ligo/src/passes/1-parser/pascaligo/Parser.mly
Christian Rinderknecht d123abd46f Added new error for duplicated record fields.
Removed interface for the AST (for maintenance sake).
2020-01-09 14:26:47 +01:00

992 lines
27 KiB
OCaml

%{
(* START HEADER *)
[@@@warning "-42"]
open Region
open AST
(* END HEADER *)
%}
(* See [ParToken.mly] for the definition of tokens. *)
(* Entry points *)
%start contract interactive_expr
%type <AST.t> contract
%type <AST.expr> interactive_expr
%%
(* RULES *)
(* The rule [sep_or_term(item,sep)] ("separated or terminated list")
parses a non-empty list of items separated by [sep], and optionally
terminated by [sep]. *)
sep_or_term_list(item,sep):
nsepseq(item,sep) {
$1, None
}
| nseq(item sep {$1,$2}) {
let (first,sep), tail = $1 in
let rec trans (seq, prev_sep as acc) = function
[] -> acc
| (item,next_sep)::others ->
trans ((prev_sep,item)::seq, next_sep) others in
let list, term = trans ([],sep) tail
in (first, List.rev list), Some term }
(* Compound constructs *)
par(X):
"(" X ")" {
let region = cover $1 $3
and value = {
lpar = $1;
inside = $2;
rpar = $3}
in {region; value} }
brackets(X):
"[" X "]" {
let region = cover $1 $3
and value = {
lbracket = $1;
inside = $2;
rbracket = $3}
in {region; value} }
(* Sequences
Series of instances of the same syntactical category have often to
be parsed, like lists of expressions, patterns etc. The simplest of
all is the possibly empty sequence (series), parsed below by
[seq]. The non-empty sequence is parsed by [nseq]. Note that the
latter returns a pair made of the first parsed item (the parameter
[X]) and the rest of the sequence (possibly empty). This way, the
OCaml typechecker can keep track of this information along the
static control-flow graph. The rule [sepseq] parses possibly empty
sequences of items separated by some token (e.g., a comma), and
rule [nsepseq] is for non-empty such sequences. See module [Utils]
for the types corresponding to the semantic actions of those rules.
*)
(* Possibly empty sequence of items *)
seq(X):
(**) { [] }
| X seq(X) { $1::$2 }
(* Non-empty sequence of items *)
nseq(X):
X seq(X) { $1,$2 }
(* Non-empty separated sequence of items *)
nsepseq(X,Sep):
X { $1, [] }
| X Sep nsepseq(X,Sep) { let h,t = $3 in $1, ($2,h)::t }
(* Possibly empy separated sequence of items *)
sepseq(X,Sep):
(**) { None }
| nsepseq(X,Sep) { Some $1 }
(* Inlines *)
%inline var : "<ident>" { $1 }
%inline type_name : "<ident>" { $1 }
%inline fun_name : "<ident>" { $1 }
%inline field_name : "<ident>" { $1 }
%inline struct_name : "<ident>" { $1 }
(* Main *)
contract:
nseq(declaration) EOF { {decl=$1; eof=$2} }
declaration:
type_decl { TypeDecl $1 }
| const_decl { ConstDecl $1 }
| fun_decl { FunDecl $1 }
(* Type declarations *)
type_decl:
"type" type_name "is" type_expr ";"? {
ignore (SyntaxError.check_reserved_name $2);
let stop =
match $5 with
Some region -> region
| None -> type_expr_to_region $4 in
let region = cover $1 stop in
let value = {kwd_type = $1;
name = $2;
kwd_is = $3;
type_expr = $4;
terminator = $5}
in {region; value} }
type_expr:
sum_type | record_type | cartesian { $1 }
cartesian:
function_type { $1 }
| function_type "*" nsepseq(function_type,"*") {
let value = Utils.nsepseq_cons $1 $2 $3 in
let region = nsepseq_to_region type_expr_to_region value
in TProd {region; value} }
function_type:
core_type { $1 }
| core_type "->" function_type {
let start = type_expr_to_region $1
and stop = type_expr_to_region $3 in
let region = cover start stop in
