2020-04-30 09:39:49 +02:00

1184 lines
43 KiB
OCaml

open Trace
open Ast_imperative
module Raw = Parser.Pascaligo.AST
module SMap = Map.String
module ParserLog = Parser_pascaligo.ParserLog
open Combinators
let nseq_to_list (hd, tl) = hd :: tl
let npseq_to_list (hd, tl) = hd :: (List.map snd tl)
let pseq_to_list = function
None -> []
| Some lst -> npseq_to_list lst
let get_value : 'a Raw.reg -> 'a = fun x -> x.value
module Errors = struct
let unsupported_cst_constr p =
let title () = "" in
let message () =
Format.asprintf "\nConstant constructors are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unknown_predefined_type name =
let title () = "\nType constants" in
let message () =
Format.asprintf "Unknown predefined type \"%s\".\n" name.Region.value in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region)
] in
error ~data title message
let unsupported_non_var_pattern p =
let title () = "" in
let message () =
Format.asprintf "\nNon-variable patterns in constructors \
are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let only_constructors p =
let title () = "" in
let message () =
Format.asprintf "\nCurrently, only constructors \
are supported in patterns.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_tuple_pattern p =
let title () = "" in
let message () =
Format.asprintf "\nTuple patterns are not supported yet.\n" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ;
(** TODO: The labelled arguments should be flowing from the CLI. *)
("pattern",
fun () -> ParserLog.pattern_to_string
~offsets:true ~mode:`Point p)
] in
error ~data title message
let unsupported_deep_Some_patterns pattern =
let title () = "" in
let message () =
Format.asprintf "\nCurrently, only variables in constructors \
\"Some\" in patterns are supported.\n" in
let pattern_loc = Raw.pattern_to_region pattern in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_deep_list_patterns cons =
let title () = "" in
let message () =
Format.asprintf "\nCurrently, only empty lists and x::y \
are supported in patterns.\n" in
let data = [
("location",
fun () -> Format.asprintf "%a" Location.pp_lift @@ cons.Region.region)
] in
error ~data title message
(* Logging *)
let abstracting_instruction t =
let title () = "\nSimplifiying instruction" in
let message () = "" in
(** TODO: The labelled arguments should be flowing from the CLI. *)
let data = [
("instruction",
fun () -> ParserLog.instruction_to_string
~offsets:true ~mode:`Point t)
] in
error ~data title message
let unknown_built_in name =
let title () = "\n Unknown built-in function" in
let message () = "" in
let data = [
("built-in", fun () -> name);
] in
error ~data title message
end
open Errors
open Operators.Concrete_to_imperative.Pascaligo
let r_split = Location.r_split
(* Statements can't be simplified in isolation. [a ; b ; c] can get
simplified either as [let x = expr in (b ; c)] if [a] is a [const x
= expr] declaration or as [sequence(a, sequence(b, c))] for
everything else. Because of this, abstracting sequences depend on
their contents. To avoid peeking in their contents, we instead
simplify sequences elements as functions from their next elements
to the actual result.
For [return_let_in], if there is no follow-up element, an error is
triggered, as you can't have [let x = expr in ...] with no [...]. A
cleaner option might be to add a [unit] instead of failing.
[return_statement] is used for non-let-in statements.
*)
let return_let_in ?loc binder inline rhs = ok @@ fun expr'_opt ->
match expr'_opt with
| None -> ok @@ e_let_in ?loc binder inline rhs (e_skip ())
| Some expr' -> ok @@ e_let_in ?loc binder inline rhs expr'
let return_statement expr = ok @@ fun expr'_opt ->
match expr'_opt with
| None -> ok @@ expr
| Some expr' -> ok @@ e_sequence expr expr'
let get_t_string_singleton_opt = function
| Raw.TStringLiteral s -> Some (String.(sub s.value 1 ((length s.value)-2)))
| _ -> None
let rec compile_type_expression (t:Raw.type_expr) : type_expression result =
match t with
TPar x -> compile_type_expression x.value.inside
| TVar v -> (
let (v,loc) = r_split v in
match type_constants v with
| Some s -> ok @@ make_t ~loc @@ T_constant s
| None -> ok @@ make_t ~loc @@ T_variable (Var.of_name v)
)
| TFun x -> (
let (x,loc) = r_split x in
let%bind (a , b) =
let (a , _ , b) = x in
bind_map_pair compile_type_expression (a , b) in
ok @@ make_t ~loc @@ T_arrow {type1=a;type2=b}
)
| TApp x ->
let (x, loc) = r_split x in
let (name, tuple) = x in
(match name.value with
| "michelson_or" ->
let lst = npseq_to_list tuple.value.inside in
