ligo/vendors/ocaml-hacl/src/kremlib.h

570 lines
22 KiB
C

/* MIT License
*
* Copyright (c) 2016-2017 INRIA and Microsoft Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __KREMLIB_H
#define __KREMLIB_H
#include "kremlib_base.h"
/* For tests only: we might need this function to be forward-declared, because
* the dependency on WasmSupport appears very late, after SimplifyWasm, and
* sadly, after the topological order has been done. */
void WasmSupport_check_buffer_size(uint32_t s);
/******************************************************************************/
/* Stubs to ease compilation of non-Low* code */
/******************************************************************************/
/* Some types that KreMLin has no special knowledge of; many of them appear in
* signatures of ghost functions, meaning that it suffices to give them (any)
* definition. */
typedef void *FStar_Seq_Base_seq, *Prims_prop, *FStar_HyperStack_mem,
*FStar_Set_set, *Prims_st_pre_h, *FStar_Heap_heap, *Prims_all_pre_h,
*FStar_TSet_set, *Prims_list, *FStar_Map_t, *FStar_UInt63_t_,
*FStar_Int63_t_, *FStar_UInt63_t, *FStar_Int63_t, *FStar_UInt_uint_t,
*FStar_Int_int_t, *FStar_HyperStack_stackref, *FStar_Bytes_bytes,
*FStar_HyperHeap_rid, *FStar_Heap_aref, *FStar_Monotonic_Heap_heap,
*FStar_Monotonic_Heap_aref, *FStar_Monotonic_HyperHeap_rid,
*FStar_Monotonic_HyperStack_mem, *FStar_Char_char_;
typedef const char *Prims_string;
/* For "bare" targets that do not have a C stdlib, the user might want to use
* [-add-include '"mydefinitions.h"'] and override these. */
#ifndef KRML_HOST_PRINTF
# define KRML_HOST_PRINTF printf
#endif
#ifndef KRML_HOST_EXIT
# define KRML_HOST_EXIT exit
#endif
#ifndef KRML_HOST_MALLOC
# define KRML_HOST_MALLOC malloc
#endif
/* In statement position, exiting is easy. */
#define KRML_EXIT \
do { \
KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
KRML_HOST_EXIT(254); \
} while (0)
/* In expression position, use the comma-operator and a malloc to return an
* expression of the right size. KreMLin passes t as the parameter to the macro.
*/
#define KRML_EABORT(t, msg) \
(KRML_HOST_PRINTF("KreMLin abort at %s:%d\n%s\n", __FILE__, __LINE__, msg), \
KRML_HOST_EXIT(255), *((t *)KRML_HOST_MALLOC(sizeof(t))))
/* In FStar.Buffer.fst, the size of arrays is uint32_t, but it's a number of
* *elements*. Do an ugly, run-time check (some of which KreMLin can eliminate).
*/
#define KRML_CHECK_SIZE(elt, size) \
if (((size_t)size) > SIZE_MAX / sizeof(elt)) { \
KRML_HOST_PRINTF( \
"Maximum allocatable size exceeded, aborting before overflow at " \
"%s:%d\n", \
__FILE__, __LINE__); \
KRML_HOST_EXIT(253); \
}
/* A series of GCC atrocities to trace function calls (kremlin's [-d c-calls]
* option). Useful when trying to debug, say, Wasm, to compare traces. */
/* clang-format off */
#ifdef __GNUC__
#define KRML_FORMAT(X) _Generic((X), \
uint8_t : "0x%08" PRIx8, \
uint16_t: "0x%08" PRIx16, \
uint32_t: "0x%08" PRIx32, \
uint64_t: "0x%08" PRIx64, \
int8_t : "0x%08" PRIx8, \
