ligo/AST.ml
Christian Rinderknecht 589b62a30c
Extended map expression to map constants by extension.
Fixed the grammar for variable declarations (the ":=" had been
disabled by mistake in the last commit).
2019-03-20 11:24:27 +01:00

1341 lines
33 KiB
OCaml

(* Abstract Syntax Tree (AST) for LIGO *)
(* To disable warning about multiply-defined record labels. *)
[@@@warning "-30-42"]
(* Utilities *)
open Utils
(* Regions
The AST carries all the regions where tokens have been found by the
lexer, plus additional regions corresponding to whole subtrees
(like entire expressions, patterns etc.). These regions are needed
for error reporting and source-to-source transformations. To make
these pervasive regions more legible, we define singleton types for
the symbols, keywords etc. with suggestive names like "kwd_and"
denoting the _region_ of the occurrence of the keyword "and".
*)
type 'a reg = 'a Region.reg
let rec last to_region = function
[] -> Region.ghost
| [x] -> to_region x
| _::t -> last to_region t
let nseq_to_region to_region (hd,tl) =
Region.cover (to_region hd) (last to_region tl)
let nsepseq_to_region to_region (hd,tl) =
let reg (_, item) = to_region item in
Region.cover (to_region hd) (last reg tl)
let sepseq_to_region to_region = function
None -> Region.ghost
| Some seq -> nsepseq_to_region to_region seq
(* Keywords of LIGO *)
type kwd_begin = Region.t
type kwd_case = Region.t
type kwd_const = Region.t
type kwd_down = Region.t
type kwd_else = Region.t
type kwd_end = Region.t
type kwd_entrypoint = Region.t
type kwd_fail = Region.t
type kwd_for = Region.t
type kwd_function = Region.t
type kwd_if = Region.t
type kwd_in = Region.t
type kwd_is = Region.t
type kwd_map = Region.t
type kwd_mod = Region.t
type kwd_not = Region.t
type kwd_of = Region.t
type kwd_patch = Region.t
type kwd_procedure = Region.t
type kwd_record = Region.t
type kwd_skip = Region.t
type kwd_step = Region.t
type kwd_storage = Region.t
type kwd_then = Region.t
type kwd_to = Region.t
type kwd_type = Region.t
type kwd_var = Region.t
type kwd_while = Region.t
type kwd_with = Region.t
(* Data constructors *)
type c_False = Region.t
type c_None = Region.t
type c_Some = Region.t
type c_True = Region.t
type c_Unit = Region.t
(* Symbols *)
type semi = Region.t
type comma = Region.t
type lpar = Region.t
type rpar = Region.t
type lbrace = Region.t
type rbrace = Region.t
type lbracket = Region.t
type rbracket = Region.t
type cons = Region.t
type vbar = Region.t
type arrow = Region.t
type assign = Region.t
type equal = Region.t
type colon = Region.t
type bool_or = Region.t
type bool_and = Region.t
type lt = Region.t
type leq = Region.t
type gt = Region.t
type geq = Region.t
type neq = Region.t
type plus = Region.t
type minus = Region.t
type slash = Region.t
type times = Region.t
type dot = Region.t
type wild = Region.t
type cat = Region.t
(* Virtual tokens *)
type eof = Region.t
(* Literals *)
type variable = string reg
type fun_name = string reg
type type_name = string reg
type field_name = string reg
type map_name = string reg
type constr = string reg
(* Parentheses *)
type 'a par = {
lpar : lpar;
inside : 'a;
rpar : rpar
}
(* Brackets compounds *)
type 'a brackets = {
lbracket : lbracket;
inside : 'a;
rbracket : rbracket
}
(* Braced compounds *)
type 'a braces = {
lbrace : lbrace;
inside : 'a;
rbrace : rbrace
}
(* The Abstract Syntax Tree *)
type t = {
decl : declaration nseq;
eof : eof
}
and ast = t
and declaration =
TypeDecl of type_decl reg
| ConstDecl of const_decl reg
| LambdaDecl of lambda_decl
and const_decl = {
kwd_const : kwd_const;
name : variable;
colon : colon;
const_type : type_expr;
equal : equal;
init : expr;
terminator : semi option
}
(* Type declarations *)
and type_decl = {
kwd_type : kwd_type;
name : type_name;
kwd_is : kwd_is;
type_expr : type_expr;