(match lst with
| [a ; b ; c ; d ] -> (
let%bind b' =
trace_option (simple_error "second argument of michelson_or must be a string singleton") @@
get_t_string_singleton_opt b in
let%bind d' =
trace_option (simple_error "fourth argument of michelson_or must be a string singleton") @@
get_t_string_singleton_opt d in
let%bind a' = compile_type_expression a in
let%bind c' = compile_type_expression c in
ok @@ t_michelson_or ~loc a' b' c' d'
)
| _ -> simple_fail "michelson_or does not have the right number of argument")
| "michelson_pair" ->
let lst = npseq_to_list tuple.value.inside in
(match lst with
| [a ; b ; c ; d ] -> (
let%bind b' =
trace_option (simple_error "second argument of michelson_pair must be a string singleton") @@
get_t_string_singleton_opt b in
let%bind d' =
trace_option (simple_error "fourth argument of michelson_pair must be a string singleton") @@
get_t_string_singleton_opt d in
let%bind a' = compile_type_expression a in
let%bind c' = compile_type_expression c in
ok @@ t_michelson_pair ~loc a' b' c' d'
)
| _ -> simple_fail "michelson_pair does not have the right number of argument")
| _ ->
let lst = npseq_to_list tuple.value.inside in
let%bind lst =
bind_list @@ List.map compile_type_expression lst in (** TODO: fix constant and operator*)
let%bind cst =
trace_option (unknown_predefined_type name) @@
type_operators name.value in
t_operator ~loc cst lst)
| TProd p ->
let%bind tpl = compile_list_type_expression
@@ npseq_to_list p.value in
ok tpl
| TRecord r ->
let (r,loc ) = r_split r in
let aux = fun (x, y) ->
let%bind y = compile_type_expression y in
ok (x, y)
in
let apply =
fun (x:Raw.field_decl Raw.reg) -> (x.value.field_name.value, x.value.field_type) in
let%bind lst = bind_list
@@ List.map aux
@@ List.map apply
@@ npseq_to_list r.ne_elements in
let m = List.fold_left (fun m (x, y) -> LMap.add (Label x) y m) LMap.empty lst in
ok @@ make_t ~loc @@ T_record m
| TSum s ->
let (s,loc) = r_split s in
let aux (v:Raw.variant Raw.reg) =
let args =
match v.value.arg with
None -> []
| Some (_, TProd product) -> npseq_to_list product.value
| Some (_, t_expr) -> [t_expr] in
let%bind te = compile_list_type_expression @@ args in
ok (v.value.constr.value, te)
in
let%bind lst = bind_list
@@ List.map aux
@@ npseq_to_list s in
let m = List.fold_left (fun m (x, y) -> CMap.add (Constructor x) y m) CMap.empty lst in
ok @@ make_t ~loc @@ T_sum m
| TStringLiteral _s -> simple_fail "we don't support singleton string type"
and compile_list_type_expression (lst:Raw.type_expr list) : type_expression result =
match lst with
| [] -> ok @@ t_unit ()
| [hd] -> compile_type_expression hd
| lst ->
let%bind lst = bind_list @@ List.map compile_type_expression lst in
ok @@ t_tuple lst
let compile_projection : Raw.projection Region.reg -> _ = fun p ->
let (p' , loc) = r_split p in
let var =
let name = Var.of_name p'.struct_name.value in
e_variable name in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> property.value
| Component index -> (Z.to_string (snd index.value))
in
List.map aux @@ npseq_to_list path in
ok @@ List.fold_left (e_record_accessor ~loc) var path'
let rec compile_expression (t:Raw.expr) : expr result =
let return x = ok x in
match t with
| EAnnot a -> (
let ((expr , type_expr) , loc) = r_split a in
let%bind expr' = compile_expression expr in
let%bind type_expr' = compile_type_expression type_expr in
return @@ e_annotation ~loc expr' type_expr'
)
| EVar c -> (
let (c' , loc) = r_split c in
match constants c' with
| None -> return @@ e_variable ~loc (Var.of_name c.value)
| Some s -> return @@ e_constant ~loc s []
)
| ECall x -> (
let ((f, args) , loc) = r_split x in
let (args , args_loc) = r_split args in
let args' = npseq_to_list args.inside in
match f with
| EVar name -> (
let (f_name , f_loc) = r_split name in
match constants f_name with
| None ->
let%bind arg = compile_tuple_expression ~loc:args_loc args' in
return @@ e_application ~loc (e_variable ~loc:f_loc (Var.of_name f_name)) arg
| Some s ->
let%bind lst = bind_map_list compile_expression args' in
return @@ e_constant ~loc s lst
)
| f -> (
let%bind f' = compile_expression f in
let%bind arg = compile_tuple_expression ~loc:args_loc args' in
return @@ e_application ~loc f' arg
)
)
| EPar x -> compile_expression x.value.inside
| EUnit reg ->
let loc = Location.lift reg in
return @@ e_literal ~loc Literal_unit
| EBytes x ->
let (x' , loc) = r_split x in
return @@ e_literal ~loc (Literal_bytes (Hex.to_bytes @@ snd x'))
| ETuple tpl ->
let (tpl' , loc) = r_split tpl in
