ligo/AST2.ml

647 lines
25 KiB
OCaml

[@@@warning "-30"]
exception TODO of string
module I = AST
open Region
module SMap = Map.Make(String)
module O = struct
type type_name = string
type var_name = string
type pattern =
PVar of var_name
| PWild
| PInt of Z.t
| PBytes of MBytes.t
| PString of string
| PUnit
| PFalse
| PTrue
| PNone
| PSome of pattern
| Cons of pattern * pattern
| Null
| PTuple of pattern list
type type_expr =
Prod of type_expr list
| Sum of (type_name * type_expr) list
| Record of (type_name * type_expr) list
| TypeApp of type_name * (type_expr list)
| Function of { args: type_expr list; ret: type_expr }
| Ref of type_expr
| Unit
| Int
| TODO
type typed_var = { name:var_name; ty:type_expr }
type type_decl = { name:string; ty:type_expr }
type expr =
App of { operator: operator; arguments: expr list }
| Var of var_name
| Constant of constant
| Lambda of lambda
and decl = { name:var_name; ty:type_expr; value: expr }
and lambda = {
parameters: type_expr SMap.t;
declarations: decl list;
instructions: instr list;
result: expr;
}
and operator =
Or | And | Lt | Leq | Gt | Geq | Equal | Neq | Cat | Cons | Add | Sub | Mult | Div | Mod
| Neg | Not
| Function of string
and constant =
Unit | Int of Z.t | String of string | Bytes of MBytes.t | False | True
and instr =
Assignment of { name: var_name; value: expr }
| While of { condition: expr; body: instr list }
| ForCollection of { list: expr; key: var_name; value: var_name option; body: instr list }
| If of { condition: expr; ifso: instr list; ifnot: instr list }
| Match of { expr: expr; cases: (pattern * instr list) list }
| DropUnit of expr (* expr returns unit, drop the result. *)
| Fail of { expr: expr }
type ast = {
types : type_decl list;
storage_decl : typed_var;
operations_decl : typed_var;
declarations : decl list;
}
end
(* open Sanity: *)
let (|>) v f = f v (* pipe f to v *)
let (@@) f v = f v (* apply f on v *)
let (@.) f g x = f (g x) (* compose *)
let map f l = List.rev (List.rev_map f l)
(* TODO: check that List.to_seq, List.append and SMap.of_seq are not broken
(i.e. check that they are tail-recursive) *)
let append_map f l = map f l |> List.flatten
let append l1 l2 = List.append l1 l2
let list_to_map l = l |> List.to_seq |> SMap.of_seq
let fold_map f a l =
let f (acc, l) elem =
let acc', elem' = f acc elem
in acc', (elem' :: l) in
let last_acc, last_l = List.fold_left f (a, []) l
in last_acc, List.rev last_l
(* Simplify the AST *)
let s_nsepseq : ('a,'sep) Utils.nsepseq -> 'a list =
fun (first, rest) -> first :: (map snd rest)
let s_sepseq : ('a,'sep) Utils.sepseq -> 'a list =
function
None -> []
| Some nsepseq -> s_nsepseq nsepseq
let s_name {value=name; region} : O.var_name =
let () = ignore (region) in
name
let rec s_cartesian {value=sequence; region} : O.type_expr =
let () = ignore (region) in
Prod (map s_type_expr (s_nsepseq sequence))
and s_sum_type {value=sequence; region} : O.type_expr =
let () = ignore (region) in
Sum (map s_variant (s_nsepseq sequence))
and s_variant {value=(constr, kwd_of, cartesian); region} =
let () = ignore (kwd_of,region) in
(s_name constr, s_cartesian cartesian)
and s_record_type {value=(kwd_record, field_decls, kwd_end); region} : O.type_expr =
let () = ignore (kwd_record,region,kwd_end) in
