ligo/src/lib_data_encoding/data_encoding.ml

2091 lines
70 KiB
OCaml
Raw Normal View History

2016-09-08 21:13:10 +04:00
(**************************************************************************)
(* *)
2018-02-06 00:17:03 +04:00
(* Copyright (c) 2014 - 2018. *)
2016-09-08 21:13:10 +04:00
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
type json =
[ `O of (string * json) list
| `Bool of bool
| `Float of float
| `A of json list
| `Null
| `String of string ]
2017-12-09 08:24:05 +04:00
type bson = Json_repr_bson.bson
2016-09-08 21:13:10 +04:00
type json_schema = Json_schema.schema
exception No_case_matched
exception Unexpected_tag of int
exception Duplicated_tag of int
exception Invalid_tag of int * [ `Uint8 | `Uint16 ]
2016-09-08 21:13:10 +04:00
exception Unexpected_enum of string * string list
exception Invalid_size of int
exception Int_out_of_range of int * int * int
exception Float_out_of_range of float * float * float
2016-09-08 21:13:10 +04:00
let apply ?(error=No_case_matched) fs v =
2016-09-08 21:13:10 +04:00
let rec loop = function
| [] -> raise error
2016-09-08 21:13:10 +04:00
| f :: fs ->
match f v with
| Some l -> l
| None -> loop fs in
loop fs
let apply_map ?(error=No_case_matched) f fs v =
let rec loop = function
| [] -> raise error
| x :: fs ->
match (f x) v with
| Some l -> l
| None -> loop fs in
loop fs
2016-09-08 21:13:10 +04:00
module Size = struct
let bool = 1
let int8 = 1
let uint8 = 1
let char = 1
2016-09-08 21:13:10 +04:00
let int16 = 2
let uint16 = 2
let uint30 = 4
let uint32 = 4
let uint64 = 8
2016-09-08 21:13:10 +04:00
let int31 = 4
let int32 = 4
let int64 = 8
let float = 8
end
type tag_size = [ `Uint8 | `Uint16 ]
2016-09-08 21:13:10 +04:00
let tag_size = function
| `Uint8 -> Size.uint8
| `Uint16 -> Size.uint16
2016-09-08 21:13:10 +04:00
module Kind = struct
type t =
[ `Fixed of int
| `Dynamic
| `Variable ]
type length =
[ `Fixed of int
| `Variable ]
type enum =
[ `Dynamic
| `Variable ]
let combine name : t -> t -> t = fun k1 k2 ->
match k1, k2 with
| `Fixed n1, `Fixed n2 -> `Fixed (n1 + n2)
| `Dynamic, `Dynamic | `Fixed _, `Dynamic
| `Dynamic, `Fixed _ -> `Dynamic
| `Variable, `Fixed _
2016-09-08 21:13:10 +04:00
| (`Dynamic | `Fixed _), `Variable -> `Variable
| `Variable, `Dynamic ->
Printf.ksprintf invalid_arg
"Cannot merge two %s when the left element is of variable length \
and the right one of dynamic length. \
You should use the reverse order, or wrap the second one \
with Data_encoding.dynamic_size."
name
2016-09-08 21:13:10 +04:00
| `Variable, `Variable ->
Printf.ksprintf invalid_arg
"Cannot merge two %s with variable length. \
You should wrap one of them with Data_encoding.dynamic_size."
name
let merge : t -> t -> t = fun k1 k2 ->
match k1, k2 with
| `Fixed n1, `Fixed n2 when n1 = n2 -> `Fixed n1
| `Fixed _, `Fixed _ -> `Dynamic
| `Dynamic, `Dynamic | `Fixed _, `Dynamic
| `Dynamic, `Fixed _ -> `Dynamic
| `Variable, (`Dynamic | `Fixed _)
| (`Dynamic | `Fixed _), `Variable
| `Variable, `Variable -> `Variable
let merge_list sz : t list -> t = function
| [] -> assert false (* should be rejected by Data_encoding.union *)
| k :: ks ->
match List.fold_left merge k ks with
| `Fixed n -> `Fixed (n + tag_size sz)
| k -> k
end
type case_tag = Tag of int | Json_only
2016-09-08 21:13:10 +04:00
type 'a desc =
| Null : unit desc
| Empty : unit desc
| Ignore : unit desc
| Constant : string -> unit desc
| Bool : bool desc
| Int8 : int desc
| Uint8 : int desc
2016-09-08 21:13:10 +04:00
| Int16 : int desc
| Uint16 : int desc
2016-09-08 21:13:10 +04:00
| Int31 : int desc
| Int32 : Int32.t desc
| Int64 : Int64.t desc
| RangedInt : { minimum : int ; maximum : int } -> int desc
| RangedFloat : { minimum : float ; maximum : float } -> float desc
2016-09-08 21:13:10 +04:00
| Float : float desc
| Bytes : Kind.length -> MBytes.t desc
| String : Kind.length -> string desc
| String_enum : ('a, string * int) Hashtbl.t * 'a array -> 'a desc
2016-09-08 21:13:10 +04:00
| Array : 'a t -> 'a array desc
| List : 'a t -> 'a list desc
| Obj : 'a field -> 'a desc
| Objs : Kind.t * 'a t * 'b t -> ('a * 'b) desc
| Tup : 'a t -> 'a desc
| Tups : Kind.t * 'a t * 'b t -> ('a * 'b) desc
| Union : Kind.t * tag_size * 'a case list -> 'a desc
| Mu : Kind.enum * string * ('a t -> 'a t) -> 'a desc
| Conv :
{ proj : ('a -> 'b) ;
inj : ('b -> 'a) ;
encoding : 'b t ;
schema : Json_schema.schema option } -> 'a desc
| Describe :
{ title : string option ;
description : string option ;
encoding : 'a t } -> 'a desc
| Def : { name : string ;
encoding : 'a t } -> 'a desc
| Splitted :
{ encoding : 'a t ;
json_encoding : 'a Json_encoding.encoding ;
is_obj : bool ; is_tup : bool } -> 'a desc
2016-09-08 21:13:10 +04:00
| Dynamic_size : 'a t -> 'a desc
| Delayed : (unit -> 'a t) -> 'a desc
2016-09-08 21:13:10 +04:00
and _ field =
| Req : string * 'a t -> 'a field
| Opt : Kind.enum * string * 'a t -> 'a option field
| Dft : string * 'a t * 'a -> 'a field
and 'a case =
| Case : { name : string option ;
encoding : 'a t ;
2016-09-08 21:13:10 +04:00
proj : ('t -> 'a option) ;
inj : ('a -> 't) ;
tag : case_tag } -> 't case
2016-09-08 21:13:10 +04:00
and 'a t = {
encoding: 'a desc ;
mutable json_encoding: 'a Json_encoding.encoding option ;
}
type signed_integer = [ `Int31 | `Int16 | `Int8 ]
type unsigned_integer = [ `Uint30 | `Uint16 | `Uint8 ]
type integer = [ signed_integer | unsigned_integer ]
let signed_range_to_size min max : [> signed_integer ] =
if min >= ~-128 && max <= 127
then `Int8
else if min >= ~-32_768 && max <= 32_767
then `Int16
else `Int31
(* max should be centered at zero *)
let unsigned_range_to_size max : [> unsigned_integer ] =
if max <= 255
then `Uint8
else if max <= 65535
then `Uint16
else `Uint30
let integer_to_size = function
| `Int31 -> Size.int31
| `Int16 -> Size.int16
| `Int8 -> Size.int8
| `Uint30 -> Size.uint30
| `Uint16 -> Size.uint16
| `Uint8 -> Size.uint8
let range_to_size ~minimum ~maximum : integer =
if minimum < 0
then signed_range_to_size minimum maximum
else unsigned_range_to_size (maximum - minimum)
let enum_size arr =
unsigned_range_to_size (Array.length arr)
2016-09-08 21:13:10 +04:00
type 'a encoding = 'a t
2017-11-13 17:29:28 +04:00
let rec classify : type a. a t -> Kind.t = fun e ->
2016-09-08 21:13:10 +04:00
match e.encoding with
(* Fixed *)
| Null -> `Fixed 0
| Empty -> `Fixed 0
| Constant _ -> `Fixed 0
| Bool -> `Fixed Size.bool
| Int8 -> `Fixed Size.int8
| Uint8 -> `Fixed Size.uint8
2016-09-08 21:13:10 +04:00
| Int16 -> `Fixed Size.int16
| Uint16 -> `Fixed Size.uint16
2016-09-08 21:13:10 +04:00
| Int31 -> `Fixed Size.int31
| Int32 -> `Fixed Size.int32
| Int64 -> `Fixed Size.int64
| RangedInt { minimum ; maximum } ->
`Fixed (integer_to_size @@ range_to_size ~minimum ~maximum)
2016-09-08 21:13:10 +04:00
| Float -> `Fixed Size.float
| RangedFloat _ -> `Fixed Size.float
2016-09-08 21:13:10 +04:00
(* Tagged *)
| Bytes kind -> (kind :> Kind.t)
| String kind -> (kind :> Kind.t)
| String_enum (_, cases) ->
`Fixed (integer_to_size (enum_size cases))
2016-09-08 21:13:10 +04:00
| Obj (Opt (kind, _, _)) -> (kind :> Kind.t)
| Objs (kind, _, _) -> kind
| Tups (kind, _, _) -> kind
| Union (kind, _, _) -> (kind :> Kind.t)
| Mu (kind, _, _) -> (kind :> Kind.t)
(* Variable *)
| Ignore -> `Variable
| Array _ -> `Variable
| List _ -> `Variable
(* Recursive *)
| Obj (Req (_, encoding)) -> classify encoding
| Obj (Dft (_, encoding, _)) -> classify encoding
| Tup encoding -> classify encoding
| Conv { encoding } -> classify encoding
| Describe { encoding } -> classify encoding