int16_t : "0x%08" PRIx16, \
int32_t : "0x%08" PRIx32, \
int64_t : "0x%08" PRIx64, \
default : "%s")
#define KRML_FORMAT_ARG(X) _Generic((X), \
uint8_t : X, \
uint16_t: X, \
uint32_t: X, \
uint64_t: X, \
int8_t : X, \
int16_t : X, \
int32_t : X, \
int64_t : X, \
default : "unknown")
/* clang-format on */
# define KRML_DEBUG_RETURN(X) \
({ \
__auto_type _ret = (X); \
KRML_HOST_PRINTF("returning: "); \
KRML_HOST_PRINTF(KRML_FORMAT(_ret), KRML_FORMAT_ARG(_ret)); \
KRML_HOST_PRINTF(" \n"); \
_ret; \
})
#endif
#define FStar_Buffer_eqb(b1, b2, n) \
(memcmp((b1), (b2), (n) * sizeof((b1)[0])) == 0)
/* Stubs to make ST happy. Important note: you must generate a use of the macro
* argument, otherwise, you may have FStar_ST_recall(f) as the only use of f;
* KreMLin will think that this is a valid use, but then the C compiler, after
* macro expansion, will error out. */
#define FStar_HyperHeap_root 0
#define FStar_Pervasives_Native_fst(x) (x).fst
#define FStar_Pervasives_Native_snd(x) (x).snd
#define FStar_Seq_Base_createEmpty(x) 0
#define FStar_Seq_Base_create(len, init) 0
#define FStar_Seq_Base_upd(s, i, e) 0
#define FStar_Seq_Base_eq(l1, l2) 0
#define FStar_Seq_Base_length(l1) 0
#define FStar_Seq_Base_append(x, y) 0
#define FStar_Seq_Base_slice(x, y, z) 0
#define FStar_Seq_Properties_snoc(x, y) 0
#define FStar_Seq_Properties_cons(x, y) 0
#define FStar_Seq_Base_index(x, y) 0
#define FStar_HyperStack_is_eternal_color(x) 0
#define FStar_Monotonic_HyperHeap_root 0
#define FStar_Buffer_to_seq_full(x) 0
#define FStar_Buffer_recall(x)
#define FStar_HyperStack_ST_op_Colon_Equals(x, v) KRML_EXIT
#define FStar_HyperStack_ST_op_Bang(x) 0
#define FStar_HyperStack_ST_salloc(x) 0
#define FStar_HyperStack_ST_ralloc(x, y) 0
#define FStar_HyperStack_ST_new_region(x) (0)
#define FStar_Monotonic_RRef_m_alloc(x) \
{ 0 }
#define FStar_HyperStack_ST_recall(x) \
do { \
(void)(x); \
} while (0)
#define FStar_HyperStack_ST_recall_region(x) \
do { \
(void)(x); \
} while (0)
#define FStar_Monotonic_RRef_m_recall(x1, x2) \
do { \
(void)(x1); \
(void)(x2); \
} while (0)
#define FStar_Monotonic_RRef_m_write(x1, x2, x3, x4, x5) \
do { \
(void)(x1); \
(void)(x2); \
(void)(x3); \
(void)(x4); \
(void)(x5); \
} while (0)
/******************************************************************************/
/* Endian-ness macros that can only be implemented in C */
/******************************************************************************/
/* ... for Linux */
#if defined(__linux__) || defined(__CYGWIN__)
# include <endian.h>
/* ... for OSX */
#elif defined(__APPLE__)
# include <libkern/OSByteOrder.h>
# define htole64(x) OSSwapHostToLittleInt64(x)
# define le64toh(x) OSSwapLittleToHostInt64(x)
# define htobe64(x) OSSwapHostToBigInt64(x)
# define be64toh(x) OSSwapBigToHostInt64(x)
# define htole16(x) OSSwapHostToLittleInt16(x)
# define le16toh(x) OSSwapLittleToHostInt16(x)
# define htobe16(x) OSSwapHostToBigInt16(x)
# define be16toh(x) OSSwapBigToHostInt16(x)
# define htole32(x) OSSwapHostToLittleInt32(x)
# define le32toh(x) OSSwapLittleToHostInt32(x)
# define htobe32(x) OSSwapHostToBigInt32(x)
# define be32toh(x) OSSwapBigToHostInt32(x)
/* ... for Solaris */