Record (map s_field_decl (s_nsepseq field_decls))
and s_field_decl {value=(var, colon, type_expr); region} =
let () = ignore (colon,region) in
(s_name var, s_type_expr type_expr)
and s_type_app {value=(type_name,type_tuple); region} : O.type_expr =
let () = ignore (region) in
TypeApp (s_name type_name, s_type_tuple type_tuple)
and s_type_tuple ({value=(lpar, sequence, rpar); region} : (I.type_name, I.comma) Utils.nsepseq I.par) : O.type_expr list =
let () = ignore (lpar,rpar,region) in
(* TODO: the grammar should allow any type expr, not just type_name in the tuple elements *)
map s_type_expr (map (fun a -> I.TAlias a) (s_nsepseq sequence))
and s_par_type {value=(lpar, type_expr, rpar); region} : O.type_expr =
let () = ignore (lpar,rpar,region) in
s_type_expr type_expr
and s_type_alias name : O.type_expr =
let () = ignore () in
TypeApp (s_name name, [])
and s_type_expr : I.type_expr -> O.type_expr = function
Prod cartesian -> s_cartesian cartesian
| Sum sum_type -> s_sum_type sum_type
| Record record_type -> s_record_type record_type
| TypeApp type_app -> s_type_app type_app
| ParType par_type -> s_par_type par_type
| TAlias type_alias -> s_type_alias type_alias
let s_type_decl I.{value={kwd_type;name;kwd_is;type_expr;terminator}; region} : O.type_decl =
let () = ignore (kwd_type,kwd_is,terminator,region) in
O.{ name = s_name name; ty = s_type_expr type_expr }
let s_storage_decl I.{value={kwd_storage; name; colon; store_type; terminator}; region} : O.typed_var =
let () = ignore (kwd_storage,colon,terminator,region) in
O.{ name = s_name name; ty = s_type_expr store_type }
let s_operations_decl I.{value={kwd_operations;name;colon;op_type;terminator}; region} : O.typed_var =
let () = ignore (kwd_operations,colon,terminator,region) in
O.{ name = s_name name; ty = s_type_expr op_type }
let rec bin l operator r = O.App { operator; arguments = [s_expr l; s_expr r] }
and una operator v = O.App { operator; arguments = [s_expr v] }
and s_expr : I.expr -> O.expr =
function
Or {value=(l, bool_or, r); region} -> let () = ignore (region, bool_or) in bin l Or r
| And {value=(l, bool_and, r); region} -> let () = ignore (region,bool_and) in bin l And r
| Lt {value=(l, lt, r); region} -> let () = ignore (region, lt) in bin l Lt r
| Leq {value=(l, leq, r); region} -> let () = ignore (region, leq) in bin l Leq r
| Gt {value=(l, gt, r); region} -> let () = ignore (region, gt) in bin l Gt r
| Geq {value=(l, geq, r); region} -> let () = ignore (region, geq) in bin l Geq r
| Equal {value=(l, equal, r); region} -> let () = ignore (region, equal) in bin l Equal r
| Neq {value=(l, neq, r); region} -> let () = ignore (region, neq) in bin l Neq r
| Cat {value=(l, cat, r); region} -> let () = ignore (region, cat) in bin l Cat r
| Cons {value=(l, cons, r); region} -> let () = ignore (region, cons) in bin l Cons r
| Add {value=(l, plus, r); region} -> let () = ignore (region, plus) in bin l Add r
| Sub {value=(l, minus, r); region} -> let () = ignore (region, minus) in bin l Sub r
| Mult {value=(l, times, r); region} -> let () = ignore (region, times) in bin l Mult r
| Div {value=(l, slash, r); region} -> let () = ignore (region, slash) in bin l Div r
| Mod {value=(l, kwd_mod, r); region} -> let () = ignore (region, kwd_mod) in bin l Mod r