terminator : semi option
}
and type_expr =
Prod of cartesian
| Sum of (variant reg, vbar) nsepseq reg
| Record of record_type reg
| TypeApp of (type_name * type_tuple) reg
| ParType of type_expr par reg
| TAlias of variable
and cartesian = (type_expr, times) nsepseq reg
and variant = {
constr : constr;
kwd_of : kwd_of;
product : cartesian
}
and record_type = {
kwd_record : kwd_record;
fields : field_decls;
kwd_end : kwd_end
}
and field_decls = (field_decl reg, semi) nsepseq
and field_decl = {
field_name : field_name;
colon : colon;
field_type : type_expr
}
and type_tuple = (type_expr, comma) nsepseq par reg
(* Function and procedure declarations *)
and lambda_decl =
FunDecl of fun_decl reg
| ProcDecl of proc_decl reg
| EntryDecl of entry_decl reg
and fun_decl = {
kwd_function : kwd_function;
name : variable;
param : parameters;
colon : colon;
ret_type : type_expr;
kwd_is : kwd_is;
local_decls : local_decl list;
block : block reg;
kwd_with : kwd_with;
return : expr;
terminator : semi option
}
and proc_decl = {
kwd_procedure : kwd_procedure;
name : variable;
param : parameters;
kwd_is : kwd_is;
local_decls : local_decl list;
block : block reg;
terminator : semi option
}
and entry_decl = {
kwd_entrypoint : kwd_entrypoint;
name : variable;
param : entry_params;
colon : colon;
ret_type : type_expr;
kwd_is : kwd_is;
local_decls : local_decl list;
block : block reg;
kwd_with : kwd_with;
return : expr;
terminator : semi option
}
and parameters = (param_decl, semi) nsepseq par reg
and entry_params = (entry_param_decl, semi) nsepseq par reg
and entry_param_decl =
EntryConst of param_const reg
| EntryVar of param_var reg
| EntryStore of storage reg
and storage = {
kwd_storage : kwd_storage;
var : variable;
colon : colon;
storage_type : type_expr
}
and param_decl =
ParamConst of param_const reg
| ParamVar of param_var reg
and param_const = {
kwd_const : kwd_const;
var : variable;
colon : colon;
param_type : type_expr
}
and param_var = {
kwd_var : kwd_var;
var : variable;
colon : colon;
param_type : type_expr
}
and block = {
opening : kwd_begin;
instr : instructions;
terminator : semi option;
close : kwd_end
}
and local_decl =
LocalLam of lambda_decl
| LocalConst of const_decl reg
| LocalVar of var_decl reg
and var_decl = {
kwd_var : kwd_var;
name : variable;
colon : colon;
var_type : type_expr;
assign : assign;
init : expr;
terminator : semi option
}
and instructions = (instruction, semi) nsepseq
and instruction =
Single of single_instr
| Block of block reg
and single_instr =
Cond of conditional reg
| Case of case_instr reg
| Assign of assignment reg
| Loop of loop
| ProcCall of fun_call
| Fail of fail_instr reg
| Skip of kwd_skip
| RecordPatch of record_patch reg
| MapPatch of map_patch reg
and map_patch = {
kwd_patch : kwd_patch;
path : path;
kwd_with : kwd_with;
map_inj : map_injection reg
}
and map_injection = {
opening : kwd_map;
bindings : (binding reg, semi) nsepseq;
terminator : semi option;
close : kwd_end
}
and binding = {
source : expr;
arrow : arrow;
image : expr
}
and record_patch = {
kwd_patch : kwd_patch;
path : path;
kwd_with : kwd_with;
record_inj : record_injection reg
}
and fail_instr = {
kwd_fail : kwd_fail;
fail_expr : expr
}
and conditional = {
kwd_if : kwd_if;
test : expr;
kwd_then : kwd_then;
ifso : instruction;
kwd_else : kwd_else;
ifnot : instruction
}
and case_instr = {
kwd_case : kwd_case;
expr : expr;
kwd_of : kwd_of;
lead_vbar : vbar option;
cases : cases;
kwd_end : kwd_end
}
and cases = (case reg, vbar) nsepseq reg
and case = {
pattern : pattern;
arrow : arrow;
instr : instruction
}
and assignment = {
var : variable;
assign : assign;
expr : expr
}
and loop =
While of while_loop reg
| For of for_loop
and while_loop = {
kwd_while : kwd_while;
cond : expr;
block : block reg
}
and for_loop =
ForInt of for_int reg
| ForCollect of for_collect reg