| Def { encoding } -> classify encoding
| Splitted { encoding } -> classify encoding
| Dynamic_size _ -> `Dynamic
| Delayed f -> classify (f ())
2016-09-08 21:13:10 +04:00
let make ?json_encoding encoding = { encoding ; json_encoding }
module Json = struct
type pair_builder = {
build: 'a 'b. Kind.t -> 'a t -> 'b t -> ('a * 'b) t
}
exception Parse_error of string
let wrap_error f =
fun str ->
try f str
with exn -> raise (Json_encoding.Cannot_destruct ([], exn))
let int64_encoding =
let open Json_encoding in
union [
case
int32
(fun i ->
let j = Int64.to_int32 i in
if Int64.equal (Int64.of_int32 j) i then Some j else None)
2016-09-08 21:13:10 +04:00
Int64.of_int32 ;
case
string
(fun i -> Some (Int64.to_string i))
Int64.of_string
]
let bytes_jsont =
let open Json_encoding in
let schema =
let open Json_schema in
create
{ title = None ;
description = None ;
default = None;
enum = None;
kind = String {
pattern = Some "^[a-zA-Z0-9]+$";
min_length = 0;
max_length = None;
};
format = None ;
id = None } in
conv ~schema
MBytes.to_hex
(wrap_error MBytes.of_hex)
(conv
(fun (`Hex h) -> h)
(fun h -> `Hex h)
string)
2016-09-08 21:13:10 +04:00
let rec lift_union : type a. a t -> a t = fun e ->
match e.encoding with
| Conv { proj ; inj ; encoding = e ; schema } -> begin
match lift_union e with
| { encoding = Union (kind, tag, cases) } ->
make @@
Union (kind, tag,
List.map
(fun (Case { name ; encoding ; proj = proj' ; inj = inj' ; tag }) ->
2016-09-08 21:13:10 +04:00
Case { encoding ;
name ;
2016-09-08 21:13:10 +04:00
proj = (fun x -> proj' (proj x));
inj = (fun x -> inj (inj' x)) ;
tag })
cases)
| e -> make @@ Conv { proj ; inj ; encoding = e ; schema }
end
| Objs (p, e1, e2) ->
lift_union_in_pair
{ build = fun p e1 e2 -> make @@ Objs (p, e1, e2) }
p e1 e2
| Tups (p, e1, e2) ->
lift_union_in_pair
{ build = fun p e1 e2 -> make @@ Tups (p, e1, e2) }
p e1 e2
| _ -> e
and lift_union_in_pair
2017-11-13 17:29:28 +04:00
: type a b. pair_builder -> Kind.t -> a t -> b t -> (a * b) t
2016-09-08 21:13:10 +04:00
= fun b p e1 e2 ->
match lift_union e1, lift_union e2 with
| e1, { encoding = Union (_kind, tag, cases) } ->
make @@
Union (`Dynamic (* ignored *), tag,
List.map
(fun (Case { name ; encoding = e2 ; proj ; inj ; tag }) ->
Case { encoding = lift_union_in_pair b p e1 e2 ;
name ;
proj = (fun (x, y) ->
match proj y with
| None -> None
| Some y -> Some (x, y)) ;
inj = (fun (x, y) -> (x, inj y)) ;
tag })
cases)
| { encoding = Union (_kind, tag, cases) }, e2 ->
make @@
Union (`Dynamic (* ignored *), tag,
List.map
(fun (Case { name ; encoding = e1 ; proj ; inj ; tag }) ->
Case { encoding = lift_union_in_pair b p e1 e2 ;
name ;
proj = (fun (x, y) ->
match proj x with
| None -> None
| Some x -> Some (x, y)) ;
inj = (fun (x, y) -> (inj x, y)) ;
tag })
cases)
| e1, e2 -> b.build p e1 e2
2016-09-08 21:13:10 +04:00
2017-11-13 17:29:28 +04:00
let rec json : type a. a desc -> a Json_encoding.encoding =
2016-09-08 21:13:10 +04:00
let open Json_encoding in
function
| Null -> null
| Empty -> empty
| Constant s -> constant s
2016-09-08 21:13:10 +04:00
| Ignore -> unit
| Int8 -> ranged_int ~minimum:~-(1 lsl 7) ~maximum:((1 lsl 7) - 1) "int8"
| Uint8 -> ranged_int ~minimum:0 ~maximum:((1 lsl 8) - 1) "uint8"
| Int16 -> ranged_int ~minimum:~-(1 lsl 15) ~maximum:((1 lsl 15) - 1) "int16"
| Uint16 -> ranged_int ~minimum:0 ~maximum:((1 lsl 16) - 1) "uint16"
| RangedInt { minimum ; maximum } -> ranged_int ~minimum ~maximum "rangedInt"
2016-09-08 21:13:10 +04:00
| Int31 -> int
| Int32 -> int32
| Int64 -> int64_encoding
| Bool -> bool
| Float -> float
| RangedFloat { minimum; maximum } -> ranged_float ~minimum ~maximum "rangedFloat"
2016-09-08 21:13:10 +04:00
| String _ -> string (* TODO: check length *)
| Bytes _ -> bytes_jsont (* TODO check length *)
| String_enum (tbl, _) -> string_enum (Hashtbl.fold (fun a (str, _) acc -> (str, a) :: acc) tbl [])
2016-09-08 21:13:10 +04:00
| Array e -> array (get_json e)
| List e -> list (get_json e)
| Obj f -> obj1 (field_json f)
| Objs (_, e1, e2) ->
merge_objs (get_json e1) (get_json e2)
| Tup e -> tup1 (get_json e)
| Tups (_, e1, e2) ->
merge_tups (get_json e1) (get_json e2)
| Conv { proj ; inj ; encoding = e ; schema } -> conv ?schema proj inj (get_json e)
| Describe { title ; description ; encoding = e } ->
describe ?title ?description (get_json e)
| Def { name ; encoding = e } -> def name (get_json e)
| Mu (_, name, self) as ty ->
mu name (fun json_encoding -> get_json @@ self (make ~json_encoding ty))
| Union (_tag_size, _, cases) -> union (List.map case_json cases)
| Splitted { json_encoding } -> json_encoding
| Dynamic_size e -> get_json e
| Delayed f -> get_json (f ())
2016-09-08 21:13:10 +04:00
and field_json
2017-11-13 17:29:28 +04:00
: type a. a field -> a Json_encoding.field =
2016-09-08 21:13:10 +04:00
let open Json_encoding in
function
| Req (name, e) -> req name (get_json e)
| Opt (_, name, e) -> opt name (get_json e)
| Dft (name, e, d) -> dft name (get_json e) d
2017-11-13 17:29:28 +04:00
and case_json : type a. a case -> a Json_encoding.case =
2016-09-08 21:13:10 +04:00
let open Json_encoding in
function
| Case { encoding = e ; proj ; inj ; _ } -> case (get_json e) proj inj
2017-11-13 17:29:28 +04:00
and get_json : type a. a t -> a Json_encoding.encoding = fun e ->
2016-09-08 21:13:10 +04:00
match e.json_encoding with
| None ->
let json_encoding = json (lift_union e).encoding in
e.json_encoding <- Some json_encoding ;
json_encoding
| Some json_encoding -> json_encoding
let convert = get_json
type path = path_item list
and path_item =
[ `Field of string
(** A field in an object. *)
| `Index of int
(** An index in an array. *)
| `Star
(** Any / every field or index. *)
| `Next
(** The next element after an array. *) ]
2016-09-08 21:13:10 +04:00
include Json_encoding
let construct e v = construct (get_json e) v
let destruct e v = destruct (get_json e) v
let schema e = schema (get_json e)
let cannot_destruct fmt =
Format.kasprintf
(fun msg -> raise (Cannot_destruct ([], Failure msg)))
fmt
2017-12-09 08:24:05 +04:00
type t = json
let to_root = function
| `O ctns -> `O ctns
| `A ctns -> `A ctns
| `Null -> `O []
| oth -> `A [ oth ]
let to_string ?minify j = Ezjsonm.to_string ?minify (to_root j)
let pp = Json_repr.(pp (module Ezjsonm))
let from_string s =
try Ok (Ezjsonm.from_string s :> json)
with Ezjsonm.Parse_error (_, msg) -> Error msg
let from_stream (stream: string Lwt_stream.t) =
let buffer = ref "" in
Lwt_stream.filter_map
(fun str ->
buffer := !buffer ^ str ;
try
let json = Ezjsonm.from_string !buffer in
buffer := "" ;
Some (Ok json)
with Ezjsonm.Parse_error _ ->
None)
stream
2017-12-09 08:24:05 +04:00
end
module Bson = struct
type t = Json_repr_bson.bson
include Json_repr_bson.Json_encoding
let construct e v = construct (Json.get_json e) v
let destruct e v = destruct (Json.get_json e) v
2016-09-08 21:13:10 +04:00
end
module Encoding = struct
module Fixed = struct
let string n = make @@ String (`Fixed n)
let bytes n = make @@ Bytes (`Fixed n)
end
module Variable = struct
let string = make @@ String `Variable
let bytes = make @@ Bytes `Variable
let check_not_variable name e =
match classify e with
| `Variable ->
Printf.ksprintf invalid_arg
"Cannot insert variable length element in %s. \
You should wrap the contents using Data_encoding.dynamic_size." name
| `Dynamic | `Fixed _ -> ()
let array e =
check_not_variable "an array" e ;
make @@ Array e
let list e =
check_not_variable "a list" e ;
make @@ List e
end
let dynamic_size e =
make @@ Dynamic_size e
let delayed f =