| Neg {value=(minus, expr); region} -> let () = ignore (region, minus) in una Neg expr
| Not {value=(kwd_not, expr); region} -> let () = ignore (region, kwd_not) in una Not expr
| Int {value=(lexeme, z); region} -> let () = ignore (region, lexeme) in Constant (Int z)
| Var {value=lexeme; region} -> let () = ignore (region) in Var lexeme
| String {value=s; region} -> let () = ignore (region) in Constant (String s)
| Bytes {value=(lexeme, mbytes); region} -> let () = ignore (region, lexeme) in Constant (Bytes mbytes)
| False c_False -> let () = ignore (c_False) in Constant (False)
| True c_True -> let () = ignore (c_True) in Constant (True)
| Unit c_Unit -> let () = ignore (c_Unit) in Constant (Unit)
| Tuple tuple -> let _todo = tuple in raise (TODO "simplify tuple")
| List {value=(lbrkt,lst,rbrkt); region} -> let () = ignore (lbrkt,rbrkt,region) in let _todo = lst in raise (TODO "simplify (expr,comma) list")
| EmptyList empty_list -> let _todo = empty_list in raise (TODO "simplify (lbracket,rbracket,colon,type_expr) par")
| Set set -> let _todo = set in raise (TODO "simplify (expr, comma) nsepseq braces")
| EmptySet empty_set -> let _todo = empty_set in raise (TODO "simplify empty_set")
| NoneExpr none_expr -> let _todo = none_expr in raise (TODO "simplify (c_None,colon,type_expr) par")
| FunCall fun_call -> let _todo = fun_call in raise (TODO "simplify FunCall")
| ConstrApp constr_app -> let _todo = constr_app in raise (TODO "simplify ConstrApp")
| SomeApp {value=(c_Some, arguments); region} -> let _todo = arguments in let () = ignore (region,c_Some) in raise (TODO "simplify SomeApp")
| MapLookUp {value=map_lookup; region} -> let _todo = map_lookup in let () = ignore (region) in raise (TODO "simplify MapLookUp")
| ParExpr {value=(lpar,expr,rpar); region} -> let () = ignore (lpar,rpar,region) in s_expr expr
let s_case : I.case -> O.pattern * (O.instr list) = function
| _ -> raise (TODO "simplify pattern matching cases")
let s_const_decl I.{value={kwd_const;name;colon;const_type;equal;init;terminator}; region} : O.decl =
let () = ignore (kwd_const,colon,equal,terminator,region) in
O.{ name = s_name name; ty = s_type_expr const_type; value = s_expr init }
let s_param_const {value=(kwd_const,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_const,colon,region) in
s_name variable, s_type_expr type_expr
let s_param_var {value=(kwd_var,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_var,colon,region) in
s_name variable, s_type_expr type_expr
let s_param_decl : I.param_decl -> string * O.type_expr = function
ParamConst p -> s_param_const p
| ParamVar p -> s_param_var p
let s_parameters ({value=(lpar,param_decl,rpar);region} : I.parameters) : (string * O.type_expr) list =
let () = ignore (lpar,rpar,region) in
let l = (s_nsepseq param_decl) in
map s_param_decl l
let rec s_var_decl I.{value={kwd_var;name;colon;var_type;ass;init;terminator}; region} : O.decl =
let () = ignore (kwd_var,colon,ass,terminator,region) in
O.{
name = s_name name;
ty = s_type_expr var_type;
value = s_expr init
}
and s_local_decl : I.local_decl -> O.decl = function
LocalLam decl -> s_lambda_decl decl
| LocalConst decl -> s_const_decl decl
| LocalVar decl -> s_var_decl decl
and s_instructions ({value=sequence; region} : I.instructions) : O.instr list =