compile_tuple_expression ~loc @@ npseq_to_list tpl'.inside
| ERecord r ->
let%bind fields = bind_list
@@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = compile_expression v in ok (k.value, v))
@@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr))
@@ npseq_to_list r.value.ne_elements in
let aux prev (k, v) = SMap.add k v prev in
return @@ e_record (List.fold_left aux SMap.empty fields)
| EProj p -> compile_projection p
| EUpdate u -> compile_update u
| EConstr (ConstrApp c) -> (
let ((c, args) , loc) = r_split c in
match args with
None ->
return @@ e_constructor ~loc c.value (e_unit ())
| Some args ->
let args, args_loc = r_split args in
let%bind arg =
compile_tuple_expression ~loc:args_loc
@@ npseq_to_list args.inside in
return @@ e_constructor ~loc c.value arg
)
| EConstr (SomeApp a) ->
let ((_, args) , loc) = r_split a in
let (args , args_loc) = r_split args in
let%bind arg =
compile_tuple_expression ~loc:args_loc
@@ npseq_to_list args.inside in
return @@ e_constant ~loc C_SOME [arg]
| EConstr (NoneExpr reg) -> (
let loc = Location.lift reg in
return @@ e_none ~loc ()
)
| EArith (Add c) ->
compile_binop "ADD" c
| EArith (Sub c) ->
compile_binop "SUB" c
| EArith (Mult c) ->
compile_binop "TIMES" c
| EArith (Div c) ->
compile_binop "DIV" c
| EArith (Mod c) ->
compile_binop "MOD" c
| EArith (Int n) -> (
let (n , loc) = r_split n in
let n = snd n in
return @@ e_literal ~loc (Literal_int n)
)
| EArith (Nat n) -> (
let (n , loc) = r_split n in
let n = snd @@ n in
return @@ e_literal ~loc (Literal_nat n)
)
| EArith (Mutez n) -> (
let (n , loc) = r_split n in
let n = snd @@ n in
return @@ e_literal ~loc (Literal_mutez n)
)
| EArith (Neg e) -> compile_unop "NEG" e
| EString (String s) ->
let (s , loc) = r_split s in
let s' =
(* S contains quotes *)
String.(sub s 1 (length s - 2))
in
return @@ e_literal ~loc (Literal_string s')
| EString (Cat bo) ->
let (bo , loc) = r_split bo in
let%bind sl = compile_expression bo.arg1 in
let%bind sr = compile_expression bo.arg2 in
return @@ e_string_cat ~loc sl sr
| ELogic l -> compile_logic_expression l
| EList l -> compile_list_expression l
| ESet s -> compile_set_expression s
| ECond c ->
let (c , loc) = r_split c in
let%bind expr = compile_expression c.test in
let%bind match_true = compile_expression c.ifso in
let%bind match_false = compile_expression c.ifnot in
return @@ e_cond ~loc expr match_true match_false
| ECase c -> (
let (c , loc) = r_split c in
let%bind e = compile_expression c.expr in
let%bind lst =
let aux (x : Raw.expr Raw.case_clause) =
let%bind expr = compile_expression x.rhs in
ok (x.pattern, expr) in
bind_list
@@ List.map aux
@@ List.map get_value
@@ npseq_to_list c.cases.value in
let%bind cases = compile_cases lst in
return @@ e_matching ~loc e cases
)
| EMap (MapInj mi) -> (
let (mi , loc) = r_split mi in
let%bind lst =
let lst = List.map get_value @@ pseq_to_list mi.elements in
let aux : Raw.binding -> (expression * expression) result =
fun b ->
let%bind src = compile_expression b.source in
let%bind dst = compile_expression b.image in
ok (src, dst) in
bind_map_list aux lst in
return @@ e_map ~loc lst
)
| EMap (BigMapInj mi) -> (
let (mi , loc) = r_split mi in
let%bind lst =
let lst = List.map get_value @@ pseq_to_list mi.elements in
let aux : Raw.binding -> (expression * expression) result =
fun b ->
let%bind src = compile_expression b.source in
let%bind dst = compile_expression b.image in
ok (src, dst) in
bind_map_list aux lst in
return @@ e_big_map ~loc lst
)
| EMap (MapLookUp lu) -> (
let (lu , loc) = r_split lu in
let%bind path = match lu.path with
| Name v -> (
let (v , loc) = r_split v in
return @@ e_variable ~loc (Var.of_name v)
)
| Path p -> compile_projection p
in
let%bind index = compile_expression lu.index.value.inside in
return @@ e_look_up ~loc path index
)
| EFun f ->
let (f , loc) = r_split f in
let%bind (_ty_opt, f') = compile_fun_expression ~loc f
in return @@ f'
and compile_update = fun (u:Raw.update Region.reg) ->
let (u, loc) = r_split u in
let (name, path) = compile_path u.record in
let record = match path with
| [] -> e_variable (Var.of_name name)
| _ -> e_accessor_list (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in
let%bind updates' =
let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in
let%bind expr = compile_expression f.field_expr in
ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in
bind_map_list aux @@ npseq_to_list updates
in
let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_record_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_record_accessor ~loc record hd) tl) in