#elif defined(__sun__)
# include <sys/byteorder.h>
# define htole64(x) LE_64(x)
# define le64toh(x) LE_64(x)
# define htobe64(x) BE_64(x)
# define be64toh(x) BE_64(x)
# define htole16(x) LE_16(x)
# define le16toh(x) LE_16(x)
# define htobe16(x) BE_16(x)
# define be16toh(x) BE_16(x)
# define htole32(x) LE_32(x)
# define le32toh(x) LE_32(x)
# define htobe32(x) BE_32(x)
# define be32toh(x) BE_32(x)
/* ... for the BSDs */
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
# include <sys/endian.h>
#elif defined(__OpenBSD__)
# include <endian.h>
/* ... for Windows (MSVC)... not targeting XBOX 360! */
#elif defined(_MSC_VER)
# include <stdlib.h>
# define htobe16(x) _byteswap_ushort(x)
# define htole16(x) (x)
# define be16toh(x) _byteswap_ushort(x)
# define le16toh(x) (x)
# define htobe32(x) _byteswap_ulong(x)
# define htole32(x) (x)
# define be32toh(x) _byteswap_ulong(x)
# define le32toh(x) (x)
# define htobe64(x) _byteswap_uint64(x)
# define htole64(x) (x)
# define be64toh(x) _byteswap_uint64(x)
# define le64toh(x) (x)
/* ... for Windows (GCC-like, e.g. mingw or clang) */
#elif (defined(_WIN32) || defined(_WIN64)) && \
(defined(__GNUC__) || defined(__clang__))
# define htobe16(x) __builtin_bswap16(x)
# define htole16(x) (x)
# define be16toh(x) __builtin_bswap16(x)
# define le16toh(x) (x)
# define htobe32(x) __builtin_bswap32(x)
# define htole32(x) (x)
# define be32toh(x) __builtin_bswap32(x)
# define le32toh(x) (x)
# define htobe64(x) __builtin_bswap64(x)
# define htole64(x) (x)
# define be64toh(x) __builtin_bswap64(x)
# define le64toh(x) (x)
/* ... generic big-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* byte swapping code inspired by:
* https://github.com/rweather/arduinolibs/blob/master/libraries/Crypto/utility/EndianUtil.h
* */
# define htobe32(x) (x)
# define be32toh(x) (x)
# define htole32(x) \
(__extension__({ \
uint32_t _temp = (x); \
((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
}))
# define le32toh(x) (htole32((x)))
# define htobe64(x) (x)
# define be64toh(x) (x)
# define htole64(x) \
(__extension__({ \
uint64_t __temp = (x); \
uint32_t __low = htobe32((uint32_t)__temp); \
uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
(((uint64_t)__low) << 32) | __high; \
}))
# define le64toh(x) (htole64((x)))
/* ... generic little-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define htole32(x) (x)
# define le32toh(x) (x)
# define htobe32(x) \
(__extension__({ \
uint32_t _temp = (x); \
((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
}))
# define be32toh(x) (htobe32((x)))
# define htole64(x) (x)
# define le64toh(x) (x)
# define htobe64(x) \
(__extension__({ \
uint64_t __temp = (x); \
uint32_t __low = htobe32((uint32_t)__temp); \
uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
(((uint64_t)__low) << 32) | __high; \
}))