let () = ignore (region) in
append_map s_instruction (s_nsepseq sequence)
and s_instruction : I.instruction -> O.instr list = function
Single instr -> s_single_instr instr
| Block block -> (s_block block)
and s_conditional I.{kwd_if;test;kwd_then;ifso;kwd_else;ifnot} : O.instr =
let () = ignore (kwd_if,kwd_then,kwd_else) in
If { condition = s_expr test; ifso = s_instruction ifso; ifnot = s_instruction ifnot }
and s_match_instr I.{kwd_match;expr;kwd_with;lead_vbar;cases;kwd_end} : O.instr =
let {value=cases;region} = cases in
let () = ignore (kwd_match,kwd_with,lead_vbar,kwd_end,region) in
Match { expr = s_expr expr; cases = map s_case (s_nsepseq cases) }
and s_ass_instr {value=(variable,ass,expr); region} : O.instr =
let () = ignore (ass,region) in
Assignment { name = s_name variable; value = s_expr expr }
and s_while_loop {value=(kwd_while, expr, block); region} : O.instr list =
let () = ignore (kwd_while,region) in
[While {condition = s_expr expr; body = s_block block}]
and s_for_loop : I.for_loop -> O.instr list = function
ForInt for_int -> s_for_int for_int
| ForCollect for_collect -> s_for_collect for_collect
and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : I.for_int reg) : O.instr list =
let {value=(variable,ass_kwd,expr);region = ass_region} = ass in
let () = ignore (kwd_for,ass_region,ass_kwd,kwd_to,region) in
let name = s_name variable in
let condition, operator = match down with Some kwd_down -> ignore kwd_down; O.Gt, O.Sub
| None -> O.Lt, O.Add in
let step = s_step step
in [
Assignment { name; value = s_expr expr };
(* TODO: lift the declaration of the variable *)
While {
condition = App { operator = condition;
arguments = [Var name; s_expr bound] };
body = append (s_block block)
[O.Assignment { name;
value = App { operator;
arguments = [Var name; step]}}]
}
]
and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : I.for_collect reg) : O.instr list =
let () = ignore (kwd_for,kwd_in) in
[
O.ForCollection {
list = s_expr expr;
key = s_name var;
value = s_bind_to bind_to;
body = s_block block
}
]
and s_step : (I.kwd_step * I.expr) option -> O.expr = function
Some (kwd_step, expr) -> let () = ignore (kwd_step) in s_expr expr
| None -> Constant (Int (Z.of_int 1))
and s_bind_to : (I.arrow * I.variable) option -> O.var_name option = function
Some (arrow, variable) -> let () = ignore (arrow) in Some (s_name variable)
| None -> None
and s_loop : I.loop -> O.instr list = function
While while_loop -> s_while_loop while_loop
| For for_loop -> s_for_loop for_loop
and s_fun_call {value=(fun_name, arguments); region} : O.expr =
let () = ignore (region) in
App { operator = Function (s_name fun_name); arguments = s_arguments arguments }
and s_arguments {value=(lpar, sequence, rpar); region} =
let () = ignore (lpar,rpar,region) in
map s_expr (s_nsepseq sequence);
and s_fail ((kwd_fail, expr) : (I.kwd_fail * I.expr)) : O.instr =
let () = ignore (kwd_fail) in
Fail { expr = s_expr expr }
and s_single_instr : I.single_instr -> O.instr list = function
Cond {value; _} -> [s_conditional value]
| Match {value; _} -> [s_match_instr value]
| Ass instr -> [s_ass_instr instr]
| Loop loop -> s_loop loop
| ProcCall fun_call -> [DropUnit (s_fun_call fun_call)]
| Null kwd_null -> let () = ignore (kwd_null) in