and for_int = {
kwd_for : kwd_for;
assign : assignment reg;
down : kwd_down option;
kwd_to : kwd_to;
bound : expr;
step : (kwd_step * expr) option;
block : block reg
}
and for_collect = {
kwd_for : kwd_for;
var : variable;
bind_to : (arrow * variable) option;
kwd_in : kwd_in;
expr : expr;
block : block reg
}
(* Expressions *)
and expr =
LogicExpr of logic_expr
| ArithExpr of arith_expr
| StringExpr of string_expr
| ListExpr of list_expr
| SetExpr of set_expr
| ConstrExpr of constr_expr
| RecordExpr of record_expr
| MapExpr of map_expr
| Var of Lexer.lexeme reg
| FunCall of fun_call
| Bytes of (Lexer.lexeme * MBytes.t) reg
| Unit of c_Unit
| Tuple of tuple
| ParExpr of expr par reg
and map_expr =
MapLookUp of map_lookup reg
| MapInj of map_injection reg
and map_lookup = {
path : path;
index : expr brackets reg
}
and path =
Name of variable
| RecordPath of record_projection reg
and logic_expr =
BoolExpr of bool_expr
| CompExpr of comp_expr
and bool_expr =
Or of bool_or bin_op reg
| And of bool_and bin_op reg
| Not of kwd_not un_op reg
| False of c_False
| True of c_True
and 'a bin_op = {
op : 'a;
arg1 : expr;
arg2 : expr
}
and 'a un_op = {
op : 'a;
arg : expr
}
and comp_expr =
Lt of lt bin_op reg
| Leq of leq bin_op reg
| Gt of gt bin_op reg
| Geq of geq bin_op reg
| Equal of equal bin_op reg
| Neq of neq bin_op reg
and arith_expr =
Add of plus bin_op reg
| Sub of minus bin_op reg
| Mult of times bin_op reg
| Div of slash bin_op reg
| Mod of kwd_mod bin_op reg
| Neg of minus un_op reg
| Int of (Lexer.lexeme * Z.t) reg
and string_expr =
Cat of cat bin_op reg
| String of Lexer.lexeme reg
and list_expr =
Cons of cons bin_op reg
| List of (expr, comma) nsepseq brackets reg
| EmptyList of empty_list reg
and set_expr =
Set of (expr, comma) nsepseq braces reg
| EmptySet of empty_set reg
and constr_expr =
SomeApp of (c_Some * arguments) reg
| NoneExpr of none_expr reg
| ConstrApp of (constr * arguments) reg
and record_expr =
RecordInj of record_injection reg
| RecordProj of record_projection reg
and record_injection = {
opening : kwd_record;
fields : (field_assign reg, semi) nsepseq;
terminator : semi option;
close : kwd_end
}
and field_assign = {
field_name : field_name;
equal : equal;
field_expr : expr
}
and record_projection = {
record_name : variable;
selector : dot;
field_path : (field_name, dot) nsepseq
}
and tuple = (expr, comma) nsepseq par reg
and empty_list = typed_empty_list par
and typed_empty_list = {
lbracket : lbracket;
rbracket : rbracket;
colon : colon;
list_type : type_expr
}
and empty_set = typed_empty_set par
and typed_empty_set = {
lbrace : lbrace;
rbrace : rbrace;
colon : colon;
set_type : type_expr
}
and none_expr = typed_none_expr par
and typed_none_expr = {
c_None : c_None;
colon : colon;
opt_type : type_expr
}
and fun_call = (fun_name * arguments) reg
and arguments = tuple
(* Patterns *)
and pattern =
PCons of (pattern, cons) nsepseq reg
| PVar of Lexer.lexeme reg
| PWild of wild
| PInt of (Lexer.lexeme * Z.t) reg
| PBytes of (Lexer.lexeme * MBytes.t) reg
| PString of Lexer.lexeme reg
| PUnit of c_Unit
| PFalse of c_False
| PTrue of c_True
| PNone of c_None
| PSome of (c_Some * pattern par reg) reg
| PList of list_pattern
| PTuple of (pattern, comma) nsepseq par reg
and list_pattern =
Sugar of (pattern, comma) sepseq brackets reg
| Raw of (pattern * cons * pattern) par reg
(* Projecting regions *)
open! Region
let type_expr_to_region = function
Prod {region; _}
| Sum {region; _}
| Record {region; _}
| TypeApp {region; _}
| ParType {region; _}
| TAlias {region; _} -> region
let rec expr_to_region = function
LogicExpr e -> logic_expr_to_region e
| ArithExpr e -> arith_expr_to_region e
| StringExpr e -> string_expr_to_region e
| ListExpr e -> list_expr_to_region e
| SetExpr e -> set_expr_to_region e