TFun {region; value = $1,$2,$3} }
core_type:
type_name { TVar $1 }
| par(type_expr) { TPar $1 }
| type_name type_tuple {
let region = cover $1.region $2.region
in TApp {region; value = $1,$2}
}
| "map" type_tuple {
let region = cover $1 $2.region in
let type_constr = {value="map"; region=$1}
in TApp {region; value = type_constr, $2}
}
| "big_map" type_tuple {
let region = cover $1 $2.region in
let type_constr = {value="big_map"; region=$1}
in TApp {region; value = type_constr, $2}
}
| "set" par(type_expr) {
let total = cover $1 $2.region in
let type_constr = {value="set"; region=$1} in
let {region; value = {lpar; inside; rpar}} = $2 in
let tuple = {region; value={lpar; inside=inside,[]; rpar}}
in TApp {region=total; value = type_constr, tuple}
}
| "list" par(type_expr) {
let total = cover $1 $2.region in
let type_constr = {value="list"; region=$1} in
let {region; value = {lpar; inside; rpar}} = $2 in
let tuple = {region; value={lpar; inside=inside,[]; rpar}}
in TApp {region=total; value = type_constr, tuple}
}
type_tuple:
par(nsepseq(type_expr,",")) { $1 }
sum_type:
"|"? nsepseq(variant,"|") {
SyntaxError.check_variants (Utils.nsepseq_to_list $2);
let region = nsepseq_to_region (fun x -> x.region) $2
in TSum {region; value=$2} }
variant:
"<constr>" { {$1 with value = {constr=$1; arg=None}} }
| "<constr>" "of" cartesian {
let region = cover $1.region (type_expr_to_region $3)
and value = {constr=$1; arg = Some ($2,$3)}
in {region; value} }
record_type:
"record" sep_or_term_list(field_decl,";") "end" {
let ne_elements, terminator = $2 in
let () = Utils.nsepseq_to_list ne_elements
|> SyntaxError.check_fields in
let region = cover $1 $3
and value = {opening = Kwd $1;
ne_elements;
terminator;
closing = End $3}
in TRecord {region; value}
}
| "record" "[" sep_or_term_list(field_decl,";") "]" {
let ne_elements, terminator = $3 in
let region = cover $1 $4
and value = {opening = KwdBracket ($1,$2);
ne_elements;
terminator;
closing = RBracket $4}
in TRecord {region; value} }
field_decl:
field_name ":" type_expr {
let stop = type_expr_to_region $3 in
let region = cover $1.region stop
and value = {field_name=$1; colon=$2; field_type=$3}
in {region; value} }
fun_expr:
"function" fun_name? parameters ":" type_expr "is"
block
"with" expr {
let () = SyntaxError.check_reserved_name_opt $2 in
let stop = expr_to_region $9 in
let region = cover $1 stop
and value = {kwd_function = $1;
name = $2;
param = $3;
colon = $4;
ret_type = $5;
kwd_is = $6;
block_with = Some ($7, $8);
return = $9}
in {region; value} }
| "function" fun_name? parameters ":" type_expr "is" expr {
let () = SyntaxError.check_reserved_name_opt $2 in
let stop = expr_to_region $7 in
let region = cover $1 stop
and value = {kwd_function = $1;
name = $2;
param = $3;
colon = $4;
ret_type = $5;
kwd_is = $6;
block_with = None;
return = $7}
in {region; value} }
(* Function declarations *)
fun_decl:
open_fun_decl { $1 }
| fun_expr ";" {
let region = cover $1.region $2
and value = {fun_expr=$1; terminator = Some $2}
in {region; value} }
open_fun_decl:
fun_expr {
let region = $1.region
and value = {fun_expr=$1; terminator=None}
in {region; value} }
parameters:
par(nsepseq(param_decl,";")) {
let params =
Utils.nsepseq_to_list ($1.value: _ par).inside
in SyntaxError.check_parameters params;
$1 }
param_decl:
"var" var ":" param_type {
let var = SyntaxError.check_reserved_name $2 in
let stop = type_expr_to_region $4 in
let region = cover $1 stop
and value = {kwd_var = $1;
var;
colon = $3;
param_type = $4}