ok @@ e_record_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
and compile_logic_expression (t:Raw.logic_expr) : expression result =
let return x = ok x in
match t with
| BoolExpr (False reg) -> (
let loc = Location.lift reg in
return @@ e_bool ~loc false
)
| BoolExpr (True reg) -> (
let loc = Location.lift reg in
return @@ e_bool ~loc true
)
| BoolExpr (Or b) ->
compile_binop "OR" b
| BoolExpr (And b) ->
compile_binop "AND" b
| BoolExpr (Not b) ->
compile_unop "NOT" b
| CompExpr (Lt c) ->
compile_binop "LT" c
| CompExpr (Gt c) ->
compile_binop "GT" c
| CompExpr (Leq c) ->
compile_binop "LE" c
| CompExpr (Geq c) ->
compile_binop "GE" c
| CompExpr (Equal c) ->
compile_binop "EQ" c
| CompExpr (Neq c) ->
compile_binop "NEQ" c
and compile_list_expression (t:Raw.list_expr) : expression result =
let return x = ok x in
match t with
ECons c ->
compile_binop "CONS" c
| EListComp lst ->
let (lst , loc) = r_split lst in
let%bind lst' =
bind_map_list compile_expression @@
pseq_to_list lst.elements in
return @@ e_list ~loc lst'
| ENil reg ->
let loc = Location.lift reg in
return @@ e_list ~loc []
and compile_set_expression (t:Raw.set_expr) : expression result =
match t with
| SetMem x -> (
let (x' , loc) = r_split x in
let%bind set' = compile_expression x'.set in
let%bind element' = compile_expression x'.element in
ok @@ e_constant ~loc C_SET_MEM [ element' ; set' ]
)
| SetInj x -> (
let (x' , loc) = r_split x in
let elements = pseq_to_list x'.elements in
let%bind elements' = bind_map_list compile_expression elements in
ok @@ e_set ~loc elements'
)
and compile_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result =
let return x = ok x in
let (t , loc) = r_split t in
let%bind a = compile_expression t.arg1 in
let%bind b = compile_expression t.arg2 in
let%bind name = trace_option (unknown_built_in name) @@ constants name in
return @@ e_constant ~loc name [ a ; b ]
and compile_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result =
let return x = ok x in
let (t , loc) = r_split t in
let%bind a = compile_expression t.arg in
let%bind name = trace_option (unknown_built_in name) @@ constants name in
return @@ e_constant ~loc name [ a ]
and compile_tuple_expression ?loc (lst:Raw.expr list) : expression result =
let return x = ok x in
match lst with
| [] -> return @@ e_literal Literal_unit
| [hd] -> compile_expression hd
| lst ->
let%bind lst = bind_list @@ List.map compile_expression lst
in return @@ e_tuple ?loc lst
and compile_data_declaration : Raw.data_decl -> _ result =
fun t ->
match t with
| LocalVar x ->
let (x , loc) = r_split x in
let name = x.name.value in
let%bind t = compile_type_expression x.var_type in
let%bind expression = compile_expression x.init in
return_let_in ~loc (Var.of_name name, Some t) false expression
| LocalConst x ->
let (x , loc) = r_split x in
let name = x.name.value in
let%bind t = compile_type_expression x.const_type in
let%bind expression = compile_expression x.init in
let inline =
match x.attributes with
None -> false
| Some {value; _} ->
npseq_to_list value.ne_elements
|> List.exists (fun Region.{value; _} -> value = "\"inline\"")
in return_let_in ~loc (Var.of_name name, Some t) inline expression
| LocalFun f ->
let (f , loc) = r_split f in
let%bind (binder, expr) = compile_fun_decl ~loc f in
let inline =
match f.attributes with
None -> false
| Some {value; _} ->
npseq_to_list value.ne_elements
|> List.exists (fun Region.{value; _} -> value = "\"inline\"")
in return_let_in ~loc binder inline expr
and compile_param :
Raw.param_decl -> (string * type_expression) result =
fun t ->
match t with
| ParamConst c ->
let c = c.value in
let param_name = c.var.value in
let%bind type_expression = compile_type_expression c.param_type in
ok (param_name , type_expression)
| ParamVar v ->
let c = v.value in
let param_name = c.var.value in
let%bind type_expression = compile_type_expression c.param_type in
ok (param_name , type_expression)
and compile_fun_decl :
loc:_ -> Raw.fun_decl ->
((expression_variable * type_expression option) * expression) result =
fun ~loc x ->
let open! Raw in
let {kwd_recursive;fun_name; param; ret_type; block_with;
return; attributes} : fun_decl = x in
let inline =
match attributes with
None -> false
| Some {value; _} ->
npseq_to_list value.ne_elements
|> List.exists (fun Region.{value; _} -> value = "\"inline\"") in
let statements =
match block_with with
| Some (block,_) -> npseq_to_list block.value.statements