| ConstrExpr e -> constr_expr_to_region e
| RecordExpr e -> record_expr_to_region e
| MapExpr e -> map_expr_to_region e
| Var {region; _}
| FunCall {region; _}
| Bytes {region; _}
| Unit region
| Tuple {region; _}
| ParExpr {region; _} -> region
and map_expr_to_region = function
MapLookUp {region; _}
| MapInj {region; _} -> region
and logic_expr_to_region = function
BoolExpr e -> bool_expr_to_region e
| CompExpr e -> comp_expr_to_region e
and bool_expr_to_region = function
Or {region; _}
| And {region; _}
| Not {region; _}
| False region
| True region -> region
and comp_expr_to_region = function
Lt {region; _}
| Leq {region; _}
| Gt {region; _}
| Geq {region; _}
| Equal {region; _}
| Neq {region; _} -> region
and arith_expr_to_region = function
| Add {region; _}
| Sub {region; _}
| Mult {region; _}
| Div {region; _}
| Mod {region; _}
| Neg {region; _}
| Int {region; _} -> region
and string_expr_to_region = function
Cat {region; _}
| String {region; _} -> region
and list_expr_to_region = function
Cons {region; _}
| List {region; _}
| EmptyList {region; _} -> region
and set_expr_to_region = function
Set {region; _}
| EmptySet {region; _} -> region
and constr_expr_to_region = function
NoneExpr {region; _}
| ConstrApp {region; _}
| SomeApp {region; _} -> region
and record_expr_to_region = function
RecordInj {region; _}
| RecordProj {region; _} -> region
let path_to_region = function
Name var -> var.region
| RecordPath {region; _} -> region
let instr_to_region = function
Single Cond {region; _}
| Single Case {region; _}
| Single Assign {region; _}
| Single Loop While {region; _}
| Single Loop For ForInt {region; _}
| Single Loop For ForCollect {region; _}
| Single ProcCall {region; _}
| Single Skip region
| Single Fail {region; _}
| Single RecordPatch {region; _}
| Single MapPatch {region; _}
| Block {region; _} -> region
let pattern_to_region = function
PCons {region; _}
| PVar {region; _}
| PWild region
| PInt {region; _}
| PBytes {region; _}
| PString {region; _}
| PUnit region
| PFalse region
| PTrue region
| PNone region
| PSome {region; _}
| PList Sugar {region; _}
| PList Raw {region; _}
| PTuple {region; _} -> region
let local_decl_to_region = function
LocalLam FunDecl {region; _}
| LocalLam ProcDecl {region; _}
| LocalLam EntryDecl {region; _}
| LocalConst {region; _}
| LocalVar {region; _} -> region
(* Printing the tokens with their source regions *)
let printf = Printf.printf
let compact (region: Region.t) =
region#compact ~offsets:EvalOpt.offsets EvalOpt.mode
let print_nsepseq :
string -> ('a -> unit) -> ('a, Region.t) nsepseq -> unit =
fun sep visit (head, tail) ->
let print_aux (sep_reg, item) =
printf "%s: %s\n" (compact sep_reg) sep;
visit item
in visit head; List.iter print_aux tail
let print_sepseq :
string -> ('a -> unit) -> ('a, Region.t) sepseq -> unit =
fun sep visit -> function
None -> ()
| Some seq -> print_nsepseq sep visit seq
let print_token region lexeme =
printf "%s: %s\n"(compact region) lexeme
let print_var {region; value=lexeme} =
printf "%s: Ident \"%s\"\n" (compact region) lexeme
let print_constr {region; value=lexeme} =
printf "%s: Constr \"%s\"\n"
(compact region) lexeme
let print_string {region; value=lexeme} =
printf "%s: String %s\n"
(compact region) lexeme
let print_bytes {region; value = lexeme, abstract} =
printf "%s: Bytes (\"%s\", \"0x%s\")\n"
(compact region) lexeme
(MBytes.to_hex abstract |> Hex.to_string)
let print_int {region; value = lexeme, abstract} =
printf "%s: Int (\"%s\", %s)\n"
(compact region) lexeme
(Z.to_string abstract)
(* Main printing function *)
let rec print_tokens ast =
let {decl; eof} = ast in
Utils.nseq_iter print_decl decl;
print_token eof "EOF"
and print_decl = function
TypeDecl decl -> print_type_decl decl
| ConstDecl decl -> print_const_decl decl
| LambdaDecl decl -> print_lambda_decl decl