in ParamVar {region; value}
}
| "const" var ":" param_type {
let var = SyntaxError.check_reserved_name $2 in
let stop = type_expr_to_region $4 in
let region = cover $1 stop
and value = {kwd_const = $1;
var;
colon = $3;
param_type = $4}
in ParamConst {region; value} }
param_type:
cartesian { $1 }
block:
"begin" sep_or_term_list(statement,";") "end" {
let statements, terminator = $2 in
let region = cover $1 $3
and value = {opening = Begin $1;
statements;
terminator;
closing = End $3}
in {region; value}
}
| "block" "{" sep_or_term_list(statement,";") "}" {
let statements, terminator = $3 in
let region = cover $1 $4
and value = {opening = Block ($1,$2);
statements;
terminator;
closing = Block $4}
in {region; value} }
statement:
instruction { Instr $1 }
| open_data_decl { Data $1 }
open_data_decl:
open_const_decl { LocalConst $1 }
| open_var_decl { LocalVar $1 }
| open_fun_decl { LocalFun $1 }
open_const_decl:
"const" unqualified_decl("=") {
let name, colon, const_type, equal, init, stop = $2 in
let region = cover $1 stop
and value = {kwd_const = $1;
name;
colon;
const_type;
equal;
init;
terminator = None}
in {region; value} }
open_var_decl:
"var" unqualified_decl(":=") {
let name, colon, var_type, assign, init, stop = $2 in
let region = cover $1 stop
and value = {kwd_var = $1;
name;
colon;
var_type;
assign;
init;
terminator = None}
in {region; value} }
unqualified_decl(OP):
var ":" type_expr OP expr {
let var = SyntaxError.check_reserved_name $1 in
let region = expr_to_region $5
in var, $2, $3, $4, $5, region }
const_decl:
open_const_decl ";"? {
{$1 with value = {$1.value with terminator=$2}} }
instruction:
conditional { Cond $1 }
| case_instr { CaseInstr $1 }
| assignment { Assign $1 }
| loop { Loop $1 }
| proc_call { ProcCall $1 }
| "skip" { Skip $1 }
| record_patch { RecordPatch $1 }
| map_patch { MapPatch $1 }
| set_patch { SetPatch $1 }
| map_remove { MapRemove $1 }
| set_remove { SetRemove $1 }
set_remove:
"remove" expr "from" "set" path {
let region = cover $1 (path_to_region $5) in
let value = {
kwd_remove = $1;
element = $2;
kwd_from = $3;
kwd_set = $4;
set = $5}
in {region; value} }
map_remove:
"remove" expr "from" "map" path {
let region = cover $1 (path_to_region $5) in
let value = {
kwd_remove = $1;
key = $2;
kwd_from = $3;
kwd_map = $4;
map = $5}
in {region; value} }
set_patch:
"patch" path "with" ne_injection("set",expr) {
let region = cover $1 $4.region in
let value = {
kwd_patch = $1;
path = $2;
kwd_with = $3;
set_inj = $4}
in {region; value} }
map_patch:
"patch" path "with" ne_injection("map",binding) {
let region = cover $1 $4.region in
let value = {
kwd_patch = $1;
path = $2;
kwd_with = $3;
map_inj = $4}
in {region; value} }
injection(Kind,element):
Kind sep_or_term_list(element,";") "end" {
let elements, terminator = $2 in
let region = cover $1 $3
and value = {
opening = Kwd $1;
elements = Some elements;
terminator;
closing = End $3}
in {region; value}
}
| Kind "end" {
let region = cover $1 $2
and value = {
opening = Kwd $1;
elements = None;
terminator = None;
closing = End $2}
in {region; value}
}
| Kind "[" sep_or_term_list(element,";") "]" {
let elements, terminator = $3 in
let region = cover $1 $4
and value = {
opening = KwdBracket ($1,$2);
elements = Some elements;
terminator;
closing = RBracket $4}
in {region; value}
}
| Kind "[" "]" {
let region = cover $1 $3
and value = {
opening = KwdBracket ($1,$2);
elements = None;
terminator = None;
closing = RBracket $3}
in {region; value} }
ne_injection(Kind,element):