| None -> []
in
(match param.value.inside with
a, [] -> (
let%bind input = compile_param a in
let (binder , input_type) = input in
let%bind instructions = compile_statement_list statements in
let%bind result = compile_expression return in
let%bind output_type = compile_type_expression ret_type in
let body = instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let binder = Var.of_name binder in
let fun_name = Var.of_name fun_name.value in
let fun_type = t_function input_type output_type in
let expression : expression =
e_lambda ~loc binder (Some input_type)(Some output_type) result in
let%bind expression = match kwd_recursive with
None -> ok @@ expression |
Some _ -> ok @@ e_recursive ~loc fun_name fun_type
@@ {binder;input_type=Some input_type; output_type= Some output_type; result}
in
ok ((fun_name, Some fun_type), expression)
)
| lst -> (
let lst = npseq_to_list lst in
(* TODO wrong, should be fresh? *)
let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list compile_param lst in
let (binder , input_type) =
let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in
let%bind tpl_declarations =
let aux = fun i (param, type_expr) ->
let expr =
e_record_accessor (e_variable arguments_name) (string_of_int i) in
let type_variable = Some type_expr in
let ass = return_let_in (Var.of_name param , type_variable) inline expr in
ass
in
bind_list @@ List.mapi aux params in
let%bind instructions = compile_statement_list statements in
let%bind result = compile_expression return in
let%bind output_type = compile_type_expression ret_type in
let body = tpl_declarations @ instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let fun_name = Var.of_name fun_name.value in
let fun_type = t_function input_type output_type in
let expression : expression =
e_lambda ~loc binder (Some input_type)(Some output_type) result in
let%bind expression = match kwd_recursive with
None -> ok @@ expression |
Some _ -> ok @@ e_recursive ~loc fun_name fun_type
@@ {binder;input_type=Some input_type; output_type= Some output_type; result}
in
ok ((fun_name, Some fun_type), expression)
)
)
and compile_fun_expression :
loc:_ -> Raw.fun_expr -> (type_expression option * expression) result =
fun ~loc x ->
let open! Raw in
let {kwd_recursive;param;ret_type;return} : fun_expr = x in
let statements = [] in
(match param.value.inside with
a, [] -> (
let%bind input = compile_param a in
let (binder , input_type) = input in
let%bind instructions = compile_statement_list statements in
let%bind result = compile_expression return in
let%bind output_type = compile_type_expression ret_type in
let body = instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let binder = Var.of_name binder in
let fun_type = t_function input_type output_type in
let expression = match kwd_recursive with
| None -> e_lambda ~loc binder (Some input_type)(Some output_type) result
| Some _ -> e_recursive ~loc binder fun_type
@@ {binder;input_type=Some input_type; output_type= Some output_type; result}
in
ok (Some fun_type , expression)
)
| lst -> (
let lst = npseq_to_list lst in
(* TODO wrong, should be fresh? *)
let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list compile_param lst in
let (binder , input_type) =
let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in
let%bind tpl_declarations =
let aux = fun i (param, param_type) ->
let expr = e_record_accessor (e_variable arguments_name) (string_of_int i) in
let type_variable = Some param_type in
let ass = return_let_in (Var.of_name param , type_variable) false expr in
ass
in
bind_list @@ List.mapi aux params in
let%bind instructions = compile_statement_list statements in
let%bind result = compile_expression return in
let%bind output_type = compile_type_expression ret_type in
let body = tpl_declarations @ instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let fun_type = t_function input_type output_type in
let expression = match kwd_recursive with
| None -> e_lambda ~loc binder (Some input_type)(Some output_type) result
| Some _ -> e_recursive ~loc binder fun_type
@@ {binder;input_type=Some input_type; output_type= Some output_type; result}
in
ok (Some fun_type , expression)
)
)
and compile_statement_list statements =
let open Raw in
let rec hook acc = function
[] -> acc
| [Attr _] ->
(* Detached attributes are erased. TODO: Warning. *)
acc
| Attr _ :: (Attr _ :: _ as statements) ->
(* Detached attributes are erased. TODO: Warning. *)
hook acc statements
| Attr decl :: Data (LocalConst {value; region}) :: statements ->
let new_const =