and print_const_decl {value; _} =
let {kwd_const; name; colon; const_type;
equal; init; terminator} = value in
print_token kwd_const "const";
print_var name;
print_token colon ":";
print_type_expr const_type;
print_token equal "=";
print_expr init;
print_terminator terminator
and print_type_decl {value; _} =
let {kwd_type; name; kwd_is;
type_expr; terminator} = value in
print_token kwd_type "type";
print_var name;
print_token kwd_is "is";
print_type_expr type_expr;
print_terminator terminator
and print_type_expr = function
Prod cartesian -> print_cartesian cartesian
| Sum sum_type -> print_sum_type sum_type
| Record record_type -> print_record_type record_type
| TypeApp type_app -> print_type_app type_app
| ParType par_type -> print_par_type par_type
| TAlias type_alias -> print_var type_alias
and print_cartesian {value; _} =
print_nsepseq "*" print_type_expr value
and print_variant {value; _} =
let {constr; kwd_of; product} = value in
print_constr constr;
print_token kwd_of "of";
print_cartesian product
and print_sum_type {value; _} =
print_nsepseq "|" print_variant value
and print_record_type {value; _} =
let {kwd_record; fields; kwd_end} = value in
print_token kwd_record "record";
print_field_decls fields;
print_token kwd_end "end"
and print_type_app {value; _} =
let type_name, type_tuple = value in
print_var type_name;
print_type_tuple type_tuple
and print_par_type {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_type_expr inside;
print_token rpar ")"
and print_field_decls sequence =
print_nsepseq ";" print_field_decl sequence
and print_field_decl {value; _} =
let {field_name; colon; field_type} = value in
print_var field_name;
print_token colon ":";
print_type_expr field_type
and print_type_tuple {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_nsepseq "," print_type_expr inside;
print_token rpar ")"
and print_lambda_decl = function
FunDecl fun_decl -> print_fun_decl fun_decl
| ProcDecl proc_decl -> print_proc_decl proc_decl
| EntryDecl entry_decl -> print_entry_decl entry_decl
and print_fun_decl {value; _} =
let {kwd_function; name; param; colon;
ret_type; kwd_is; local_decls;
block; kwd_with; return; terminator} = value in
print_token kwd_function "function";
print_var name;
print_parameters param;
print_token colon ":";
print_type_expr ret_type;
print_token kwd_is "is";
print_local_decls local_decls;
print_block block;
print_token kwd_with "with";
print_expr return;
print_terminator terminator
and print_proc_decl {value; _} =
let {kwd_procedure; name; param; kwd_is;
local_decls; block; terminator} = value in
print_token kwd_procedure "procedure";
print_var name;
print_parameters param;
print_token kwd_is "is";
print_local_decls local_decls;
print_block block;
print_terminator terminator
and print_entry_decl {value; _} =
let {kwd_entrypoint; name; param; colon;
ret_type; kwd_is; local_decls;
block; kwd_with; return; terminator} = value in
print_token kwd_entrypoint "entrypoint";
print_var name;
print_entry_params param;
print_token colon ":";
print_type_expr ret_type;
print_token kwd_is "is";
print_local_decls local_decls;
print_block block;
print_token kwd_with "with";
print_expr return;
print_terminator terminator
and print_entry_params {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_nsepseq ";" print_entry_param_decl inside;
print_token rpar ")"
and print_entry_param_decl = function
EntryConst param_const -> print_param_const param_const
| EntryVar param_var -> print_param_var param_var
| EntryStore param_store -> print_storage param_store
and print_storage {value; _} =
let {kwd_storage; var; colon; storage_type} = value in
print_token kwd_storage "storage";
print_var var;
print_token colon ":";
print_type_expr storage_type
and print_parameters {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_nsepseq ";" print_param_decl inside;