# define be64toh(x) (htobe64((x)))
/* ... couldn't determine endian-ness of the target platform */
#else
# error "Please define __BYTE_ORDER__!"
#endif /* defined(__linux__) || ... */
/* Loads and stores. These avoid undefined behavior due to unaligned memory
* accesses, via memcpy. */
inline static uint16_t load16(uint8_t *b) {
uint16_t x;
memcpy(&x, b, 2);
return x;
}
inline static uint32_t load32(uint8_t *b) {
uint32_t x;
memcpy(&x, b, 4);
return x;
}
inline static uint64_t load64(uint8_t *b) {
uint64_t x;
memcpy(&x, b, 8);
return x;
}
inline static void store16(uint8_t *b, uint16_t i) { memcpy(b, &i, 2); }
inline static void store32(uint8_t *b, uint32_t i) { memcpy(b, &i, 4); }
inline static void store64(uint8_t *b, uint64_t i) { memcpy(b, &i, 8); }
#define load16_le(b) (le16toh(load16(b)))
#define store16_le(b, i) (store16(b, htole16(i)))
#define load16_be(b) (be16toh(load16(b)))
#define store16_be(b, i) (store16(b, htobe16(i)))
#define load32_le(b) (le32toh(load32(b)))
#define store32_le(b, i) (store32(b, htole32(i)))
#define load32_be(b) (be32toh(load32(b)))
#define store32_be(b, i) (store32(b, htobe32(i)))
#define load64_le(b) (le64toh(load64(b)))
#define store64_le(b, i) (store64(b, htole64(i)))
#define load64_be(b) (be64toh(load64(b)))
#define store64_be(b, i) (store64(b, htobe64(i)))
/******************************************************************************/
/* Checked integers to ease the compilation of non-Low* code */
/******************************************************************************/
typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
krml_checked_int_t;
inline static bool Prims_op_GreaterThanOrEqual(int32_t x, int32_t y) {
return x >= y;
}
inline static bool Prims_op_LessThanOrEqual(int32_t x, int32_t y) {
return x <= y;
}
inline static bool Prims_op_GreaterThan(int32_t x, int32_t y) { return x > y; }
inline static bool Prims_op_LessThan(int32_t x, int32_t y) { return x < y; }
#define RETURN_OR(x) \
do { \
int64_t __ret = x; \
if (__ret < INT32_MIN || INT32_MAX < __ret) { \
KRML_HOST_PRINTF("Prims.{int,nat,pos} integer overflow at %s:%d\n", \
__FILE__, __LINE__); \
KRML_HOST_EXIT(252); \
} \
return (int32_t)__ret; \
} while (0)
inline static int32_t Prims_pow2(int32_t x) {
RETURN_OR((int64_t)1 << (int64_t)x);
}
inline static int32_t Prims_op_Multiply(int32_t x, int32_t y) {
RETURN_OR((int64_t)x * (int64_t)y);
}
inline static int32_t Prims_op_Addition(int32_t x, int32_t y) {
RETURN_OR((int64_t)x + (int64_t)y);
}
inline static int32_t Prims_op_Subtraction(int32_t x, int32_t y) {
RETURN_OR((int64_t)x - (int64_t)y);
}
inline static int32_t Prims_op_Division(int32_t x, int32_t y) {
RETURN_OR((int64_t)x / (int64_t)y);
}
inline static int32_t Prims_op_Modulus(int32_t x, int32_t y) {
RETURN_OR((int64_t)x % (int64_t)y);
}
inline static int8_t FStar_UInt8_uint_to_t(int8_t x) { return x; }
inline static int16_t FStar_UInt16_uint_to_t(int16_t x) { return x; }
inline static int32_t FStar_UInt32_uint_to_t(int32_t x) { return x; }
inline static int64_t FStar_UInt64_uint_to_t(int64_t x) { return x; }
inline static int8_t FStar_UInt8_v(int8_t x) { return x; }
inline static int16_t FStar_UInt16_v(int16_t x) { return x; }
inline static int32_t FStar_UInt32_v(int32_t x) { return x; }
inline static int64_t FStar_UInt64_v(int64_t x) { return x; }
/* Platform-specific 128-bit arithmetic. These are static functions in a header,
* so that each translation unit gets its own copy and the C compiler can
* optimize. */
#ifndef KRML_NOUINT128
typedef unsigned __int128 FStar_UInt128_t, FStar_UInt128_t_, uint128_t;