Data (LocalConst {value = {value with attributes = Some decl}; region})
in hook acc (new_const :: statements)
| Attr decl :: Data (LocalFun {value; region}) :: statements ->
let new_fun =
Data (LocalFun {value = {value with attributes = Some decl}; region})
in hook acc (new_fun :: statements)
| Attr _ :: statements ->
(* Detached attributes are erased. TODO: Warning. *)
hook acc statements
| Instr i :: statements ->
hook (compile_instruction i :: acc) statements
| Data d :: statements ->
hook (compile_data_declaration d :: acc) statements
in bind_list @@ hook [] (List.rev statements)
and compile_single_instruction : Raw.instruction -> (_ -> expression result) result =
fun t ->
match t with
| ProcCall x -> (
let (f, args) , loc = r_split x in
let args, args_loc = r_split args in
let args' = npseq_to_list args.inside in
match f with
| EVar name -> (
let (f_name , f_loc) = r_split name in
match constants f_name with
| None ->
let%bind arg = compile_tuple_expression ~loc:args_loc args' in
return_statement @@ e_application ~loc (e_variable ~loc:f_loc (Var.of_name f_name)) arg
| Some s ->
let%bind lst = bind_map_list compile_expression args' in
return_statement @@ e_constant ~loc s lst
)
| f -> (
let%bind f' = compile_expression f in
let%bind arg = compile_tuple_expression ~loc:args_loc args' in
return_statement @@ e_application ~loc f' arg
)
)
| Skip reg -> (
let loc = Location.lift reg in
return_statement @@ e_skip ~loc ()
)
| Loop (While l) ->
let (wl, loc) = r_split l in
let%bind condition = compile_expression wl.cond in
let%bind body = compile_block wl.block.value in
let%bind body = body @@ None in
return_statement @@ e_while ~loc condition body
| Loop (For (ForInt fi)) -> (
let (fi,loc) = r_split fi in
let binder = Var.of_name fi.assign.value.name.value in
let%bind start = compile_expression fi.assign.value.expr in
let%bind bound = compile_expression fi.bound in
let%bind step = match fi.step with
| None -> ok @@ e_int_z Z.one
| Some step -> compile_expression step in
let%bind body = compile_block fi.block.value in
let%bind body = body @@ None in
return_statement @@ e_for ~loc binder start bound step body
)
| Loop (For (ForCollect fc)) ->
let (fc,loc) = r_split fc in
let binder = (Var.of_name fc.var.value, Option.map (fun x -> Var.of_name (snd x:string Raw.reg).value) fc.bind_to) in
let%bind collection = compile_expression fc.expr in
let collection_type = match fc.collection with
| Map _ -> Map
| Set _ -> Set
| List _ -> List
in
let%bind body = compile_block fc.block.value in
let%bind body = body @@ None in
return_statement @@ e_for_each ~loc binder collection collection_type body
| Cond c -> (
let (c , loc) = r_split c in
let%bind expr = compile_expression c.test in
let%bind match_true = match c.ifso with
ClauseInstr i ->
compile_single_instruction i
| ClauseBlock b ->
match b with
LongBlock {value; _} ->
compile_block value
| ShortBlock {value; _} ->
compile_statements @@ fst value.inside in
let%bind match_false = match c.ifnot with
ClauseInstr i ->
compile_single_instruction i
| ClauseBlock b ->
match b with
LongBlock {value; _} ->
compile_block value
| ShortBlock {value; _} ->
compile_statements @@ fst value.inside in
let%bind match_true = match_true None in
let%bind match_false = match_false None in
return_statement @@ e_cond ~loc expr match_true match_false
)
| Assign a -> (
let (a , loc) = r_split a in
let%bind value_expr = compile_expression a.rhs in
match a.lhs with
| Path path -> (
let (name , path') = compile_path path in
return_statement @@ e_ez_assign ~loc name path' value_expr
)
| MapPath v -> (
let v' = v.value in
let%bind (varname,map,path) = match v'.path with
| Name name -> ok (name.value , e_variable (Var.of_name name.value), [])
| Path p ->
let (name,p') = compile_path v'.path in
let%bind accessor = compile_projection p in
ok @@ (name , accessor , p')
in
let%bind key_expr = compile_expression v'.index.value.inside in
let expr' = e_map_add key_expr value_expr map in
return_statement @@ e_ez_assign ~loc varname path expr'
)
)
| CaseInstr c -> (
let (c , loc) = r_split c in
let%bind expr = compile_expression c.expr in
let%bind cases =
let aux (x : Raw.if_clause Raw.case_clause Raw.reg) =
let%bind case_clause =
match x.value.rhs with
ClauseInstr i ->
compile_single_instruction i
| ClauseBlock b ->
match b with
LongBlock {value; _} ->
compile_block value
| ShortBlock {value; _} ->
compile_statements @@ fst value.inside in
let%bind case_clause = case_clause None in
ok (x.value.pattern, case_clause) in
bind_list