Kind sep_or_term_list(element,";") "end" {
let ne_elements, terminator = $2 in
let region = cover $1 $3
and value = {
opening = Kwd $1;
ne_elements;
terminator;
closing = End $3}
in {region; value}
}
| Kind "[" sep_or_term_list(element,";") "]" {
let ne_elements, terminator = $3 in
let region = cover $1 $4
and value = {
opening = KwdBracket ($1,$2);
ne_elements;
terminator;
closing = RBracket $4}
in {region; value} }
binding:
expr "->" expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {
source = $1;
arrow = $2;
image = $3}
in {region; value} }
record_patch:
"patch" path "with" ne_injection("record",field_assignment) {
let region = cover $1 $4.region in
let value = {
kwd_patch = $1;
path = $2;
kwd_with = $3;
record_inj = $4}
in {region; value} }
proc_call:
fun_call { $1 }
conditional:
"if" expr "then" if_clause ";"? "else" if_clause {
let region = cover $1 (if_clause_to_region $7) in
let value : AST.conditional = {
kwd_if = $1;
test = $2;
kwd_then = $3;
ifso = $4;
terminator = $5;
kwd_else = $6;
ifnot = $7}
in {region; value} }
if_clause:
instruction { ClauseInstr $1 }
| clause_block { ClauseBlock $1 }
clause_block:
block { LongBlock $1 }
| "{" sep_or_term_list(statement,";") "}" {
let region = cover $1 $3 in
let value = {lbrace = $1;
inside = $2;
rbrace = $3} in
ShortBlock {value; region} }
case_instr:
case(if_clause) { $1 if_clause_to_region }
case(rhs):
"case" expr "of" "|"? cases(rhs) "end" {
fun rhs_to_region ->
let region = cover $1 $6 in
let value = {kwd_case = $1;
expr = $2;
opening = Kwd $3;
lead_vbar = $4;
cases = $5 rhs_to_region;
closing = End $6}
in {region; value}
}
| "case" expr "of" "[" "|"? cases(rhs) "]" {
fun rhs_to_region ->
let region = cover $1 $7 in
let value = {kwd_case = $1;
expr = $2;
opening = KwdBracket ($3,$4);
lead_vbar = $5;
cases = $6 rhs_to_region;
closing = RBracket $7}
in {region; value} }
cases(rhs):
nsepseq(case_clause(rhs),"|") {
fun rhs_to_region ->
let mk_clause pre_clause = pre_clause rhs_to_region in
let value = Utils.nsepseq_map mk_clause $1 in
let region = nsepseq_to_region (fun x -> x.region) value
in {region; value} }
case_clause(rhs):
pattern "->" rhs {
SyntaxError.check_pattern $1;
fun rhs_to_region ->
let start = pattern_to_region $1 in
let region = cover start (rhs_to_region $3)
and value = {pattern=$1; arrow=$2; rhs=$3}
in {region; value} }
assignment:
lhs ":=" rhs {
let stop = rhs_to_region $3 in
let region = cover (lhs_to_region $1) stop
and value = {lhs = $1; assign = $2; rhs = $3}
in {region; value} }
rhs:
expr { $1 }
lhs:
path { Path $1 }
| map_lookup { MapPath $1 }
loop:
while_loop { $1 }
| for_loop { $1 }
while_loop:
"while" expr block {
let region = cover $1 $3.region
and value = {kwd_while=$1; cond=$2; block=$3}
in While {region; value} }
for_loop:
"for" var_assign "to" expr block {
let region = cover $1 $5.region in
let value = {kwd_for = $1;
assign = $2;
kwd_to = $3;
bound = $4;
block = $5}
in For (ForInt {region; value})
}
| "for" var arrow_clause? "in" collection expr block {
let var = SyntaxError.check_reserved_name $2 in
let region = cover $1 $7.region in
let value = {kwd_for = $1;
var;
bind_to = $3;
kwd_in = $4;
collection = $5;
expr = $6;
block = $7}
in For (ForCollect {region; value}) }
collection:
"map" { Map $1 }
| "set" { Set $1 }
| "list" { List $1 }
var_assign:
var ":=" expr {
let name = SyntaxError.check_reserved_name $1 in
let region = cover name.region (expr_to_region $3)
and value = {name; assign=$2; expr=$3}
in {region; value} }
arrow_clause:
