8f60accc24
- Reenable code block tabs - Reeneble code blocks highlighting
381 lines
7.3 KiB
Markdown
381 lines
7.3 KiB
Markdown
---
|
|
id: math-numbers-tez
|
|
title: Math, Numbers & Tez
|
|
---
|
|
|
|
import Syntax from '@theme/Syntax';
|
|
|
|
LIGO offers three built-in numerical types: `int`, `nat` and
|
|
`tez`. Values of type `int` are integers; values of type `nat` are
|
|
natural numbers (integral numbers greater than or equal to zero);
|
|
values of type `tez` are units of measure of Tezos tokens.
|
|
|
|
* Integer literals are the same found in mainstream programming
|
|
languages, for example, `10`, `-6` and `0`, but there is only one
|
|
canonical zero: `0` (so, for instance, `-0` and `00` are invalid).
|
|
|
|
* Natural numbers are written as digits follwed by the suffix `n`,
|
|
like so: `12n`, `0n`, and the same restriction on zero as integers
|
|
applies: `0n` is the only way to specify the natural zero.
|
|
|
|
* Tezos tokens can be specified using literals of three kinds:
|
|
* units of millionth of `tez`, using the suffix `mutez` after a
|
|
natural literal, like `10000mutez` or `0mutez`;
|
|
* units of `tez`, using the suffix `tz` or `tez`, like `3tz` or
|
|
`3tez`;
|
|
* decimal amounts of `tz` or `tez`, like `12.3tz` or `12.4tez`.
|
|
|
|
Note that large integral values can be expressed using underscores to
|
|
separate groups of digits, like `1_000mutez` or `0.000_004tez`.
|
|
|
|
## Addition
|
|
|
|
Addition in LIGO is accomplished by means of the `+` infix
|
|
operator. Some type constraints apply, for example you cannot add a
|
|
value of type `tez` to a value of type `nat`.
|
|
|
|
In the following example you can find a series of arithmetic
|
|
operations, including various numerical types. However, some bits
|
|
remain in comments as they would otherwise not compile, for example,
|
|
adding a value of type `int` to a value of type `tez` is invalid. Note
|
|
that adding an integer to a natural number produces an integer.
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=a
|
|
// int + int yields int
|
|
const a : int = 5 + 10
|
|
|
|
// nat + int yields int
|
|
const b : int = 5n + 10
|
|
|
|
// tez + tez yields tez
|
|
const c : tez = 5mutez + 0.000_010tez
|
|
|
|
//tez + int or tez + nat is invalid
|
|
// const d : tez = 5mutez + 10n
|
|
|
|
// two nats yield a nat
|
|
const e : nat = 5n + 10n
|
|
|
|
// nat + int yields an int: invalid
|
|
// const f : nat = 5n + 10;
|
|
|
|
const g : int = 1_000_000
|
|
```
|
|
|
|
> Pro tip: you can use underscores for readability when defining large
|
|
> numbers:
|
|
>
|
|
>```pascaligo
|
|
> const sum : tez = 100_000mutez
|
|
>```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=a
|
|
// int + int yields int
|
|
let a : int = 5 + 10
|
|
|
|
// nat + int yields int
|
|
let b : int = 5n + 10
|
|
|
|
// tez + tez yields tez
|
|
let c : tez = 5mutez + 0.000_010tez
|
|
|
|
// tez + int or tez + nat is invalid
|
|
// let d : tez = 5mutez + 10n
|
|
|
|
// two nats yield a nat
|
|
let e : nat = 5n + 10n
|
|
|
|
// nat + int yields an int: invalid
|
|
// let f : nat = 5n + 10
|
|
|
|
let g : int = 1_000_000
|
|
```
|
|
|
|
> Pro tip: you can use underscores for readability when defining large
|
|
> numbers:
|
|
>
|
|
>```cameligo
|
|
>let sum : tez = 100_000mutez
|
|
>```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=a
|
|
// int + int yields int
|
|
let a : int = 5 + 10;
|
|
|
|
// nat + int yields int
|
|
let b : int = 5n + 10;
|
|
|
|
// tez + tez yields tez
|
|
let c : tez = 5mutez + 0.000_010tez;
|
|
|
|
// tez + int or tez + nat is invalid:
|
|
// let d : tez = 5mutez + 10n;
|
|
|
|
// two nats yield a nat
|
|
let e : nat = 5n + 10n;
|
|
|
|
// nat + int yields an int: invalid
|
|
// let f : nat = 5n + 10;
|
|
|
|
let g : int = 1_000_000;
|
|
```
|
|
|
|
> Pro tip: you can use underscores for readability when defining large
|
|
> numbers:
|
|
>```reasonligo
|
|
>let sum : tex = 100_000mutez;
|
|
>```
|
|
|
|
</Syntax>
|
|
|
|
|
|
## Subtraction
|
|
|
|
Subtraction looks as follows.