@@ List.map aux
@@ npseq_to_list c.cases.value in
let%bind m = compile_cases cases in
return_statement @@ e_matching ~loc expr m
)
| RecordPatch r -> (
let reg = r.region in
let (r,loc) = r_split r in
let aux (fa :Raw.field_assign Raw.reg) : Raw.field_path_assign Raw.reg=
{value = {field_path = (fa.value.field_name, []); equal=fa.value.equal; field_expr = fa.value.field_expr};
region = fa.region}
in
let update : Raw.field_path_assign Raw.reg Raw.ne_injection Raw.reg = {
value = Raw.map_ne_injection aux r.record_inj.value;
region=r.record_inj.region
} in
let u : Raw.update = {record=r.path;kwd_with=r.kwd_with; updates=update} in
let%bind expr = compile_update {value=u;region=reg} in
let (name , access_path) = compile_path r.path in
return_statement @@ e_ez_assign ~loc name access_path expr
)
| MapPatch patch -> (
let (map_p, loc) = r_split patch in
let (name, access_path) = compile_path map_p.path in
let%bind inj = bind_list
@@ List.map (fun (x:Raw.binding Region.reg) ->
let x = x.value in
let (key, value) = x.source, x.image in
let%bind key' = compile_expression key in
let%bind value' = compile_expression value
in ok @@ (key', value')
)
@@ npseq_to_list map_p.map_inj.value.ne_elements in
match inj with
| [] -> return_statement @@ e_skip ~loc ()
| _ :: _ ->
let assigns = List.fold_right
(fun (key, value) map -> (e_map_add key value map))
inj
(e_accessor_list ~loc (e_variable (Var.of_name name)) access_path)
in
return_statement @@ e_ez_assign ~loc name access_path assigns
)
| SetPatch patch -> (
let (setp, loc) = r_split patch in
let (name , access_path) = compile_path setp.path in
let%bind inj =
bind_list @@
List.map compile_expression @@
npseq_to_list setp.set_inj.value.ne_elements in
match inj with
| [] -> return_statement @@ e_skip ~loc ()
| _ :: _ ->
let assigns = List.fold_right
(fun hd s -> e_constant C_SET_ADD [hd ; s])
inj (e_accessor_list ~loc (e_variable (Var.of_name name)) access_path) in
return_statement @@ e_ez_assign ~loc name access_path assigns
)
| MapRemove r -> (
let (v , loc) = r_split r in
let key = v.key in
let%bind (varname,map,path) = match v.map with
| Name v -> ok (v.value , e_variable (Var.of_name v.value) , [])
| Path p ->
let (name,p') = compile_path v.map in
let%bind accessor = compile_projection p in
ok @@ (name , accessor , p')
in
let%bind key' = compile_expression key in
let expr = e_constant ~loc C_MAP_REMOVE [key' ; map] in
return_statement @@ e_ez_assign ~loc varname path expr
)
| SetRemove r -> (
let (set_rm, loc) = r_split r in
let%bind (varname, set, path) = match set_rm.set with
| Name v -> ok (v.value, e_variable (Var.of_name v.value), [])
| Path path ->
let(name, p') = compile_path set_rm.set in
let%bind accessor = compile_projection path in
ok @@ (name, accessor, p')
in
let%bind removed' = compile_expression set_rm.element in
let expr = e_constant ~loc C_SET_REMOVE [removed' ; set] in
return_statement @@ e_ez_assign ~loc varname path expr
)
and compile_path : Raw.path -> string * string list = fun p ->
match p with
| Raw.Name v -> (v.value , [])
| Raw.Path p -> (
let p' = p.value in
let var = p'.struct_name.value in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> property.value
| Component index -> (Z.to_string (snd index.value))
in
List.map aux @@ npseq_to_list path in
(var , path')
)
and compile_cases : (Raw.pattern * expression) list -> matching_expr result = fun t ->
let open Raw in
let get_var (t:Raw.pattern) =
match t with
| PVar v -> ok v.value
| p -> fail @@ unsupported_non_var_pattern p in
let get_tuple (t: Raw.pattern) =
match t with
| PTuple v -> npseq_to_list v.value.inside
| x -> [ x ] in
let get_single (t: Raw.pattern) =
let t' = get_tuple t in
let%bind () =
trace_strong (unsupported_tuple_pattern t) @@
Assert.assert_list_size t' 1 in
ok (List.hd t') in
let get_toplevel (t : Raw.pattern) =
match t with
| PList PCons x -> (
let (x' , lst) = x.value in
match lst with
| [] -> ok x'
| _ -> ok t
)
| pattern -> ok pattern in
let get_constr (t: Raw.pattern) =
match t with
| PConstr (PConstrApp v) -> (
let value = v.value in
match value with
| constr, None ->
ok (constr.value, "unit")
| _ ->
let const, pat_opt = v.value in
let%bind pat =
trace_option (unsupported_cst_constr t) @@
pat_opt in
let%bind single_pat = get_single (PTuple pat) in
let%bind var = get_var single_pat in
ok (const.value , var)
)
| _ -> fail @@ only_constructors t in
let%bind patterns =
let aux (x , y) =
let%bind x' = get_toplevel x in
ok (x' , y)
in bind_map_list aux t in
match patterns with