[]
| Fail {value; _} -> [s_fail value]
and s_block I.{value={opening;instr;terminator;close}; _} : O.instr list =
let () = ignore (opening,terminator,close) in
s_instructions instr
and s_fun_decl I.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_decls;block;kwd_with;return;terminator}; region} : O.decl =
let () = ignore (kwd_function,colon,kwd_is,kwd_with,terminator,region) in
O.{
name = s_name name;
ty = Function { args = map snd (s_parameters param); ret = s_type_expr ret_type };
value = Lambda {
parameters = s_parameters param |> list_to_map;
declarations = map s_local_decl local_decls;
instructions = s_block block;
result = s_expr return
}
}
and s_proc_decl I.{value={kwd_procedure;name;param;kwd_is;local_decls;block;terminator}; region} =
let () = ignore (kwd_procedure,kwd_is,terminator,region) in
O.{
name = s_name name;
ty = Function { args = map snd (s_parameters param); ret = Unit };
value = Lambda {
parameters = s_parameters param |> list_to_map;
declarations = map s_local_decl local_decls;
instructions = s_block block;
result = O.Constant O.Unit
}
}
and s_entry_decl I.{value={kwd_entrypoint;name;param;kwd_is;local_decls;block;terminator}; region} =
let () = ignore (kwd_entrypoint,kwd_is,terminator,region) in
O.{
name = s_name name;
ty = Function { args = map snd (s_parameters param); ret = Unit };
value = Lambda {
parameters = s_parameters param |> list_to_map;
declarations = map s_local_decl local_decls;
instructions = s_block block;
result = O.Constant O.Unit
}
}
and s_lambda_decl : I.lambda_decl -> O.decl = function
FunDecl fun_decl -> s_fun_decl fun_decl
| EntryDecl entry_decl -> s_entry_decl entry_decl
| ProcDecl proc_decl -> s_proc_decl proc_decl
type tmp_ast = {
types : O.type_decl list;
storage_decl : O.typed_var option;
operations_decl : O.typed_var option;
declarations : O.decl list;
}
let s_declaration (ast : tmp_ast) : I.declaration -> tmp_ast = function
TypeDecl t -> { ast with types = (s_type_decl t) :: ast.types }
| ConstDecl c -> { ast with declarations = (s_const_decl c) :: ast.declarations }
| StorageDecl s -> { ast with storage_decl = Some (s_storage_decl s) }
| OpDecl o -> { ast with operations_decl = Some (s_operations_decl o) }
| LambdaDecl l -> { ast with declarations = (s_lambda_decl l) :: ast.declarations }
let s_ast (ast : I.ast) : O.ast =
let I.{decl=(decl1,decls);eof} = ast in
let () = ignore (eof) in
let {types; storage_decl; operations_decl; declarations} =
List.fold_left s_declaration
{ types = [];
storage_decl = None;
operations_decl = None;
declarations = [] }
( decl1 :: decls ) in
let storage_decl = match storage_decl with
Some x -> x
| None -> failwith "Missing storage declaration" in
let operations_decl = match operations_decl with
Some x -> x
| None -> failwith "Missing storage declaration"
in {types; storage_decl; operations_decl; declarations}
(* let s_token region lexeme = *)
(* printf "%s: %s\n"(compact region) lexeme *)
(* and s_var {region; value=lexeme} = *)
(* printf "%s: Ident \"%s\"\n" (compact region) lexeme *)
(* and s_constr {region; value=lexeme} = *)
(* printf "%s: Constr \"%s\"\n" *)
(* (compact region) lexeme *)
(* and s_string {region; value=lexeme} = *)
(* printf "%s: String \"%s\"\n" *)
(* (compact region) lexeme *)