make @@ Delayed f
2016-09-08 21:13:10 +04:00
let null = make @@ Null
let empty = make @@ Empty
2017-02-25 21:01:21 +04:00
let unit = make @@ Ignore
2016-09-08 21:13:10 +04:00
let constant s = make @@ Constant s
let bool = make @@ Bool
let int8 = make @@ Int8
let uint8 = make @@ Uint8
2016-09-08 21:13:10 +04:00
let int16 = make @@ Int16
let uint16 = make @@ Uint16
2016-09-08 21:13:10 +04:00
let int31 = make @@ Int31
let int32 = make @@ Int32
let ranged_int minimum maximum =
let minimum = min minimum maximum
and maximum = max minimum maximum in
if minimum < -(1 lsl 30) || (1 lsl 30) - 1 < maximum then
invalid_arg "Data_encoding.ranged_int" ;
make @@ RangedInt { minimum ; maximum }
let ranged_float minimum maximum =
let minimum = min minimum maximum
and maximum = max minimum maximum in
make @@ RangedFloat { minimum ; maximum }
2016-09-08 21:13:10 +04:00
let int64 = make @@ Int64
let float = make @@ Float
let string = dynamic_size Variable.string
let bytes = dynamic_size Variable.bytes
let array e = dynamic_size (Variable.array e)
let list e = dynamic_size (Variable.list e)
let string_enum = function
| [] -> invalid_arg "data_encoding.string_enum: cannot have zero cases"
| [ _case ] -> invalid_arg "data_encoding.string_enum: cannot have a single case, use constant instead"
| _ :: _ as cases ->
let arr = Array.of_list (List.map snd cases) in
let tbl = Hashtbl.create (Array.length arr) in
List.iteri (fun ind (str, a) -> Hashtbl.add tbl a (str, ind)) cases ;
make @@ String_enum (tbl, arr)
2017-11-13 17:29:28 +04:00
let conv proj inj ?schema encoding =
2016-09-08 21:13:10 +04:00
make @@ Conv { proj ; inj ; encoding ; schema }
let describe ?title ?description encoding =
match title, description with
| None, None -> encoding
| _, _ -> make @@ Describe { title ; description ; encoding }
let def name encoding = make @@ Def { name ; encoding }
let req ?title ?description n t =
Req (n, describe ?title ?description t)
let opt ?title ?description n encoding =
let kind =
match classify encoding with
| `Variable -> `Variable
| `Fixed _ | `Dynamic -> `Dynamic in
Opt (kind, n, make @@ Describe { title ; description ; encoding })
let varopt ?title ?description n encoding =
Opt (`Variable, n, make @@ Describe { title ; description ; encoding })
let dft ?title ?description n t d =
Dft (n, describe ?title ?description t, d)
let raw_splitted ~json ~binary =
make @@ Splitted { encoding = binary ;
json_encoding = json ;
is_obj = false ;
is_tup = false }
let rec is_obj : type a. a t -> bool = fun e ->
match e.encoding with
| Obj _ -> true
| Objs _ (* by construction *) -> true
| Conv { encoding = e } -> is_obj e
| Dynamic_size e -> is_obj e
| Union (_,_,cases) ->
List.for_all (fun (Case { encoding = e }) -> is_obj e) cases
| Empty -> true
| Ignore -> true
| Mu (_,_,self) -> is_obj (self e)
| Splitted { is_obj } -> is_obj
| Delayed f -> is_obj (f ())
| Describe { encoding } -> is_obj encoding
| Def { encoding } -> is_obj encoding
| _ -> false
let rec is_tup : type a. a t -> bool = fun e ->
match e.encoding with
| Tup _ -> true
| Tups _ (* by construction *) -> true
| Conv { encoding = e } -> is_tup e
| Dynamic_size e -> is_tup e
| Union (_,_,cases) ->
List.for_all (function Case { encoding = e} -> is_tup e) cases
| Mu (_,_,self) -> is_tup (self e)
| Splitted { is_tup } -> is_tup
| Delayed f -> is_tup (f ())
| Describe { encoding } -> is_tup encoding
| Def { encoding } -> is_tup encoding
| _ -> false
2016-09-08 21:13:10 +04:00
let splitted ~json ~binary =
make @@ Splitted { encoding = binary ;
json_encoding = Json.convert json ;
is_obj = is_obj json ;
is_tup = is_tup json }
2016-09-08 21:13:10 +04:00
let json =
2016-09-08 21:13:10 +04:00
let binary =
conv
(fun json ->
Json_repr.convert
(module Json_repr.Ezjsonm)
(module Json_repr_bson.Repr)
json |>
Json_repr_bson.bson_to_bytes |>
Bytes.to_string)
(fun s -> try
Bytes.of_string s |>
Json_repr_bson.bytes_to_bson ~copy:false |>
Json_repr.convert
(module Json_repr_bson.Repr)
(module Json_repr.Ezjsonm)
with
| Json_repr_bson.Bson_decoding_error (msg, _, _) ->
raise (Json.Parse_error msg))
2016-09-08 21:13:10 +04:00
string in
let json =
Json_encoding.any_ezjson_value in
2016-09-08 21:13:10 +04:00
raw_splitted ~binary ~json
let json_schema =
conv
Json_schema.to_json
Json_schema.of_json
json
2016-09-08 21:13:10 +04:00
let raw_merge_objs e1 e2 =
let kind = Kind.combine "objects" (classify e1) (classify e2) in
make @@ Objs (kind, e1, e2)
let obj1 f1 = make @@ Obj f1
let obj2 f2 f1 =
raw_merge_objs (obj1 f2) (obj1 f1)
let obj3 f3 f2 f1 =
raw_merge_objs (obj1 f3) (obj2 f2 f1)
let obj4 f4 f3 f2 f1 =
raw_merge_objs (obj2 f4 f3) (obj2 f2 f1)
let obj5 f5 f4 f3 f2 f1 =
raw_merge_objs (obj1 f5) (obj4 f4 f3 f2 f1)
let obj6 f6 f5 f4 f3 f2 f1 =
raw_merge_objs (obj2 f6 f5) (obj4 f4 f3 f2 f1)
let obj7 f7 f6 f5 f4 f3 f2 f1 =
raw_merge_objs (obj3 f7 f6 f5) (obj4 f4 f3 f2 f1)
let obj8 f8 f7 f6 f5 f4 f3 f2 f1 =
raw_merge_objs (obj4 f8 f7 f6 f5) (obj4 f4 f3 f2 f1)
let obj9 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
raw_merge_objs (obj1 f9) (obj8 f8 f7 f6 f5 f4 f3 f2 f1)
let obj10 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
raw_merge_objs (obj2 f10 f9) (obj8 f8 f7 f6 f5 f4 f3 f2 f1)
let merge_objs o1 o2 =
if is_obj o1 && is_obj o2 then
raw_merge_objs o1 o2
else
invalid_arg "Json_encoding.merge_objs"
let raw_merge_tups e1 e2 =
let kind = Kind.combine "tuples" (classify e1) (classify e2) in
make @@ Tups (kind, e1, e2)
let tup1 e1 = make @@ Tup e1
let tup2 e2 e1 =
raw_merge_tups (tup1 e2) (tup1 e1)
let tup3 e3 e2 e1 =
raw_merge_tups (tup1 e3) (tup2 e2 e1)
let tup4 e4 e3 e2 e1 =
raw_merge_tups (tup2 e4 e3) (tup2 e2 e1)
let tup5 e5 e4 e3 e2 e1 =
raw_merge_tups (tup1 e5) (tup4 e4 e3 e2 e1)
let tup6 e6 e5 e4 e3 e2 e1 =
raw_merge_tups (tup2 e6 e5) (tup4 e4 e3 e2 e1)
let tup7 e7 e6 e5 e4 e3 e2 e1 =
raw_merge_tups (tup3 e7 e6 e5) (tup4 e4 e3 e2 e1)
let tup8 e8 e7 e6 e5 e4 e3 e2 e1 =
raw_merge_tups (tup4 e8 e7 e6 e5) (tup4 e4 e3 e2 e1)
let tup9 e9 e8 e7 e6 e5 e4 e3 e2 e1 =
raw_merge_tups (tup1 e9) (tup8 e8 e7 e6 e5 e4 e3 e2 e1)
let tup10 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 =
raw_merge_tups (tup2 e10 e9) (tup8 e8 e7 e6 e5 e4 e3 e2 e1)
let merge_tups t1 t2 =
if is_tup t1 && is_tup t2 then
raw_merge_tups t1 t2
else
invalid_arg "Tezos_serial.Encoding.merge_tups"
let conv3 ty =
conv
(fun (c, b, a) -> (c, (b, a)))
(fun (c, (b, a)) -> (c, b, a))
ty
let obj3 f3 f2 f1 = conv3 (obj3 f3 f2 f1)
let tup3 f3 f2 f1 = conv3 (tup3 f3 f2 f1)
let conv4 ty =
conv
(fun (d, c, b, a) -> ((d, c), (b, a)))
(fun ((d, c), (b, a)) -> (d, c, b, a))
ty
let obj4 f4 f3 f2 f1 = conv4 (obj4 f4 f3 f2 f1)
let tup4 f4 f3 f2 f1 = conv4 (tup4 f4 f3 f2 f1)
let conv5 ty =
conv
(fun (e, d, c, b, a) -> (e, ((d, c), (b, a))))
(fun (e, ((d, c), (b, a))) -> (e, d, c, b, a))
ty
let obj5 f5 f4 f3 f2 f1 = conv5 (obj5 f5 f4 f3 f2 f1)
let tup5 f5 f4 f3 f2 f1 = conv5 (tup5 f5 f4 f3 f2 f1)
let conv6 ty =
conv
(fun (f, e, d, c, b, a) -> ((f, e), ((d, c), (b, a))))
(fun ((f, e), ((d, c), (b, a))) -> (f, e, d, c, b, a))
ty
let obj6 f6 f5 f4 f3 f2 f1 = conv6 (obj6 f6 f5 f4 f3 f2 f1)
let tup6 f6 f5 f4 f3 f2 f1 = conv6 (tup6 f6 f5 f4 f3 f2 f1)
let conv7 ty =
conv
(fun (g, f, e, d, c, b, a) -> ((g, (f, e)), ((d, c), (b, a))))
(fun ((g, (f, e)), ((d, c), (b, a))) -> (g, f, e, d, c, b, a))
ty
let obj7 f7 f6 f5 f4 f3 f2 f1 = conv7 (obj7 f7 f6 f5 f4 f3 f2 f1)
let tup7 f7 f6 f5 f4 f3 f2 f1 = conv7 (tup7 f7 f6 f5 f4 f3 f2 f1)
let conv8 ty =
conv (fun (h, g, f, e, d, c, b, a) ->
(((h, g), (f, e)), ((d, c), (b, a))))