| [(PConstr PFalse _ , f) ; (PConstr PTrue _ , t)]
| [(PConstr PTrue _ , t) ; (PConstr PFalse _ , f)] ->
ok @@ Match_variant ([((Constructor "true", Var.of_name "_"), t); ((Constructor "false", Var.of_name "_"), f)], ())
| [(PConstr PSomeApp v , some) ; (PConstr PNone _ , none)]
| [(PConstr PNone _ , none) ; (PConstr PSomeApp v , some)] -> (
let (_, v) = v.value in
let%bind v = match v.value.inside with
| PVar v -> ok v.value
| p -> fail @@ unsupported_deep_Some_patterns p in
ok @@ Match_option {match_none = none ; match_some = (Var.of_name v, some, ()) }
)
| [(PList PCons c, cons) ; (PList (PNil _), nil)]
| [(PList (PNil _), nil) ; (PList PCons c, cons)] ->
let%bind (a, b) =
match c.value with
| a, [(_, b)] ->
let%bind a = get_var a in
let%bind b = get_var b in
ok (a, b)
| _ -> fail @@ unsupported_deep_list_patterns c
in
ok @@ Match_list {match_cons = (Var.of_name a, Var.of_name b, cons,()) ; match_nil = nil}
| lst ->
trace (simple_info "currently, only booleans, options, lists and \
user-defined constructors are supported in patterns") @@
let%bind constrs =
let aux (x , y) =
let error =
let title () = "Pattern" in
(* TODO: The labelled arguments should be flowing from the CLI. *)
let content () =
Printf.sprintf "Pattern : %s"
(ParserLog.pattern_to_string
~offsets:true ~mode:`Point x) in
error title content in
let%bind x' =
trace error @@
get_constr x in
ok (x' , y) in
bind_map_list aux lst in
ok @@ ez_match_variant constrs
and compile_instruction : Raw.instruction -> (_ -> expression result) result =
fun t -> trace (abstracting_instruction t) @@ compile_single_instruction t
and compile_statements : Raw.statements -> (_ -> expression result) result =
fun statements ->
let lst = npseq_to_list statements in
let%bind fs = compile_statement_list lst in
let aux : _ -> (expression option -> expression result) -> _ =
fun prec cur ->
let%bind res = cur prec
in ok @@ Some res in
ok @@ fun (expr' : _ option) ->
let%bind ret = bind_fold_right_list aux expr' fs in
ok @@ Option.unopt_exn ret
and compile_block : Raw.block -> (_ -> expression result) result =
fun t -> compile_statements t.statements
and compile_declaration_list declarations : declaration Location.wrap list result =
let open Raw in
let rec hook acc = function
[] -> acc
| [AttrDecl _] ->
(* Detached attributes are erased. TODO: Warning. *)
acc
| AttrDecl _ :: (AttrDecl _ :: _ as declarations) ->
(* Detached attributes are erased. TODO: Warning. *)
hook acc declarations
| AttrDecl decl :: ConstDecl {value; region} :: declarations ->
let new_const =
ConstDecl {value = {value with attributes = Some decl}; region}
in hook acc (new_const :: declarations)
| AttrDecl decl :: FunDecl {value; region} :: declarations ->
let new_fun =
FunDecl {value = {value with attributes = Some decl}; region}
in hook acc (new_fun :: declarations)
| AttrDecl _ :: declarations ->
(* Detached attributes are erased. TODO: Warning. *)
hook acc declarations
| TypeDecl decl :: declarations ->
let decl, loc = r_split decl in
let {name; type_expr} : Raw.type_decl = decl in
let%bind type_expression = compile_type_expression type_expr in
let new_decl =
Declaration_type (Var.of_name name.value, type_expression) in
let res = Location.wrap ~loc new_decl in
hook (bind_list_cons res acc) declarations
| ConstDecl decl :: declarations ->
let compile_const_decl =
fun {name;const_type; init; attributes} ->
let%bind expression = compile_expression init in
let%bind t = compile_type_expression const_type in
let type_annotation = Some t in
let inline =
match attributes with
None -> false
| Some {value; _} ->
npseq_to_list value.ne_elements
|> List.exists (fun Region.{value; _} -> value = "\"inline\"") in
let new_decl =
Declaration_constant
(Var.of_name name.value, type_annotation, inline, expression)
in ok new_decl in
let%bind res =
bind_map_location compile_const_decl (Location.lift_region decl)
in hook (bind_list_cons res acc) declarations
| FunDecl fun_decl :: declarations ->
let decl, loc = r_split fun_decl in
let%bind ((name, ty_opt), expr) = compile_fun_decl ~loc decl in
let inline =
match fun_decl.value.attributes with
None -> false
| Some {value; _} ->
npseq_to_list value.ne_elements
|> List.exists (fun Region.{value; _} -> value = "\"inline\"") in
let new_decl =
Declaration_constant (name, ty_opt, inline, expr) in
let res = Location.wrap ~loc new_decl in
hook (bind_list_cons res acc) declarations
in hook (ok @@ []) (List.rev declarations)
let compile_program : Raw.ast -> program result =
fun t -> compile_declaration_list @@ nseq_to_list t.decl