(* and s_bytes {region; value = lexeme, abstract} = *)
(* printf "%s: Bytes (\"%s\", \"0x%s\")\n" *)
(* (compact region) lexeme *)
(* (MBytes.to_hex abstract |> Hex.to_string) *)
(* and s_int {region; value = lexeme, abstract} = *)
(* printf "%s: Int (\"%s\", %s)\n" *)
(* (compact region) lexeme *)
(* (Z.to_string abstract) *)
(* and s_parameters {value=node; _} = *)
(* let lpar, sequence, rpar = node in *)
(* s_token lpar "("; *)
(* s_nsepseq ";" s_param_decl sequence; *)
(* s_token rpar ")" *)
(* and s_param_decl = function *)
(* ParamConst param_const -> s_param_const param_const *)
(* | ParamVar param_var -> s_param_var param_var *)
(* and s_region_cases {value=sequence; _} = *)
(* s_nsepseq "|" s_case sequence *)
(* and s_case {value=node; _} = *)
(* let pattern, arrow, instruction = node in *)
(* s_pattern pattern; *)
(* s_token arrow "->"; *)
(* s_instruction instruction *)
(* and s_expr = function *)
(* Or {value = expr1, bool_or, expr2; _} -> *)
(* s_expr expr1; s_token bool_or "||"; s_expr expr2 *)
(* | And {value = expr1, bool_and, expr2; _} -> *)
(* s_expr expr1; s_token bool_and "&&"; s_expr expr2 *)
(* | Lt {value = expr1, lt, expr2; _} -> *)
(* s_expr expr1; s_token lt "<"; s_expr expr2 *)
(* | Leq {value = expr1, leq, expr2; _} -> *)
(* s_expr expr1; s_token leq "<="; s_expr expr2 *)
(* | Gt {value = expr1, gt, expr2; _} -> *)
(* s_expr expr1; s_token gt ">"; s_expr expr2 *)
(* | Geq {value = expr1, geq, expr2; _} -> *)
(* s_expr expr1; s_token geq ">="; s_expr expr2 *)
(* | Equal {value = expr1, equal, expr2; _} -> *)
(* s_expr expr1; s_token equal "="; s_expr expr2 *)
(* | Neq {value = expr1, neq, expr2; _} -> *)
(* s_expr expr1; s_token neq "=/="; s_expr expr2 *)
(* | Cat {value = expr1, cat, expr2; _} -> *)
(* s_expr expr1; s_token cat "^"; s_expr expr2 *)
(* | Cons {value = expr1, cons, expr2; _} -> *)
(* s_expr expr1; s_token cons "<:"; s_expr expr2 *)
(* | Add {value = expr1, add, expr2; _} -> *)
(* s_expr expr1; s_token add "+"; s_expr expr2 *)
(* | Sub {value = expr1, sub, expr2; _} -> *)
(* s_expr expr1; s_token sub "-"; s_expr expr2 *)
(* | Mult {value = expr1, mult, expr2; _} -> *)
(* s_expr expr1; s_token mult "*"; s_expr expr2 *)
(* | Div {value = expr1, div, expr2; _} -> *)
(* s_expr expr1; s_token div "/"; s_expr expr2 *)
(* | Mod {value = expr1, kwd_mod, expr2; _} -> *)
(* s_expr expr1; s_token kwd_mod "mod"; s_expr expr2 *)
(* | Neg {value = minus, expr; _} -> *)
(* s_token minus "-"; s_expr expr *)
(* | Not {value = kwd_not, expr; _} -> *)
(* s_token kwd_not "not"; s_expr expr *)
(* | Int i -> s_int i *)
(* | Var var -> s_var var *)
(* | String s -> s_string s *)
(* | Bytes b -> s_bytes b *)
(* | False region -> s_token region "False" *)
(* | True region -> s_token region "True" *)
(* | Unit region -> s_token region "Unit" *)
(* | Tuple tuple -> s_tuple tuple *)
(* | List list -> s_list list *)
(* | EmptyList elist -> s_empty_list elist *)
(* | Set set -> s_set set *)
(* | EmptySet eset -> s_empty_set eset *)
(* | NoneExpr nexpr -> s_none_expr nexpr *)
(* | FunCall fun_call -> s_fun_call fun_call *)
(* | ConstrApp capp -> s_constr_app capp *)
(* | SomeApp sapp -> s_some_app sapp *)
(* | MapLookUp lookup -> s_map_lookup lookup *)
(* | ParExpr pexpr -> s_par_expr pexpr *)