(fun (((h, g), (f, e)), ((d, c), (b, a))) ->
(h, g, f, e, d, c, b, a))
ty
2016-09-08 21:13:10 +04:00
let obj8 f8 f7 f6 f5 f4 f3 f2 f1 = conv8 (obj8 f8 f7 f6 f5 f4 f3 f2 f1)
let tup8 f8 f7 f6 f5 f4 f3 f2 f1 = conv8 (tup8 f8 f7 f6 f5 f4 f3 f2 f1)
let conv9 ty =
conv
(fun (i, h, g, f, e, d, c, b, a) ->
(i, (((h, g), (f, e)), ((d, c), (b, a)))))
(fun (i, (((h, g), (f, e)), ((d, c), (b, a)))) ->
(i, h, g, f, e, d, c, b, a))
ty
let obj9 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
conv9 (obj9 f9 f8 f7 f6 f5 f4 f3 f2 f1)
let tup9 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
conv9 (tup9 f9 f8 f7 f6 f5 f4 f3 f2 f1)
let conv10 ty =
conv
(fun (j, i, h, g, f, e, d, c, b, a) ->
((j, i), (((h, g), (f, e)), ((d, c), (b, a)))))
(fun ((j, i), (((h, g), (f, e)), ((d, c), (b, a)))) ->
(j, i, h, g, f, e, d, c, b, a))
ty
let obj10 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
conv10 (obj10 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1)
let tup10 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 =
conv10 (tup10 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1)
let check_cases tag_size cases =
if cases = [] then
invalid_arg "Data_encoding.union: empty list of cases." ;
let max_tag =
match tag_size with
| `Uint8 -> 256
| `Uint16 -> 256 * 256 in
2016-09-08 21:13:10 +04:00
ignore @@
List.fold_left
(fun others (Case { tag }) ->
match tag with
| Json_only -> others
| Tag tag ->
2016-09-08 21:13:10 +04:00
if List.mem tag others then raise (Duplicated_tag tag) ;
if tag < 0 || max_tag <= tag then
raise (Invalid_tag (tag, tag_size)) ;
tag :: others
)
[] cases
let union ?(tag_size = `Uint8) cases =
2016-09-08 21:13:10 +04:00
check_cases tag_size cases ;
let kinds =
List.map (fun (Case { encoding }) -> classify encoding) cases in
let kind = Kind.merge_list tag_size kinds in
make @@ Union (kind, tag_size, cases)
let case ?name tag encoding proj inj = Case { name ; encoding ; proj ; inj ; tag }
2016-09-08 21:13:10 +04:00
let option ty =
union
~tag_size:`Uint8
[ case (Tag 1) ty
~name:"Some"
2016-09-08 21:13:10 +04:00
(fun x -> x)
(fun x -> Some x) ;
case (Tag 0) empty
~name:"None"
2016-09-08 21:13:10 +04:00
(function None -> Some () | Some _ -> None)
(fun () -> None) ;
]
let mu name self =
let kind =
try
match classify (self (make @@ Mu (`Dynamic, name, self))) with
| `Fixed _ | `Dynamic -> `Dynamic
| `Variable -> raise Exit
with Exit | _ (* TODO variability error *) ->
ignore @@ classify (self (make @@ Mu (`Variable, name, self))) ;
`Variable in
make @@ Mu (kind, name, self)
let result ok_enc error_enc =
union
~tag_size:`Uint8
[ case (Tag 1) ok_enc
(function Ok x -> Some x | Error _ -> None)
(fun x -> Ok x) ;
case (Tag 0) error_enc
(function Ok _ -> None | Error x -> Some x)
(fun x -> Error x) ;
]
let assoc enc =
let json = Json_encoding.assoc (Json.get_json enc) in
let binary = list (tup2 string enc) in
raw_splitted ~json ~binary
2016-09-08 21:13:10 +04:00
end
include Encoding
module Binary = struct
type 'l writer = {
write: 'a. 'a t -> 'a -> MBytes.t -> int -> int ;
}
type 'l reader = {
read: 'a. 'a t -> MBytes.t -> int -> int -> (int * 'a) ;
}
let rec length : type x. x t -> x -> int = fun e ->
2016-09-08 21:13:10 +04:00
match e.encoding with
(* Fixed *)
| Null -> fun _ -> 0
| Empty -> fun _ -> 0
| Constant _ -> fun _ -> 0
| Bool -> fun _ -> Size.bool
| Int8 -> fun _ -> Size.int8
| Uint8 -> fun _ -> Size.uint8
2016-09-08 21:13:10 +04:00
| Int16 -> fun _ -> Size.int16
| Uint16 -> fun _ -> Size.uint16
2016-09-08 21:13:10 +04:00
| Int31 -> fun _ -> Size.int31
| Int32 -> fun _ -> Size.int32
| Int64 -> fun _ -> Size.int64
| RangedInt { minimum ; maximum } ->
fun _ -> integer_to_size @@ range_to_size ~minimum ~maximum
2016-09-08 21:13:10 +04:00
| Float -> fun _ -> Size.float
| RangedFloat _ -> fun _ -> Size.float
2016-09-08 21:13:10 +04:00
| Bytes `Fixed n -> fun _ -> n
| String `Fixed n -> fun _ -> n
| String_enum (_, arr) ->
fun _ -> integer_to_size @@ enum_size arr
2016-09-08 21:13:10 +04:00
| Objs (`Fixed n, _, _) -> fun _ -> n
| Tups (`Fixed n, _, _) -> fun _ -> n
| Union (`Fixed n, _, _) -> fun _ -> n
(* Dynamic *)
| Objs (`Dynamic, e1, e2) ->
let length1 = length e1 in
let length2 = length e2 in
fun (v1, v2) -> length1 v1 + length2 v2
| Tups (`Dynamic, e1, e2) ->
let length1 = length e1 in
let length2 = length e2 in
fun (v1, v2) -> length1 v1 + length2 v2
| Union (`Dynamic, sz, cases) ->
let tag_size = tag_size sz in
let case_length (Case { encoding = e ; proj }) =
let length v = tag_size + length e v in
fun v -> Option.map ~f:length (proj v) in
apply (List.map case_length cases)
2016-09-08 21:13:10 +04:00
| Mu (`Dynamic, _name, self) ->
fun v -> length (self e) v
| Obj (Opt (`Dynamic, _, e)) ->
let length = length e in
(function None -> 1 | Some x -> 1 + length x)
(* Variable *)
| Ignore -> fun _ -> 0
| Bytes `Variable -> MBytes.length
| String `Variable -> String.length
| Array e ->
let length = length e in
fun v ->
Array.fold_left
(fun acc v -> length v + acc)
0 v
| List e ->
let length = length e in
fun v ->
List.fold_left
(fun acc v -> length v + acc)
0 v
| Objs (`Variable, e1, e2) ->
let length1 = length e1 in
let length2 = length e2 in
fun (v1, v2) -> length1 v1 + length2 v2
| Tups (`Variable, e1, e2) ->
let length1 = length e1
and length2 = length e2 in
fun (v1, v2) -> length1 v1 + length2 v2
| Obj (Opt (`Variable, _, e)) ->
let length = length e in
(function None -> 0 | Some x -> length x)
| Union (`Variable, sz, cases) ->
let rec case_lengths json_only_cases acc = function
| [] -> (List.rev acc, json_only_cases)
| Case { tag = Json_only } :: tl -> case_lengths true acc tl
| Case { encoding = e ; proj ; tag = Tag _ } :: tl ->
2016-09-08 21:13:10 +04:00
let length v = tag_size sz + length e v in
case_lengths
json_only_cases
((fun v ->
match proj v with
| None -> None
| Some v -> Some (length v)) :: acc)
tl in
let cases, json_only = case_lengths false [] cases in
apply
~error:(if json_only
then Failure "No case matched, but JSON only cases were present in union"
else No_case_matched)
cases
2016-09-08 21:13:10 +04:00
| Mu (`Variable, _name, self) ->
fun v -> length (self e) v
(* Recursive*)
| Obj (Req (_, e)) -> length e
| Obj (Dft (_, e, _)) -> length e
| Tup e -> length e
| Conv { encoding = e ; proj } ->
let length = length e in
fun v -> length (proj v)
| Describe { encoding = e } -> length e
| Def { encoding = e } -> length e
| Splitted { encoding = e } -> length e
| Dynamic_size e ->
let length = length e in
fun v -> Size.int32 + length v
| Delayed f -> length (f ())
2016-09-08 21:13:10 +04:00
(** Writer *)
module Writer = struct
let int8 v buf ofs =
if (v < - (1 lsl 7) || v >= 1 lsl 7) then
invalid_arg "Data_encoding.Binary.Writer.int8" ;
2016-09-08 21:13:10 +04:00
MBytes.set_int8 buf ofs v;
ofs + Size.int8
let uint8 v buf ofs =
if (v < 0 || v >= 1 lsl 8) then
invalid_arg "Data_encoding.Binary.Writer.uint8" ;
MBytes.set_int8 buf ofs v;
ofs + Size.uint8
2016-09-08 21:13:10 +04:00
let char v buf ofs =
MBytes.set_char buf ofs v;
ofs + Size.char
2016-09-08 21:13:10 +04:00
let bool v buf ofs =
uint8 (if v then 255 else 0) buf ofs
2016-09-08 21:13:10 +04:00
let int16 v buf ofs =
if (v < - (1 lsl 15) || v >= 1 lsl 15) then
invalid_arg "Data_encoding.Binary.Writer.int16" ;
2016-09-08 21:13:10 +04:00
MBytes.set_int16 buf ofs v;
ofs + Size.int16
let uint16 v buf ofs =
if (v < 0 || v >= 1 lsl 16) then
invalid_arg "Data_encoding.Binary.Writer.uint16" ;
MBytes.set_int16 buf ofs v;
ofs + Size.uint16
let uint30 v buf ofs =
if v < 0 || (Sys.int_size > 31 && v >= 1 lsl 30) then
