, tv, env)
let translate_declaration env (d:AST.declaration) : toplevel_statement result = let translate_declaration env (d:AST.declaration) : toplevel_statement result =
match d with match d with
@ -247,6 +254,31 @@ let translate_main (l:AST.lambda) (t:AST.type_value) : anon_function result =
| Literal (`Function f) -> ok f | Literal (`Function f) -> ok f
| _ -> simple_fail "main is not a function" | _ -> simple_fail "main is not a function"
let translate_entry (lst:AST.program) (name:string) : anon_function result =
let rec aux acc (lst:AST.program) =
match lst with
| [] -> None
| hd :: tl -> (
let AST.Constant_declaration an = hd in
if an.name = name
then (
match an.annotated_expression.expression with
| Lambda l -> Some (acc, l, an.annotated_expression.type_annotation)
| _ -> None
) else (
aux ((AST.Assignment an) :: acc) tl
)
)
in
let%bind (lst', l, tv) =
let%bind (lst', l, tv) =
trace_option (simple_error "no functional entry-point with given name")
@@ aux [] lst in
ok (List.rev lst', l, tv) in
let l' = {l with body = lst' @ l.body} in
trace (simple_error "translate entry")
@@ translate_main l' tv
open Combinators open Combinators
let rec exp x n = let rec exp x n =