(* and s_list {value=node; _} = *)
(* let lbra, sequence, rbra = node in *)
(* s_token lbra "["; *)
(* s_nsepseq "," s_expr sequence; *)
(* s_token rbra "]" *)
(* and s_empty_list {value=node; _} = *)
(* let lpar, (lbracket, rbracket, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token lbracket "["; *)
(* s_token rbracket "]"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_set {value=node; _} = *)
(* let lbrace, sequence, rbrace = node in *)
(* s_token lbrace "{"; *)
(* s_nsepseq "," s_expr sequence; *)
(* s_token rbrace "}" *)
(* and s_empty_set {value=node; _} = *)
(* let lpar, (lbrace, rbrace, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token lbrace "{"; *)
(* s_token rbrace "}"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_none_expr {value=node; _} = *)
(* let lpar, (c_None, colon, type_expr), rpar = node in *)
(* s_token lpar "("; *)
(* s_token c_None "None"; *)
(* s_token colon ":"; *)
(* s_type_expr type_expr; *)
(* s_token rpar ")" *)
(* and s_constr_app {value=node; _} = *)
(* let constr, arguments = node in *)
(* s_constr constr; *)
(* s_tuple arguments *)
(* and s_some_app {value=node; _} = *)
(* let c_Some, arguments = node in *)
(* s_token c_Some "Some"; *)
(* s_tuple arguments *)
(* and s_map_lookup {value=node; _} = *)
(* let {value = lbracket, expr, rbracket; _} = node.index in *)
(* s_var node.map_name; *)
(* s_token node.selector "."; *)
(* s_token lbracket "["; *)
(* s_expr expr; *)
(* s_token rbracket "]" *)
(* and s_par_expr {value=node; _} = *)
(* let lpar, expr, rpar = node in *)
(* s_token lpar "("; *)
(* s_expr expr; *)
(* s_token rpar ")" *)
(* and s_pattern {value=sequence; _} = *)
(* s_nsepseq "<:" s_core_pattern sequence *)
(* and s_core_pattern = function *)
(* PVar var -> s_var var *)
(* | PWild wild -> s_token wild "_" *)
(* | PInt i -> s_int i *)
(* | PBytes b -> s_bytes b *)
(* | PString s -> s_string s *)
(* | PUnit region -> s_token region "Unit" *)
(* | PFalse region -> s_token region "False" *)
(* | PTrue region -> s_token region "True" *)
(* | PNone region -> s_token region "None" *)
(* | PSome psome -> s_psome psome *)
(* | PList pattern -> s_list_pattern pattern *)
(* | PTuple ptuple -> s_ptuple ptuple *)
(* and s_psome {value=node; _} = *)
(* let c_Some, patterns = node in *)
(* s_token c_Some "Some"; *)
(* s_patterns patterns *)
(* and s_patterns {value=node; _} = *)
(* let lpar, core_pattern, rpar = node in *)
(* s_token lpar "("; *)
(* s_core_pattern core_pattern; *)
(* s_token rpar ")" *)
(* and s_list_pattern = function *)
(* Sugar sugar -> s_sugar sugar *)
(* | Raw raw -> s_raw raw *)
(* and s_sugar {value=node; _} = *)
(* let lbracket, sequence, rbracket = node in *)
(* s_token lbracket "["; *)
(* s_sepseq "," s_core_pattern sequence; *)
(* s_token rbracket "]" *)
(* and s_raw {value=node; _} = *)
(* let lpar, (core_pattern, cons, pattern), rpar = node in *)
(* s_token lpar "("; *)
(* s_core_pattern core_pattern; *)
(* s_token cons "<:"; *)
(* s_pattern pattern; *)
(* s_token rpar ")" *)
(* and s_ptuple {value=node; _} = *)
(* let lpar, sequence, rpar = node in *)
(* s_token lpar "("; *)
(* s_nsepseq "," s_core_pattern sequence; *)
(* s_token rpar ")" *)
(* and s_terminator = function *)
(* Some semi -> s_token semi ";" *)
(* | None -> () *)