invalid_arg "Data_encoding.Binary.Writer.uint30" ;
MBytes.set_int32 buf ofs (Int32.of_int v);
ofs + Size.uint30
2016-09-08 21:13:10 +04:00
let int31 v buf ofs =
if Sys.int_size > 31 && (v < ~- (1 lsl 30) || v >= 1 lsl 30) then
invalid_arg "Data_encoding.Binary.Writer.int31" ;
2016-09-08 21:13:10 +04:00
MBytes.set_int32 buf ofs (Int32.of_int v);
ofs + Size.int31
let int32 v buf ofs =
MBytes.set_int32 buf ofs v;
ofs + Size.int32
let int64 v buf ofs =
MBytes.set_int64 buf ofs v;
ofs + Size.int64
(** write a float64 (double) **)
2016-09-08 21:13:10 +04:00
let float v buf ofs =
(*Here, float means float64, which is written using MBytes.set_double !!*)
MBytes.set_double buf ofs v;
2016-09-08 21:13:10 +04:00
ofs + Size.float
let fixed_kind_bytes length s buf ofs =
MBytes.blit s 0 buf ofs length;
ofs + length
let variable_length_bytes s buf ofs =
let length = MBytes.length s in
MBytes.blit s 0 buf ofs length ;
ofs + length
let fixed_kind_string length s buf ofs =
if String.length s <> length then invalid_arg "fixed_kind_string";
MBytes.blit_from_string s 0 buf ofs length;
ofs + length
let variable_length_string s buf ofs =
let length = String.length s in
MBytes.blit_from_string s 0 buf ofs length ;
ofs + length
let objs w1 w2 (v1,v2) buf ofs =
w1 v1 buf ofs |> w2 v2 buf
let array w a buf ofs =
Array.fold_left (fun ofs v -> w v buf ofs) ofs a
let list w l buf ofs =
List.fold_left (fun ofs v -> w v buf ofs) ofs l
let conv proj w v buf ofs =
w (proj v) buf ofs
let write_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
2016-09-08 21:13:10 +04:00
let union w sz cases =
let writes_case = function
| Case { tag = Json_only } -> None
| Case { encoding = e ; proj ; tag = Tag tag } ->
2016-09-08 21:13:10 +04:00
let write = w.write e in
let write v buf ofs =
write_tag sz tag buf ofs |> write v buf in
Some (fun v ->
match proj v with
| None -> None
| Some v -> Some (write v)) in
apply (TzList.filter_map writes_case cases)
2016-09-08 21:13:10 +04:00
end
module BufferedWriter = struct
let int8 v buf =
if (v < - (1 lsl 7) || v >= 1 lsl 7) then
invalid_arg "Data_encoding.Binary.Writer.int8" ;
MBytes_buffer.write_int8 buf v
let uint8 v buf =
if (v < 0 || v >= 1 lsl 8) then
invalid_arg "Data_encoding.Binary.Writer.uint8" ;
MBytes_buffer.write_int8 buf v
let char v buf =
MBytes_buffer.write_char buf v
let bool v buf =
uint8 (if v then 255 else 0) buf
let int16 v buf =
if (v < - (1 lsl 15) || v >= 1 lsl 15) then
invalid_arg "Data_encoding.Binary.Writer.int16" ;
MBytes_buffer.write_int16 buf v
let uint16 v buf =
if (v < 0 || v >= 1 lsl 16) then
invalid_arg "Data_encoding.Binary.Writer.uint16" ;
MBytes_buffer.write_int16 buf v
let uint30 v buf =
if v < 0 || (Sys.int_size > 31 && v >= 1 lsl 30) then
invalid_arg "Data_encoding.Binary.Writer.uint30" ;
MBytes_buffer.write_int32 buf (Int32.of_int v)
let int31 v buf =
if Sys.int_size > 31 && (v < ~- (1 lsl 30) || v >= 1 lsl 30) then
invalid_arg "Data_encoding.Binary.Writer.int31" ;
MBytes_buffer.write_int32 buf (Int32.of_int v)
let int32 v buf =
MBytes_buffer.write_int32 buf v
let int64 v buf =
MBytes_buffer.write_int64 buf v
(** write a float64 (double) **)
let float v buf =
MBytes_buffer.write_double buf v
let fixed_kind_bytes length s buf =
MBytes_buffer.write_mbytes buf s 0 length
let variable_length_bytes s buf =
let length = MBytes.length s in
MBytes_buffer.write_mbytes buf s 0 length
let fixed_kind_string length s buf =
if String.length s <> length then invalid_arg "fixed_kind_string";
MBytes_buffer.write_string_data buf s
let variable_length_string s buf =
MBytes_buffer.write_string_data buf s
let write_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
end
let rec assoc_snd target = function
| [] -> raise No_case_matched
| (value, hd) :: tl ->
if hd = target
then value
else assoc_snd target tl
let get_string_enum_case tbl v =
try
snd (Hashtbl.find tbl v)
with _ ->
raise No_case_matched
2016-09-08 21:13:10 +04:00
let rec write_rec
2017-11-13 17:29:28 +04:00
: type a. a t -> a -> MBytes.t -> int -> int = fun e ->
2016-09-08 21:13:10 +04:00
let open Writer in
match e.encoding with
| Null -> (fun () _buf ofs -> ofs)
| Empty -> (fun () _buf ofs -> ofs)
| Constant _ -> (fun () _buf ofs -> ofs)
| Ignore -> (fun () _buf ofs -> ofs)
| Bool -> bool
| Int8 -> int8
| Uint8 -> uint8
2016-09-08 21:13:10 +04:00
| Int16 -> int16
| Uint16 -> uint16
2016-09-08 21:13:10 +04:00
| Int31 -> int31
| Int32 -> int32
| Int64 -> int64
| RangedInt { minimum ; maximum } ->
fun v ->
begin
if v < minimum || v > maximum
then invalid_arg (Printf.sprintf "Integer %d not in range [%d, %d]." v minimum maximum) ;
let v = if minimum >= 0 then v - minimum else v in
match range_to_size ~minimum ~maximum with
| `Uint8 -> uint8 v
| `Uint16 -> uint16 v
| `Uint30 -> uint30 v
| `Int8 -> int8 v
| `Int16 -> int16 v
| `Int31 -> int31 v
end
2016-09-08 21:13:10 +04:00
| Float -> float
| RangedFloat { minimum ; maximum } ->
fun v ->
if v < minimum || v > maximum
2018-03-14 20:56:20 +04:00
then invalid_arg (Printf.sprintf "Float %f not in range [%f, %f]." v minimum maximum) ;
float v
2016-09-08 21:13:10 +04:00
| Bytes (`Fixed n) -> fixed_kind_bytes n
| String (`Fixed n) -> fixed_kind_string n
| Bytes `Variable -> variable_length_bytes
| String `Variable -> variable_length_string
| Array t -> array (write_rec t)
| List t -> list (write_rec t)
| String_enum (tbl, arr) ->
(fun v ->
let value = get_string_enum_case tbl v in
match enum_size arr with
| `Uint30 -> uint30 value
| `Uint16 -> uint16 value
| `Uint8 -> uint8 value)
2016-09-08 21:13:10 +04:00
| Obj (Req (_, e)) -> write_rec e
| Obj (Opt (`Dynamic, _, e)) ->
let write = write_rec e in
(function None -> int8 0
| Some x -> fun buf ofs -> int8 1 buf ofs |> write x buf)
| Obj (Opt (`Variable, _, e)) ->
let write = write_rec e in
(function None -> fun _buf ofs -> ofs
| Some x -> write x)
| Obj (Dft (_, e, _)) -> write_rec e
| Objs (_, e1, e2) ->
objs (write_rec e1) (write_rec e2)
| Tup e -> write_rec e
| Tups (_, e1, e2) ->
objs (write_rec e1) (write_rec e2)
| Conv { encoding = e; proj } -> conv proj (write_rec e)
| Describe { encoding = e } -> write_rec e
| Def { encoding = e } -> write_rec e
| Splitted { encoding = e } -> write_rec e
| Union (_, sz, cases) -> union { write = write_rec } sz cases
| Mu (_, _, self) -> fun v buf ofs -> write_rec (self e) v buf ofs
| Dynamic_size e ->
let length = length e
and write = write_rec e in
fun v buf ofs ->
int32 (Int32.of_int @@ length v) buf ofs |> write v buf
| Delayed f -> write_rec (f ())
2016-09-08 21:13:10 +04:00
let rec write_rec_buffer
: type a. a encoding -> a -> MBytes_buffer.t -> unit =
fun encoding value buffer ->
let open BufferedWriter in
match encoding.encoding with
| Null -> ()
| Empty -> ()
| Constant _ -> ()
| Ignore -> ()
| Bool -> bool value buffer
| Int8 -> int8 value buffer
| Uint8 -> uint8 value buffer
| Int16 -> int16 value buffer
| Uint16 -> uint16 value buffer
| Int31 -> int31 value buffer
| Int32 -> int32 value buffer
| Int64 -> int64 value buffer
| Float -> float value buffer
| Bytes (`Fixed n) -> fixed_kind_bytes n value buffer
| String (`Fixed n) -> fixed_kind_string n value buffer
| Bytes `Variable -> variable_length_bytes value buffer
| String `Variable -> variable_length_string value buffer
| Array t -> Array.iter (fun x -> write_rec_buffer t x buffer) value
| List t -> List.iter (fun x -> write_rec_buffer t x buffer) value
| RangedInt { minimum ; maximum } ->
if value < minimum || value > maximum
then invalid_arg (Printf.sprintf "Integer %d not in range [%d, %d]."