"->" var { $1, SyntaxError.check_reserved_name $2 }
(* Expressions *)
interactive_expr:
expr EOF { $1 }
expr:
case(expr) { ECase ($1 expr_to_region) }
| cond_expr { $1 }
| disj_expr { $1 }
| fun_expr { EFun $1 }
cond_expr:
"if" expr "then" expr ";"? "else" expr {
let region = cover $1 (expr_to_region $7) in
let value : AST.cond_expr = {
kwd_if = $1;
test = $2;
kwd_then = $3;
ifso = $4;
terminator = $5;
kwd_else = $6;
ifnot = $7}
in ECond {region; value} }
disj_expr:
conj_expr { $1 }
| disj_expr "or" conj_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1=$1; op=$2; arg2=$3} in
ELogic (BoolExpr (Or {region; value})) }
conj_expr:
set_membership { $1 }
| conj_expr "and" set_membership {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1=$1; op=$2; arg2=$3}
in ELogic (BoolExpr (And {region; value})) }
set_membership:
comp_expr { $1 }
| core_expr "contains" set_membership {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop in
let value = {set=$1; kwd_contains=$2; element=$3}
in ESet (SetMem {region; value}) }
comp_expr:
comp_expr "<" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Lt {region; value}))
}
| comp_expr "<=" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Leq {region; value}))
}
| comp_expr ">" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Gt {region; value}))
}
| comp_expr ">=" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Geq {region; value}))
}
| comp_expr "=" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Equal {region; value}))
}
| comp_expr "=/=" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Neq {region; value}))
}
| cat_expr { $1 }
cat_expr:
cons_expr "^" cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EString (Cat {region; value})
}
| cons_expr { $1 }
cons_expr:
add_expr "#" cons_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EList (ECons {region; value})
}
| add_expr { $1 }
add_expr:
add_expr "+" mult_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EArith (Add {region; value})
}
| add_expr "-" mult_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EArith (Sub {region; value})
}
| mult_expr { $1 }
mult_expr:
mult_expr "*" unary_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EArith (Mult {region; value})
}
| mult_expr "/" unary_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EArith (Div {region; value})
}
| mult_expr "mod" unary_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in EArith (Mod {region; value})
}
| unary_expr { $1 }
unary_expr:
"-" core_expr {
let stop = expr_to_region $2 in
let region = cover $1 stop
and value = {op = $1; arg = $2}
in EArith (Neg {region; value})
}
| "not" core_expr {
let stop = expr_to_region $2 in
let region = cover $1 stop
and value = {op = $1; arg = $2} in
ELogic (BoolExpr (Not {region; value}))
}
| core_expr { $1 }
core_expr:
"<int>" { EArith (Int $1) }
| "<nat>" { EArith (Nat $1) }
| "<mutez>" { EArith (Mutez $1) }
| var { EVar $1 }
| "<string>" { EString (String $1) }
| "<bytes>" { EBytes $1 }
| "False" { ELogic (BoolExpr (False $1)) }
| "True" { ELogic (BoolExpr (True $1)) }
| "Unit" { EUnit $1 }
| annot_expr { EAnnot $1 }
| tuple_expr { ETuple $1 }
| list_expr { EList $1 }
| "None" { EConstr (NoneExpr $1) }
| fun_call_or_par_or_projection { $1 }
| map_expr { EMap $1 }
| set_expr { ESet $1 }
| record_expr { ERecord $1 }
| "<constr>" arguments {
let region = cover $1.region $2.region in
EConstr (ConstrApp {region; value = $1, Some $2})
}
| "<constr>" {
EConstr (ConstrApp {region=$1.region; value = $1,None})
}