print_token rpar ")"
and print_param_decl = function
ParamConst param_const -> print_param_const param_const
| ParamVar param_var -> print_param_var param_var
and print_param_const {value; _} =
let {kwd_const; var; colon; param_type} = value in
print_token kwd_const "const";
print_var var;
print_token colon ":";
print_type_expr param_type
and print_param_var {value; _} =
let {kwd_var; var; colon; param_type} = value in
print_token kwd_var "var";
print_var var;
print_token colon ":";
print_type_expr param_type
and print_block {value; _} =
let {opening; instr; terminator; close} = value in
print_token opening "begin";
print_instructions instr;
print_terminator terminator;
print_token close "end"
and print_local_decls sequence =
List.iter print_local_decl sequence
and print_local_decl = function
LocalLam decl -> print_lambda_decl decl
| LocalConst decl -> print_const_decl decl
| LocalVar decl -> print_var_decl decl
and print_var_decl {value; _} =
let {kwd_var; name; colon; var_type;
assign; init; terminator} = value in
print_token kwd_var "var";
print_var name;
print_token colon ":";
print_type_expr var_type;
print_token assign ":=";
print_expr init;
print_terminator terminator
and print_instructions sequence =
print_nsepseq ";" print_instruction sequence
and print_instruction = function
Single instr -> print_single_instr instr
| Block block -> print_block block
and print_single_instr = function
Cond {value; _} -> print_conditional value
| Case {value; _} -> print_case_instr value
| Assign assign -> print_assignment assign
| Loop loop -> print_loop loop
| ProcCall fun_call -> print_fun_call fun_call
| Fail {value; _} -> print_fail value
| Skip kwd_skip -> print_token kwd_skip "skip"
| RecordPatch {value; _} -> print_record_patch value
| MapPatch {value; _} -> print_map_patch value
and print_fail {kwd_fail; fail_expr} =
print_token kwd_fail "fail";
print_expr fail_expr
and print_conditional node =
let {kwd_if; test; kwd_then; ifso;
kwd_else; ifnot} = node in
print_token kwd_if "if";
print_expr test;
print_token kwd_then "then";
print_instruction ifso;
print_token kwd_else "else";
print_instruction ifnot
and print_case_instr (node : case_instr) =
let {kwd_case; expr; kwd_of;
lead_vbar; cases; kwd_end} = node in
print_token kwd_case "case";
print_expr expr;
print_token kwd_of "of";
print_token_opt lead_vbar "|";
print_cases cases;
print_token kwd_end "end"
and print_token_opt = function
None -> fun _ -> ()
| Some region -> print_token region
and print_cases {value; _} =
print_nsepseq "|" print_case value
and print_case {value; _} =
let {pattern; arrow; instr} = value in
print_pattern pattern;
print_token arrow "->";
print_instruction instr
and print_assignment {value; _} =
let {var; assign; expr} = value in
print_var var;
print_token assign ":=";
print_expr expr
and print_loop = function
While {value; _} -> print_while_loop value
| For for_loop -> print_for_loop for_loop
and print_while_loop value =
let {kwd_while; cond; block} = value in
print_token kwd_while "while";
print_expr cond;
print_block block
and print_for_loop = function
ForInt for_int -> print_for_int for_int
| ForCollect for_collect -> print_for_collect for_collect
and print_for_int ({value; _} : for_int reg) =
let {kwd_for; assign; down; kwd_to;
bound; step; block} = value in
print_token kwd_for "for";
print_assignment assign;
print_down down;
print_token kwd_to "to";
print_expr bound;
print_step step;
print_block block
and print_down = function
Some kwd_down -> print_token kwd_down "down"
| None -> ()
and print_step = function
Some (kwd_step, expr) ->
print_token kwd_step "step";
print_expr expr
| None -> ()
and print_for_collect ({value; _} : for_collect reg) =
let {kwd_for; var; bind_to; kwd_in; expr; block} = value in
print_token kwd_for "for";
print_var var;