value minimum maximum) ;
let value = if minimum >= 0 then value - minimum else value in
begin
match range_to_size ~minimum ~maximum with
| `Uint30 -> uint30 value buffer
| `Uint16 -> uint16 value buffer
| `Uint8 -> uint8 value buffer
| `Int8 -> int8 value buffer
| `Int16 -> int16 value buffer
| `Int31 -> int31 value buffer
end
| RangedFloat { minimum ; maximum } ->
if value < minimum || value > maximum
then invalid_arg (Printf.sprintf "Float %f not in range [%f, %f]."
value minimum maximum) ;
float value buffer
| String_enum (tbl, arr) ->
(match enum_size arr with
| `Uint30 -> BufferedWriter.uint30
| `Uint16 -> BufferedWriter.uint16
| `Uint8 -> BufferedWriter.uint8)
(get_string_enum_case tbl value)
buffer
| Obj (Req (_, e)) -> write_rec_buffer e value buffer
| Obj (Opt (`Dynamic, _, e)) ->
(match value with
| None -> int8 0 buffer
| Some x ->
begin
int8 1 buffer ;
write_rec_buffer e x buffer
end)
| Obj (Opt (`Variable, _, e)) ->
(match value with
| None -> ()
| Some x -> write_rec_buffer e x buffer)
| Obj (Dft (_, e, _)) -> write_rec_buffer e value buffer
| Objs (_, e1, e2) ->
let v1, v2 = value in
write_rec_buffer e1 v1 buffer ;
write_rec_buffer e2 v2 buffer
| Tup e -> write_rec_buffer e value buffer
| Tups (_, e1, e2) ->
let v1, v2 = value in
write_rec_buffer e1 v1 buffer ;
write_rec_buffer e2 v2 buffer
| Conv { encoding = e; proj } ->
write_rec_buffer e (proj value) buffer
| Describe { encoding = e } -> write_rec_buffer e value buffer
| Def { encoding = e } -> write_rec_buffer e value buffer
| Splitted { encoding = e } -> write_rec_buffer e value buffer
| Union (_, sz, cases) ->
let rec write_case = function
| [] -> raise No_case_matched
| Case { tag = Json_only } :: tl -> write_case tl
| Case { encoding = e ; proj ; tag = Tag tag } :: tl ->
begin
match proj value with
| None -> write_case tl
| Some data ->
write_tag sz tag buffer ;
write_rec_buffer e data buffer
end in
write_case cases
| Mu (_, _, self) ->
write_rec_buffer (self encoding) value buffer
| Dynamic_size e ->
MBytes_buffer.write_sized buffer (fun () -> write_rec_buffer e value buffer)
| Delayed f -> write_rec_buffer (f ()) value buffer
2016-09-08 21:13:10 +04:00
let write t v buf ofs =
try Some (write_rec t v buf ofs)
with _ -> None
let to_bytes t v =
let bytes = MBytes_buffer.create () in
write_rec_buffer t v bytes ;
MBytes_buffer.to_mbytes bytes
2016-09-08 21:13:10 +04:00
let to_bytes_list ?(copy_blocks=false) block_sz t v =
assert (block_sz > 0);
let bytes = to_bytes t v in (* call to generic function to_bytes *)
let length = MBytes.length bytes in
if length <= block_sz then
[bytes] (* if the result fits in the given block_sz *)
else
let may_copy = if copy_blocks then MBytes.copy else fun t -> t in
let nb_full = length / block_sz in (* nb of blocks of size block_sz *)
let sz_full = nb_full * block_sz in (* size of the full part *)
let acc = (* eventually init acc with a non-full block *)
if sz_full = length then []
else [may_copy (MBytes.sub bytes sz_full (length - sz_full))]
in
let rec split_full_blocks curr_upper_limit acc =
let start = curr_upper_limit - block_sz in
assert (start >= 0);
(* copy the block [ start, curr_upper_limit [ of size block_sz *)
let acc = (may_copy (MBytes.sub bytes start block_sz)) :: acc in
if start = 0 then acc else split_full_blocks start acc
in
split_full_blocks sz_full acc
2016-09-08 21:13:10 +04:00
(** Reader *)
module Reader = struct
let int8 buf ofs _len =
ofs + Size.int8, MBytes.get_int8 buf ofs
let uint8 buf ofs _len =
ofs + Size.uint8, MBytes.get_uint8 buf ofs
let char buf ofs _len =
ofs + Size.char, MBytes.get_char buf ofs
2016-09-08 21:13:10 +04:00
let bool buf ofs len =
let ofs, v = int8 buf ofs len in
ofs, v <> 0
let int16 buf ofs _len =
ofs + Size.int16, MBytes.get_int16 buf ofs
let uint16 buf ofs _len =
ofs + Size.uint16, MBytes.get_uint16 buf ofs
let uint30 buf ofs _len =
let v = Int32.to_int (MBytes.get_int32 buf ofs) in
if v < 0 then
failwith "Data_encoding.Binary.Reader.uint30: invalid data." ;
ofs + Size.uint30, v
2016-09-08 21:13:10 +04:00
let int31 buf ofs _len =
ofs + Size.int31, Int32.to_int (MBytes.get_int32 buf ofs)
let int32 buf ofs _len =
ofs + Size.int32, MBytes.get_int32 buf ofs
let int64 buf ofs _len =
ofs + Size.int64, MBytes.get_int64 buf ofs
(** read a float64 (double) **)
2016-09-08 21:13:10 +04:00
let float buf ofs _len =
(*Here, float means float64, which is read using MBytes.get_double !!*)
ofs + Size.float, MBytes.get_double buf ofs
2016-09-08 21:13:10 +04:00
let int_of_int32 i =
let i' = Int32.to_int i in
let i'' = Int32.of_int i' in
if i'' = i then
i'
else
invalid_arg "int_of_int32 overflow"
let fixed_length_bytes length buf ofs _len =
let s = MBytes.sub buf ofs length in
ofs + length, s
let fixed_length_string length buf ofs _len =
let s = MBytes.substring buf ofs length in
ofs + length, s
let seq r1 r2 buf ofs len =
let ofs', v1 = r1 buf ofs len in
let ofs'', v2 = r2 buf ofs' (len - (ofs' - ofs)) in
ofs'', (v1, v2)
let varseq r e1 e2 buf ofs len =
let k1 = classify e1
and k2 = classify e2 in
match k1, k2 with
| (`Dynamic | `Fixed _), `Variable ->
let ofs', v1 = r.read e1 buf ofs len in
let ofs'', v2 = r.read e2 buf ofs' (len - (ofs' - ofs)) in
ofs'', (v1, v2)
| `Variable, `Fixed n ->
let ofs', v1 = r.read e1 buf ofs (len - n) in
let ofs'', v2 = r.read e2 buf ofs' n in
ofs'', (v1, v2)
| _ -> assert false (* Should be rejected by Kind.combine *)
let list read buf ofs len =
let rec loop acc ofs len =
2017-03-29 20:33:39 +04:00
assert (len >= 0);
2016-09-08 21:13:10 +04:00
if len <= 0
then ofs, List.rev acc
else
let ofs', v = read buf ofs len in
2017-03-29 20:33:39 +04:00
assert (ofs' > ofs);
2016-09-08 21:13:10 +04:00
loop (v :: acc) ofs' (len - (ofs' - ofs))
in
loop [] ofs len
let array read buf ofs len =
let ofs, l = list read buf ofs len in
ofs, Array.of_list l
let conv inj r buf ofs len =
let ofs, v = r buf ofs len in
ofs, inj v
let read_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
2016-09-08 21:13:10 +04:00
let union r sz cases =
let read_cases =
TzList.filter_map
2016-09-08 21:13:10 +04:00
(function
| (Case { tag = Json_only }) -> None
| (Case { encoding = e ; inj ; tag = Tag tag }) ->
2016-09-08 21:13:10 +04:00
let read = r.read e in
Some (tag, fun len buf ofs ->
let ofs, v = read len buf ofs in
ofs, inj v))
cases in
fun buf ofs len ->
let ofs, tag = read_tag sz buf ofs len in
try List.assoc tag read_cases buf ofs (len - tag_size sz)
with Not_found -> raise (Unexpected_tag tag)
end
2017-11-13 17:29:28 +04:00
let rec read_rec : type a. a t-> MBytes.t -> int -> int -> int * a = fun e ->
2016-09-08 21:13:10 +04:00
let open Reader in
match e.encoding with
| Null -> (fun _buf ofs _len -> ofs, ())
| Empty -> (fun _buf ofs _len -> ofs, ())
| Constant _ -> (fun _buf ofs _len -> ofs, ())
| Ignore -> (fun _buf ofs len -> ofs + len, ())
| Bool -> bool
| Int8 -> int8
| Uint8 -> uint8
2016-09-08 21:13:10 +04:00
| Int16 -> int16
| Uint16 -> uint16
2016-09-08 21:13:10 +04:00
| Int31 -> int31
| Int32 -> int32
| Int64 -> int64
| RangedInt { minimum ; maximum } ->
(fun buf ofs alpha ->
let ofs, value =
match range_to_size ~minimum ~maximum with
| `Int8 -> int8 buf ofs alpha
| `Int16 -> int16 buf ofs alpha
| `Int31 -> int31 buf ofs alpha
| `Uint8 -> uint8 buf ofs alpha
| `Uint16 -> uint16 buf ofs alpha
| `Uint30 -> uint30 buf ofs alpha in
let value = if minimum > 0 then value + minimum else value in
if value < minimum || value > maximum
then raise (Int_out_of_range (value, minimum, maximum)) ;
(ofs, value))
2016-09-08 21:13:10 +04:00
| Float -> float
| RangedFloat { minimum ; maximum } ->
(fun buf ofs len ->
let offset, value = float buf ofs len in
if value < minimum || value > maximum
then raise (Float_out_of_range (value, minimum, maximum)) ;
(offset, value))
2016-09-08 21:13:10 +04:00
| Bytes (`Fixed n) -> fixed_length_bytes n