|
|
|
|
> ⚠️ Even when subtracting two `nats`, the result is an `int`
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=b
|
|
const a : int = 5 - 10
|
|
|
|
// Subtraction of two nats yields an int
|
|
const b : int = 5n - 2n
|
|
|
|
// Therefore the following is invalid
|
|
// const c : nat = 5n - 2n
|
|
|
|
const d : tez = 5mutez - 1mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=b
|
|
let a : int = 5 - 10
|
|
|
|
// Subtraction of two nats yields an int
|
|
let b : int = 5n - 2n
|
|
|
|
// Therefore the following is invalid
|
|
// let c : nat = 5n - 2n
|
|
|
|
let d : tez = 5mutez - 1mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=b
|
|
let a : int = 5 - 10;
|
|
|
|
// Subtraction of two nats yields an int
|
|
let b : int = 5n - 2n;
|
|
|
|
// Therefore the following is invalid
|
|
// let c : nat = 5n - 2n;
|
|
|
|
let d : tez = 5mutez - 1mutez;
|
|
```
|
|
|
|
</Syntax>
|
|
|
|
|
|
|
|
## Multiplication
|
|
|
|
You can multiply values of the same type, such as:
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=c
|
|
const a : int = 5 * 5
|
|
const b : nat = 5n * 5n
|
|
|
|
// You can also multiply `nat` and `tez`
|
|
const c : tez = 5n * 5mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=c
|
|
let a : int = 5 * 5
|
|
let b : nat = 5n * 5n
|
|
|
|
// You can also multiply `nat` and `tez`
|
|
let c : tez = 5n * 5mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=c
|
|
let a : int = 5 * 5;
|
|
let b : nat = 5n * 5n;
|
|
|
|
// You can also multiply `nat` and `tez`
|
|
let c : tez = 5n * 5mutez;
|
|
```
|
|
|
|
</Syntax>
|
|
|
|
|
|
## Euclidean Division
|
|
|
|
In LIGO you can divide `int`, `nat`, and `tez`. Here is how:
|
|
|
|
> ⚠️ Division of two `tez` values results into a `nat`
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=d
|
|
const a : int = 10 / 3
|
|
const b : nat = 10n / 3n
|
|
const c : nat = 10mutez / 3mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=d
|
|
let a : int = 10 / 3
|
|
let b : nat = 10n / 3n
|
|
let c : nat = 10mutez / 3mutez
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=d
|
|
let a : int = 10 / 3;
|
|
let b : nat = 10n / 3n;
|
|
let c : nat = 10mutez / 3mutez;
|
|
```
|
|
|
|
</Syntax>
|
|
|
|
|
|
LIGO also allows you to compute the remainder of the Euclidean
|
|
division. In LIGO, it is a natural number.
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=d
|
|
const a : int = 120
|
|
const b : int = 9
|
|
const rem1 : nat = a mod b // 3
|
|
const c : nat = 120n
|
|
const rem2 : nat = c mod b // 3
|
|
const d : nat = 9n
|
|
const rem3 : nat = c mod d // 3
|
|
const rem4 : nat = a mod d // 3
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=d
|
|
let a : int = 120
|
|
let b : int = 9
|
|
let rem1 : nat = a mod b // 3
|
|
let c : nat = 120n
|
|
let rem2 : nat = c mod b // 3
|
|
let d : nat = 9n
|
|
let rem3 : nat = c mod d // 3
|
|
let rem4 : nat = a mod d // 3
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=d
|
|
let a : int = 120;
|
|
let b : int = 9;
|
|
let rem1 : nat = a mod b; // 3
|
|
let c : nat = 120n;
|
|
let rem2 : nat = c mod b; // 3
|
|
let d : nat = 9n;
|
|
let rem3 : nat = c mod d; // 3
|
|
let rem4 : nat = a mod d; // 3
|
|
```
|
|
|
|
</Syntax>
|
|
|
|
|
|
## From `int` to `nat` and back
|
|
|
|
You can *cast* an `int` to a `nat` and vice versa. Here is how:
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=e
|
|
const a : int = int (1n)
|
|
const b : nat = abs (1)
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=e
|
|
let a : int = int (1n)
|
|
let b : nat = abs (1)
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=e
|
|
let a : int = int (1n);
|
|
let b : nat = abs (1);
|
|
```
|
|
|
|
</Syntax>
|
|
|
|
|
|
## Checking a `nat`
|
|
|
|
You can check if a value is a `nat` by using a predefined cast
|
|
function which accepts an `int` and returns an optional `nat`: if the
|
|
result is not `None`, then the provided integer was indeed a natural
|
|
number, and not otherwise.
|
|
|
|
|
|
<Syntax syntax="pascaligo">
|
|
|
|
```pascaligo group=e
|
|
const is_a_nat : option (nat) = is_nat (1)
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="cameligo">
|
|
|
|
```cameligo group=e
|
|
let is_a_nat : nat option = Michelson.is_nat (1)
|
|
```
|
|
|
|
</Syntax>
|
|
<Syntax syntax="reasonligo">
|
|
|
|
```reasonligo group=e
|
|
let is_a_nat : option (nat) = Michelson.is_nat (1);
|
|
```
|
|
|
|
</Syntax>
|
|
|