print_bind_to bind_to;
print_token kwd_in "in";
print_expr expr;
print_block block
and print_bind_to = function
Some (arrow, variable) ->
print_token arrow "->";
print_var variable
| None -> ()
and print_expr = function
LogicExpr e -> print_logic_expr e
| ArithExpr e -> print_arith_expr e
| StringExpr e -> print_string_expr e
| ListExpr e -> print_list_expr e
| SetExpr e -> print_set_expr e
| ConstrExpr e -> print_constr_expr e
| RecordExpr e -> print_record_expr e
| MapExpr e -> print_map_expr e
| Var var -> print_var var
| FunCall e -> print_fun_call e
| Bytes b -> print_bytes b
| Unit region -> print_token region "Unit"
| Tuple e -> print_tuple e
| ParExpr e -> print_par_expr e
and print_map_expr = function
MapLookUp {value; _} ->
let {path; index} = value in
let {lbracket; inside; rbracket} = index.value in
print_path path;
print_token lbracket "[";
print_expr inside;
print_token rbracket "]"
| MapInj inj ->
print_map_injection inj
and print_path = function
Name var -> print_var var
| RecordPath path -> print_record_projection path
and print_logic_expr = function
BoolExpr e -> print_bool_expr e
| CompExpr e -> print_comp_expr e
and print_bool_expr = function
Or {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "||"; print_expr arg2
| And {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "&&"; print_expr arg2
| Not {value = {op; arg}; _} ->
print_token op "not"; print_expr arg
| False region -> print_token region "False"
| True region -> print_token region "True"
and print_comp_expr = function
Lt {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "<"; print_expr arg2
| Leq {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "<="; print_expr arg2
| Gt {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op ">"; print_expr arg2
| Geq {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op ">="; print_expr arg2
| Equal {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "="; print_expr arg2
| Neq {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "=/="; print_expr arg2
and print_arith_expr = function
Add {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "+"; print_expr arg2
| Sub {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "-"; print_expr arg2
| Mult {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "*"; print_expr arg2
| Div {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "/"; print_expr arg2
| Mod {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "mod"; print_expr arg2
| Neg {value = {op; arg}; _} ->
print_token op "-"; print_expr arg
| Int i -> print_int i
and print_string_expr = function
Cat {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "^"; print_expr arg2
| String s -> print_string s
and print_list_expr = function
Cons {value = {arg1; op; arg2}; _} ->
print_expr arg1; print_token op "#"; print_expr arg2
| List e -> print_list e
| EmptyList e -> print_empty_list e
and print_set_expr = function
Set e -> print_set e
| EmptySet e -> print_empty_set e
and print_constr_expr = function
SomeApp e -> print_some_app e
| NoneExpr e -> print_none_expr e
| ConstrApp e -> print_constr_app e
and print_record_expr = function
RecordInj e -> print_record_injection e
| RecordProj e -> print_record_projection e
and print_record_injection {value; _} =
let {opening; fields; terminator; close} = value in
print_token opening "record";
print_nsepseq ";" print_field_assign fields;
print_terminator terminator;
print_token close "end"
and print_field_assign {value; _} =
let {field_name; equal; field_expr} = value in
print_var field_name;
print_token equal "=";
print_expr field_expr
and print_record_projection {value; _} =
let {record_name; selector; field_path} = value in
print_var record_name;
print_token selector ".";
print_field_path field_path
and print_field_path sequence =
print_nsepseq "." print_var sequence