| String (`Fixed n) -> fixed_length_string n
| Bytes `Variable -> fun buf ofs len -> fixed_length_bytes len buf ofs len
| String `Variable -> fun buf ofs len -> fixed_length_string len buf ofs len
| String_enum (_, arr) -> begin
fun buf ofs a ->
let ofs, ind =
match enum_size arr with
| `Uint8 -> uint8 buf ofs a
| `Uint16 -> uint16 buf ofs a
| `Uint30 -> uint30 buf ofs a in
if ind >= Array.length arr
then raise No_case_matched
else (ofs, arr.(ind))
2016-09-08 21:13:10 +04:00
end
| Array e -> array (read_rec e)
| List e -> list (read_rec e)
| Obj (Req (_, e)) -> read_rec e
| Obj (Opt (`Dynamic, _, t)) ->
let read = read_rec t in
(fun buf ofs len ->
let ofs, v = int8 buf ofs len in
if v = 0 then ofs, None
else let ofs, v = read buf ofs (len - Size.int8) in ofs, Some v)
| Obj (Opt (`Variable, _, t)) ->
let read = read_rec t in
(fun buf ofs len ->
if len = 0 then ofs, None
else
let ofs', v = read buf ofs len in
assert (ofs' = ofs + len) ;
ofs + len, Some v)
| Obj (Dft (_, e, _)) -> read_rec e
| Objs ((`Fixed _ | `Dynamic), e1, e2) ->
seq (read_rec e1) (read_rec e2)
| Objs (`Variable, e1, e2) ->
varseq { read = fun t -> read_rec t } e1 e2
| Tup e -> read_rec e
| Tups ((`Fixed _ | `Dynamic), e1, e2) ->
seq (read_rec e1) (read_rec e2)
| Tups (`Variable, e1, e2) ->
varseq { read = fun t -> read_rec t } e1 e2
| Conv { inj ; encoding = e } -> conv inj (read_rec e)
| Describe { encoding = e } -> read_rec e
| Def { encoding = e } -> read_rec e
| Splitted { encoding = e } -> read_rec e
| Union (_, sz, cases) ->
union { read = fun t -> read_rec t } sz cases
| Mu (_, _, self) -> fun buf ofs len -> read_rec (self e) buf ofs len
| Dynamic_size e ->
let read = read_rec e in
fun buf ofs len ->
let ofs, sz = int32 buf ofs len in
let sz = Int32.to_int sz in
if sz < 0 then raise (Invalid_size sz);
read buf ofs sz
| Delayed f -> read_rec (f ())
2016-09-08 21:13:10 +04:00
let read t buf ofs len =
try Some (read_rec t buf ofs len)
with _ -> None
let write = write
let of_bytes_exn ty buf =
2016-09-08 21:13:10 +04:00
let len = MBytes.length buf in
let read_len, r = read_rec ty buf 0 len in
if read_len <> len then
failwith "Data_encoding.Binary.of_bytes_exn: remainig data" ;
r
let of_bytes ty buf =
try Some (of_bytes_exn ty buf)
with _ -> None
2016-09-08 21:13:10 +04:00
let to_bytes = to_bytes
let length = length
let fixed_length e =
match classify e with
| `Fixed n -> Some n
| `Dynamic | `Variable -> None
let fixed_length_exn e =
match fixed_length e with
| Some n -> n
| None -> invalid_arg "Data_encoding.Binary.fixed_length_exn"
(* Facilities to decode streams of binary data *)
type 'a status =
| Success of { res : 'a ; res_len : int ; remaining : MBytes.t list }
| Await of (MBytes.t -> 'a status)
| Error
module Stream_reader = struct
(* used as a zipper to code the function read_checker with the
ability to stop and wait for more data. In 'P_seq' case, data
length is parameterized by the current offset. Hence, it's a
function 'fun_data_len'. For the 'P_list' case, we store the
base offset (before starting reading the elements) and the
number of elements that have been read so far. *)
type path =
| P_top : path
| P_await : { path : path ; encoding : 'a t ; data_len : int } -> path
| P_seq : { path : path ; encoding : 'a t ;
fun_data_len : int -> int } -> path
| P_list : { path:path ; encoding:'a t ; data_len : int ;
base_ofs : int ; nb_elts_read : int } -> path
(* used to accumulate given mbytes when reading a list of blocks,
as well as the current offset and the number of unread bytes *)
type mbytes_stream = {
past : MBytes.t Queue.t ; (* data that have been entirely read *)
future : (MBytes.t * int) Queue.t ; (* data that are not (fully) read *)
mutable past_len : int ; (*length of concatenation of data in 'past'*)
mutable unread : int ; (*number of cells that are unread in 'future'*)
ofs : int (*current absolute offset wrt to concatenation past @ future*)
}
(* exception raised when additional mbytes are needed to continue
decoding *)
exception Need_more_data
(* read a data that is stored in may Mbytes *)
let read_from_many_blocks reader buf ofs d_ofs =
let tmp = MBytes.create d_ofs in (*we will merge data in this mbyte*)
let r = ref d_ofs in (*to count the cells to be read*)
let rel_ofs = ref ofs in (*= ofs for first mbyte, 0 for others*)
while !r > 0 do
assert (not (Queue.is_empty buf.future)) ;
let b, len_b = Queue.peek buf.future in (*take the next mbyte*)
let len_chunk = len_b - !rel_ofs in (*the number of cells to read*)
if !r >= len_chunk then
begin (*copy b in 'past' if it is read entirely*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
(* copy (min !r len_chunk) data from b to tmp *)
MBytes.blit b !rel_ofs tmp (d_ofs - !r) (min !r len_chunk) ;
r := !r - len_chunk ; (* len_chunk data read during this round*)
rel_ofs := 0 ; (*next mbytes will be read starting from zero*)
done ;
reader tmp 0 d_ofs
(* generic function that reads data from an mbytes_stream. It is
parameterized by a function "reader" that effectively reads the
data *)
let generic_read_data delta_ofs reader buf =
let absolute_ofs = buf.ofs in
if buf.unread < delta_ofs then (*not enough data*)
raise Need_more_data ;
if delta_ofs = 0 then (*we'll read nothing*)
buf, reader (MBytes.create 0) 0 0
else
let new_ofs = absolute_ofs + delta_ofs in
let ofs = absolute_ofs - buf.past_len in (*relative ofs wrt 'future'*)
buf.unread <- buf.unread-delta_ofs ; (*'delta_ofs' cells will be read*)
assert (not (Queue.is_empty buf.future)) ; (*we have some data to read*)
let b, len_b = Queue.peek buf.future in
let buf = { buf with ofs = new_ofs } in
if ofs + delta_ofs > len_b then
(*should read data from many mbytes*)
buf, read_from_many_blocks reader buf ofs delta_ofs
else
begin
if ofs + delta_ofs = len_b then
begin (*the rest of b will be entirely read. Put it in 'past'*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
buf, reader b ofs delta_ofs
end
(* functions that try to read data from a given mbytes_stream,
or raise Need_more_data *)
let int8 buf =
generic_read_data Size.int8 (fun x y _ -> MBytes.get_int8 x y) buf
let uint8 buf =
generic_read_data Size.uint8 (fun x y _ -> MBytes.get_uint8 x y) buf
let char buf =
let buf, v = int8 buf in
buf, Char.chr v
let bool buf =
let buf, v = int8 buf in
buf, v <> 0
let int16 buf =
generic_read_data Size.int16 (fun x y _ -> MBytes.get_int16 x y) buf
let uint16 buf =
generic_read_data Size.uint16 (fun x y _ -> MBytes.get_uint16 x y) buf
let uint30 buf =
generic_read_data Size.uint30
(fun x y _ ->
let v = Int32.to_int (MBytes.get_int32 x y) in
if v < 0 then
failwith "Data_encoding.Binary.Reader.uint30: invalid data." ;
v) buf
let int31 buf =
generic_read_data Size.int31
(fun x y _ -> Int32.to_int (MBytes.get_int32 x y)) buf
let int32 buf =
generic_read_data Size.int32 (fun x y _ -> MBytes.get_int32 x y) buf
let int64 buf =
generic_read_data Size.int64 (fun x y _ -> MBytes.get_int64 x y) buf
(** read a float64 (double) **)
let float buf =
(*Here, float means float64, which is read using MBytes.get_double !!*)
generic_read_data Size.float (fun x y _ -> MBytes.get_double x y) buf
let fixed_length_bytes length buf =
generic_read_data length MBytes.sub buf
let fixed_length_string length buf =
generic_read_data length MBytes.substring buf
let read_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
(* auxiliary function: computing size of data in branches
Objs(`Variable) and Tups(`Variable) *)
let varseq_lengths e1 e2 ofs len = match classify e1, classify e2 with
| (`Dynamic | `Fixed _), `Variable -> len, (fun ofs' -> len - ofs' + ofs)
| `Variable, `Fixed n -> (len - n), (fun _ -> n)
| _ -> assert false (* Should be rejected by Kind.combine *)
(* adaptation of function read_rec to check binary data
incrementally. The function takes (and returns) a 'path' (for
incrementality), and 'mbytes_stream' *)
let rec data_checker
: type a.