| "Some" arguments {
let region = cover $1 $2.region in
EConstr (SomeApp {region; value = $1,$2}) }
fun_call_or_par_or_projection:
par(expr) arguments? {
let parenthesized = EPar $1 in
match $2 with
None -> parenthesized
| Some args ->
let region_1 = $1.region in
let region = cover region_1 args.region in
ECall {region; value = parenthesized,args}
}
| projection arguments? {
let project = EProj $1 in
match $2 with
None -> project
| Some args ->
let region_1 = $1.region in
let region = cover region_1 args.region
in ECall {region; value = project,args}
}
| fun_call { ECall $1 }
annot_expr:
"(" disj_expr ":" type_expr ")" {
let start = expr_to_region $2
and stop = type_expr_to_region $4 in
let region = cover start stop
and value = $2, $4
in {region; value} }
set_expr:
injection("set",expr) { SetInj $1 }
map_expr:
map_lookup { MapLookUp $1 }
| injection("map",binding) { MapInj $1 }
| injection("big_map",binding) { BigMapInj $1 }
map_lookup:
path brackets(expr) {
let region = cover (path_to_region $1) $2.region in
let value = {path=$1; index=$2}
in {region; value} }
path:
var { Name $1 }
| projection { Path $1 }
projection:
struct_name "." nsepseq(selection,".") {
let stop = nsepseq_to_region selection_to_region $3 in
let region = cover $1.region stop
and value = {struct_name = $1;
selector = $2;
field_path = $3}
in {region; value} }
selection:
field_name { FieldName $1 }
| "<int>" { Component $1 }
record_expr:
"record" sep_or_term_list(field_assignment,";") "end" {
let ne_elements, terminator = $2 in
let region = cover $1 $3
and value : field_assign AST.reg ne_injection = {
opening = Kwd $1;
ne_elements;
terminator;
closing = End $3}
in {region; value}
}
| "record" "[" sep_or_term_list(field_assignment,";") "]" {
let ne_elements, terminator = $3 in
let region = cover $1 $4
and value : field_assign AST.reg ne_injection = {
opening = KwdBracket ($1,$2);
ne_elements;
terminator;
closing = RBracket $4}
in {region; value} }
field_assignment:
field_name "=" expr {
let region = cover $1.region (expr_to_region $3)
and value = {field_name = $1;
equal = $2;
field_expr = $3}
in {region; value} }
fun_call:
fun_name arguments {
let region = cover $1.region $2.region
in {region; value = (EVar $1),$2} }
tuple_expr:
par(tuple_comp) { $1 }
tuple_comp:
expr "," nsepseq(expr,",") { Utils.nsepseq_cons $1 $2 $3 }
arguments:
par(nsepseq(expr,",")) { $1 }
list_expr:
injection("list",expr) { EListComp $1 }
| "nil" { ENil $1 }
(* Patterns *)
pattern:
core_pattern { $1 }
| core_pattern "#" nsepseq(core_pattern,"#") {
let value = Utils.nsepseq_cons $1 $2 $3 in
let region = nsepseq_to_region pattern_to_region value
in PList (PCons {region; value}) }
core_pattern:
var { PVar $1 }
| "_" { PWild $1 }
| "<int>" { PInt $1 }
| "<nat>" { PNat $1 }
| "<bytes>" { PBytes $1 }
| "<string>" { PString $1 }
| list_pattern { PList $1 }
| tuple_pattern { PTuple $1 }
| constr_pattern { PConstr $1 }
list_pattern:
injection("list",core_pattern) { PListComp $1 }
| "nil" { PNil $1 }
| par(cons_pattern) { PParCons $1 }
cons_pattern:
core_pattern "#" pattern { $1,$2,$3 }
tuple_pattern:
par(nsepseq(core_pattern,",")) { $1 }
constr_pattern:
"Unit" { PUnit $1 }
| "False" { PFalse $1 }
| "True" { PTrue $1 }
| "None" { PNone $1 }
| "Some" par(core_pattern) {
let region = cover $1 $2.region
in PSomeApp {region; value = $1,$2}
}
| "<constr>" tuple_pattern {
let region = cover $1.region $2.region in
PConstrApp {region; value = $1, Some $2}
}
| "<constr>" {
PConstrApp {region=$1.region; value=$1,None} }