and print_record_patch node =
let {kwd_patch; path; kwd_with; record_inj} = node in
print_token kwd_patch "patch";
print_path path;
print_token kwd_with "with";
print_record_injection record_inj
and print_map_patch node =
let {kwd_patch; path; kwd_with; map_inj} = node in
print_token kwd_patch "patch";
print_path path;
print_token kwd_with "with";
print_map_injection map_inj
and print_map_injection {value; _} =
let {opening; bindings; terminator; close} = value in
print_token opening "record";
print_nsepseq ";" print_binding bindings;
print_terminator terminator;
print_token close "end"
and print_binding {value; _} =
let {source; arrow; image} = value in
print_expr source;
print_token arrow "->";
print_expr image
and print_tuple {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_nsepseq "," print_expr inside;
print_token rpar ")"
and print_list {value; _} =
let {lbracket; inside; rbracket} = value in
print_token lbracket "[";
print_nsepseq "," print_expr inside;
print_token rbracket "]"
and print_empty_list {value; _} =
let {lpar; inside; rpar} = value in
let {lbracket; rbracket; colon; list_type} = inside in
print_token lpar "(";
print_token lbracket "[";
print_token rbracket "]";
print_token colon ":";
print_type_expr list_type;
print_token rpar ")"
and print_set {value; _} =
let {lbrace; inside; rbrace} = value in
print_token lbrace "{";
print_nsepseq "," print_expr inside;
print_token rbrace "}"
and print_empty_set {value; _} =
let {lpar; inside; rpar} = value in
let {lbrace; rbrace; colon; set_type} = inside in
print_token lpar "(";
print_token lbrace "{";
print_token rbrace "}";
print_token colon ":";
print_type_expr set_type;
print_token rpar ")"
and print_none_expr {value; _} =
let {lpar; inside; rpar} = value in
let {c_None; colon; opt_type} = inside in
print_token lpar "(";
print_token c_None "None";
print_token colon ":";
print_type_expr opt_type;
print_token rpar ")"
and print_fun_call {value; _} =
let fun_name, arguments = value in
print_var fun_name;
print_tuple arguments
and print_constr_app {value; _} =
let constr, arguments = value in
print_constr constr;
print_tuple arguments
and print_some_app {value; _} =
let c_Some, arguments = value in
print_token c_Some "Some";
print_tuple arguments
and print_par_expr {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_expr inside;
print_token rpar ")"
and print_pattern = function
PCons {value; _} -> print_nsepseq "#" print_pattern value
| PVar var -> print_var var
| PWild wild -> print_token wild "_"
| PInt i -> print_int i
| PBytes b -> print_bytes b
| PString s -> print_string s
| PUnit region -> print_token region "Unit"
| PFalse region -> print_token region "False"
| PTrue region -> print_token region "True"
| PNone region -> print_token region "None"
| PSome psome -> print_psome psome
| PList pattern -> print_list_pattern pattern
| PTuple ptuple -> print_ptuple ptuple
and print_psome {value; _} =
let c_Some, patterns = value in
print_token c_Some "Some";
print_patterns patterns
and print_patterns {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_pattern inside;
print_token rpar ")"
and print_list_pattern = function
Sugar sugar -> print_sugar sugar
| Raw raw -> print_raw raw
and print_sugar {value; _} =
let {lbracket; inside; rbracket} = value in
print_token lbracket "[";
print_sepseq "," print_pattern inside;
print_token rbracket "]"
and print_raw {value; _} =
let {lpar; inside; rpar} = value in
let head, cons, tail = inside in
print_token lpar "(";
print_pattern head;
print_token cons "#";
print_pattern tail;
print_token rpar ")"
and print_ptuple {value; _} =
let {lpar; inside; rpar} = value in
print_token lpar "(";
print_nsepseq "," print_pattern inside;
print_token rpar ")"
and print_terminator = function
Some semi -> print_token semi ";"
| None -> ()