path -> a encoding -> mbytes_stream -> int ->
path * mbytes_stream =
fun path e buf len ->
(*length of data with `Variable kind should be given by the caller*)
assert (classify e != `Variable || len >= 0) ;
try match e.encoding with
| Null -> next_path path buf
| Empty -> next_path path buf
| Constant _ -> next_path path buf
| Ignore -> next_path path { buf with ofs = buf.ofs + len }
| Bool -> next_path path (fst (bool buf))
| Int8 -> next_path path (fst (int8 buf))
| Uint8 -> next_path path (fst (uint8 buf))
| Int16 -> next_path path (fst (int16 buf))
| Uint16 -> next_path path (fst (uint16 buf))
| Int31 -> next_path path (fst (int31 buf))
| Int32 -> next_path path (fst (int32 buf))
| Int64 -> next_path path (fst (int64 buf))
| RangedInt { minimum ; maximum } ->
let (stream, ranged) =
match range_to_size ~minimum ~maximum with
| `Int8 -> int8 buf
| `Int16 -> int16 buf
| `Int31 -> int31 buf
| `Uint8 -> uint8 buf
| `Uint16 -> uint16 buf
| `Uint30 -> uint30 buf in
let ranged = if minimum > 0 then ranged + minimum else ranged in
assert (minimum < ranged && ranged < maximum) ;
next_path path stream
| Float -> next_path path (fst (float buf))
| RangedFloat { minimum ; maximum } ->
let stream, float = float buf in
assert (minimum < float && maximum > float) ;
next_path path stream
| Bytes (`Fixed n) ->
next_path path (fst (fixed_length_bytes n buf))
| String (`Fixed n) ->
next_path path (fst (fixed_length_string n buf))
| Bytes `Variable ->
next_path path (fst (fixed_length_bytes len buf))
| String `Variable ->
next_path path (fst (fixed_length_string len buf))
| String_enum (_, arr) ->
next_path path
(match enum_size arr with
| `Uint8 -> fst @@ uint8 buf
| `Uint16 -> fst @@ uint16 buf
| `Uint30 -> fst @@ uint30 buf)
| Array e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| List e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| Obj (Req (_, e)) -> data_checker path e buf len
| Obj (Opt (`Dynamic, _, e)) ->
let buf, v = int8 buf in
if v = 0 then next_path path buf
else data_checker path e buf (len - Size.int8)
| Obj (Opt (`Variable, _, e)) ->
if len = 0 then next_path path buf
else data_checker path e buf len
| Obj (Dft (_, e, _)) -> data_checker path e buf len
| Objs ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Objs (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Tup e -> data_checker path e buf len
| Tups ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Tups (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Conv { encoding = e } -> data_checker path e buf len
| Describe { encoding = e } -> data_checker path e buf len
| Def { encoding = e } -> data_checker path e buf len
| Splitted { encoding = e } -> data_checker path e buf len
| Mu (_, _, self) -> data_checker path (self e) buf len
| Union (_, sz, cases) ->
let buf, ctag = read_tag sz buf in
let opt =
List.fold_left
(fun acc c -> match c with
| (Case { encoding ; tag = Tag tag })
when tag == ctag ->
assert (acc == None) ;
Some (data_checker path encoding buf)
| _ -> acc
)None cases
in
begin match opt with
| None -> raise (Unexpected_tag ctag)
| Some func -> func (len - (tag_size sz))
end
| Dynamic_size e ->
let buf, sz = int32 buf in
let sz = Int32.to_int sz in
if sz < 0 then raise (Invalid_size sz) ;
data_checker path e buf sz
| Delayed f -> data_checker path (f ()) buf len
with Need_more_data ->
P_await { path ; encoding = e ; data_len = len }, buf
and next_path : path -> mbytes_stream -> path * mbytes_stream =
fun path buf ->
match path with
| P_top ->
P_top, buf (* success case *)
| P_seq { path ; encoding ; fun_data_len } ->
(* check the right branch of a sequence. fun_data_len ofs gives
the length of the data to read *)
data_checker path encoding buf (fun_data_len buf.ofs)
| P_await { path ; encoding ; data_len } ->
(* resume from an await *)
data_checker path encoding buf data_len
| P_list
({ path ; encoding ; base_ofs ; data_len ; nb_elts_read } as r) ->
(* read/check an eventual element of a list *)
if data_len = buf.ofs - base_ofs then
(* we've read all the elements of the list *)
next_path path buf
else
begin
(*some more elements to read*)
assert (data_len > buf.ofs - base_ofs) ;
(*check: if we've already read some elements, then currrent ofs
should be greater then initial ofs *)
assert (nb_elts_read <= 0 || buf.ofs - base_ofs > 0) ;
let path =
P_list { r with nb_elts_read = nb_elts_read + 1} in
data_checker path encoding buf data_len
end
let data_checker = next_path
(* insert a given MBytes.t in a given mbytes_stream *)
let insert_mbytes mb_buf mb =
let len = MBytes.length mb in
if len > 0 then begin
Queue.push (mb, len) mb_buf.future ;
mb_buf.unread <- mb_buf.unread + len ;
end
(* aux function called when data_checker succeeds: splits a given
mbytes_stream into a 'read' and 'unread' queues. This may
modify the content of the given mbytes_stream *)
let split_mbytes_stream { past_len ; past ; future ; unread ; ofs } =
let rel_ofs = ofs - past_len in
assert (rel_ofs >= 0) ;
if rel_ofs = 0 then past, future (* already done *)
else begin
assert (not(Queue.is_empty future)) ; (*because data_checker succeeded*)
let b, len = Queue.pop future in
assert (rel_ofs < len) ; (*inv. maintained by read_from_many_blocks*)
let b1 = MBytes.sub b 0 rel_ofs in (* read part of b *)
let b2 = MBytes.sub b rel_ofs (len-rel_ofs) in (* unread part of b *)
Queue.push b1 past ;
(* push b2 at the beginning of 'future' using Queue.transfer*)
let tmp = Queue.create() in
Queue.push (b2, unread) tmp ;
Queue.transfer future tmp ; (*tmp === b2 ::: future in constant time*)
past, tmp
end
(* given a state, this function returns a new status:
- if data are successfully checked, accumulated mbytes are
passed to 'success_result' that computes the final
result. Unread mbytes are also returned
- if some more data are needed, a function that waits for some
additional mbytes is returned
- eventual errors are reported/returned *)
let rec bytes_stream_reader_rec (path, mb_buf) success_result =
let success =
match path with
| P_top -> true
| P_await _ -> false
| _ -> assert false
in
assert (mb_buf.ofs >= mb_buf.past_len) ;
if success then
let q_read, q_unread = split_mbytes_stream mb_buf in
match success_result q_read mb_buf.ofs with
| Some a ->
let remaining =
List.rev @@
Queue.fold
(fun acc (b, len) ->
if len = 0 then acc else b:: acc) [] q_unread
in
Success { res = a ; res_len = mb_buf.ofs ; remaining }
| None -> Error
(* success_result may fail because data_checker is
approximative in some situations *)
else
Await
(fun mb ->
insert_mbytes mb_buf mb ;
try
let state = data_checker path mb_buf in
bytes_stream_reader_rec state success_result
with _ -> Error)
(* This function checks reading a stream of 'MBytes.t' wrt. a given
encoding:
- the given data encoding should have a 'Fixed' or a 'Dynamic'
size, otherwise an error is returned,
- the function returns an 'Error', a function w
('Await w') that waits for more data (Mbytes.t), or
'Success'. The function is parameterized by 'success_result'
that computes the data to return in case of success.
An exception 'Invalid_argument "streaming data with variable
size"' is raised if the encoding has a variable size *)
let bytes_stream_reader :
MBytes.t list -> 'a t ->
(MBytes.t Queue.t -> int -> 'b option) -> 'b status
= fun l e success_result ->
match classify e with
| `Variable -> invalid_arg "streaming data with variable size"
| `Fixed _ | `Dynamic ->
let mb_buf = {
past = Queue.create() ; past_len = 0 ;
future = Queue.create() ; unread = 0; ofs = 0 }
in
List.iter (insert_mbytes mb_buf) l ;
let path =
P_await { path = P_top ; encoding = e ; data_len = - 1 } in
try bytes_stream_reader_rec (data_checker path mb_buf) success_result
with _ -> Error
end
(* concats a queue of mbytes into one MByte *)
let concat_mbyte_chunks queue tot_len =
if Queue.length queue = 1 then Queue.pop queue (* no copy *)
else (* copy smaller mbytes into one big mbyte *)
let buf = MBytes.create tot_len in
let cpt = ref 0 in
let tot_len' = ref tot_len in
while not (Queue.is_empty queue) do
let mb = Queue.pop queue in
let len = MBytes.length mb in
tot_len' := !tot_len' - len ;
assert (!tot_len' >= 0) ;
MBytes.blit mb 0 buf !cpt len ;
cpt := !cpt + len ;
done ;
assert (!tot_len' = 0) ;
buf
(* Decode a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let read_stream_of_bytes ?(init=[]) encoding =
Stream_reader.bytes_stream_reader init encoding
(fun read_q ofs -> of_bytes encoding (concat_mbyte_chunks read_q ofs))
(* Check reading a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let check_stream_of_bytes ?(init=[]) encoding =
Stream_reader.bytes_stream_reader init encoding (fun _ _ -> Some ())
2016-09-08 21:13:10 +04:00
end