static inline void print128(const char *where, uint128_t n) {
KRML_HOST_PRINTF("%s: [%" PRIu64 ",%" PRIu64 "]\n", where,
(uint64_t)(n >> 64), (uint64_t)n);
}
static inline uint128_t load128_le(uint8_t *b) {
uint128_t l = (uint128_t)load64_le(b);
uint128_t h = (uint128_t)load64_le(b + 8);
return (h << 64 | l);
}
static inline void store128_le(uint8_t *b, uint128_t n) {
store64_le(b, (uint64_t)n);
store64_le(b + 8, (uint64_t)(n >> 64));
}
static inline uint128_t load128_be(uint8_t *b) {
uint128_t h = (uint128_t)load64_be(b);
uint128_t l = (uint128_t)load64_be(b + 8);
return (h << 64 | l);
}
static inline void store128_be(uint8_t *b, uint128_t n) {
store64_be(b, (uint64_t)(n >> 64));
store64_be(b + 8, (uint64_t)n);
}
# define FStar_UInt128_add(x, y) ((x) + (y))
# define FStar_UInt128_mul(x, y) ((x) * (y))
# define FStar_UInt128_add_mod(x, y) ((x) + (y))
# define FStar_UInt128_sub(x, y) ((x) - (y))
# define FStar_UInt128_sub_mod(x, y) ((x) - (y))
# define FStar_UInt128_logand(x, y) ((x) & (y))
# define FStar_UInt128_logor(x, y) ((x) | (y))
# define FStar_UInt128_logxor(x, y) ((x) ^ (y))
# define FStar_UInt128_lognot(x) (~(x))
# define FStar_UInt128_shift_left(x, y) ((x) << (y))
# define FStar_UInt128_shift_right(x, y) ((x) >> (y))
# define FStar_UInt128_uint64_to_uint128(x) ((uint128_t)(x))
# define FStar_UInt128_uint128_to_uint64(x) ((uint64_t)(x))
# define FStar_UInt128_mul_wide(x, y) ((uint128_t)(x) * (y))
# define FStar_UInt128_op_Hat_Hat(x, y) ((x) ^ (y))
static inline uint128_t FStar_UInt128_eq_mask(uint128_t x, uint128_t y) {
uint64_t mask =
FStar_UInt64_eq_mask((uint64_t)(x >> 64), (uint64_t)(y >> 64)) &
FStar_UInt64_eq_mask(x, y);
return ((uint128_t)mask) << 64 | mask;
}
static inline uint128_t FStar_UInt128_gte_mask(uint128_t x, uint128_t y) {
uint64_t mask =
(FStar_UInt64_gte_mask(x >> 64, y >> 64) &
~(FStar_UInt64_eq_mask(x >> 64, y >> 64))) |
(FStar_UInt64_eq_mask(x >> 64, y >> 64) & FStar_UInt64_gte_mask(x, y));
return ((uint128_t)mask) << 64 | mask;
}
# else /* !defined(KRML_NOUINT128) */
/* This is a bad circular dependency... should fix it properly. */
# include "FStar.h"
typedef FStar_UInt128_uint128 FStar_UInt128_t_, uint128_t;
/* A series of definitions written using pointers. */
static inline void print128_(const char *where, uint128_t *n) {
KRML_HOST_PRINTF("%s: [0x%08" PRIx64 ",0x%08" PRIx64 "]\n", where, n->high, n->low);
}
static inline void load128_le_(uint8_t *b, uint128_t *r) {
r->low = load64_le(b);
r->high = load64_le(b + 8);
}
static inline void store128_le_(uint8_t *b, uint128_t *n) {
store64_le(b, n->low);
store64_le(b + 8, n->high);
}
static inline void load128_be_(uint8_t *b, uint128_t *r) {
r->high = load64_be(b);
r->low = load64_be(b + 8);
}
static inline void store128_be_(uint8_t *b, uint128_t *n) {
store64_be(b, n->high);
store64_be(b + 8, n->low);
}
# ifndef KRML_NOSTRUCT_PASSING
static inline void print128(const char *where, uint128_t n) {
print128_(where, &n);
}
static inline uint128_t load128_le(uint8_t *b) {
uint128_t r;
load128_le_(b, &r);
return r;
}
static inline void store128_le(uint8_t *b, uint128_t n) { store128_le_(b, &n); }
static inline uint128_t load128_be(uint8_t *b) {
uint128_t r;
load128_be_(b, &r);
return r;
}
static inline void store128_be(uint8_t *b, uint128_t n) { store128_be_(b, &n); }
# else /* !defined(KRML_STRUCT_PASSING) */
# define print128 print128_
# define load128_le load128_le_
# define store128_le store128_le_
# define load128_be load128_be_
# define store128_be store128_be_
# endif /* KRML_STRUCT_PASSING */
# endif /* KRML_UINT128 */
#endif /* __KREMLIB_H */