ligo/src/node/shell/state.ml
Vincent Bernardoff 0af5f6e7c3 tezos_compiler: changes
* Read TEZOS_PROTOCOL in json format
* Define Protocol module here
* Fix dependent modules to use Protocol defined here
* Compute hash of protocol if absent in TEZOS_PROTOCOL
2016-10-25 19:03:14 +02:00

1336 lines
47 KiB
OCaml

(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2016. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
open Logging.Node.State
type error +=
| Invalid_fitness of Fitness.fitness * Fitness.fitness
| Unknown_protocol of Protocol_hash.t
| Inactive_network of Store.net_id
| Unknown_network of Store.net_id
| Cannot_parse
let () =
Error_monad.register_error_kind
`Temporary
~id:"state.invalid_fitness"
~title:"Invalid fitness"
~description:"The computed fitness differs from the fitness found \
\ in the block header."
~pp:(fun ppf (expected, found) ->
Format.fprintf ppf
"@[<v 2>Invalid fitness@ \
\ expected %a@ \
\ found %a"
Fitness.pp expected
Fitness.pp found)
Data_encoding.(obj2
(req "expected" Fitness.encoding)
(req "found" Fitness.encoding))
(function Invalid_fitness (e, f) -> Some (e, f) | _ -> None)
(fun (e, f) -> Invalid_fitness (e, f)) ;
Error_monad.register_error_kind
`Temporary
~id:"state.unknown_network"
~title:"Unknown network"
~description:"TODO"
~pp:(fun ppf (Store.Net id) ->
Format.fprintf ppf "Unknown network %a" Block_hash.pp_short id)
Data_encoding.(obj1 (req "net" Updater.net_id_encoding))
(function Unknown_network x -> Some x | _ -> None)
(fun x -> Unknown_network x) ;
module Watcher = struct
type 'a t = {
id: int ;
push: ('a option -> unit) ;
}
let notify watchers info =
List.iter (fun w -> w.push (Some info)) watchers
let create_stream watchers =
let cpt = ref 0 in
fun () ->
let id = incr cpt ; !cpt in
let stream, push = Lwt_stream.create () in
watchers := { id ; push } :: !watchers ;
let unregister () =
push None ;
watchers := List.filter (fun w -> w.id <> id) !watchers in
stream, unregister
end
(** *)
type net_id = Store.net_id = Net of Block_hash.t
type t = {
mutable active_net: net list ;
nets: net Block_hash_table.t ;
store: Store.store ;
block_db: Db_proxy.Block.t ;
block_watchers: (Block_hash.t * Store.block) Watcher.t list ref ;
operation_db: Db_proxy.Operation.t ;
operation_watchers:
(Operation_hash.t * Store.operation) Watcher.t list ref ;
protocol_db: Db_proxy.Protocol.t ;
protocol_watchers:
(Protocol_hash.t * Store.protocol) Watcher.t list ref ;
valid_block_state: valid_block_state Persist.shared_ref ;
}
and state = t
and net = {
state: state ;
net_store: Store.net_store ;
blockchain_state: blockchain_state Persist.shared_ref ;
}
and valid_block_state = {
global_store: Store.generic_store Persist.shared_ref ;
ttl: Int64.t ;
index: Context.index ;
block_db: Db_proxy.Block.t ;
watchers: valid_block Watcher.t list ref ;
}
and blockchain_state = {
genesis_block: valid_block ;
current_head: valid_block ;
current_protocol: (module Updater.REGISTRED_PROTOCOL) ;
mempool: Operation_hash_set.t ;
blockchain_store: Store.blockchain_store Persist.shared_ref ;
}
and valid_block = {
net_id: net_id ;
hash: Block_hash.t ;
pred: Block_hash.t ;
timestamp: Time.t ;
fitness: Protocol.fitness ;
operations: Operation_hash.t list ;
discovery_time: Time.t ;
protocol_hash: Protocol_hash.t ;
protocol: (module Updater.REGISTRED_PROTOCOL) option ;
test_protocol_hash: Protocol_hash.t ;
test_protocol: (module Updater.REGISTRED_PROTOCOL) option ;
test_network: (net_id * Time.t) option ;
context: Context.t ;
successors: Block_hash_set.t ;
invalid_successors: Block_hash_set.t ;
}
module KnownHeads_key = struct
include Block_hash
let prefix = ["state"; "known_heads"]
let length = path_len
end
module KnownHeads =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (KnownHeads_key) (Block_hash_set)
module KnownNets_key = struct
include Block_hash
let prefix = ["state"; "known_nets"]
let length = path_len
end
module KnownNets =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (KnownNets_key) (Block_hash_set)
module InvalidOperations_key = struct
include Operation_hash
let prefix = ["state"; "invalid_operations"]
let length = path_len
end
module InvalidOperations =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (InvalidOperations_key) (Operation_hash_set)
module InvalidProtocols_key = struct
include Protocol_hash
let prefix = ["state"; "invalid_protocols"]
let length = path_len
end
module InvalidProtocols =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (InvalidProtocols_key) (Protocol_hash_set)
module InvalidBlocks_key = struct
include Block_hash
let prefix = ["state"; "invalid_blocks"]
let length = path_len
end
module InvalidBlocks =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (InvalidBlocks_key) (Block_hash_set)
module PostponedBlocks_key = struct
include Block_hash
let prefix = ["state"; "postponed_blocks"]
let length = path_len
end
module PostponedBlocks =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (PostponedBlocks_key) (Block_hash_set)
let net_is_active { active_net } net_id =
let same_id (Net id) { net_store = { net_genesis = { block } } } =
Block_hash.equal id block in
List.exists (same_id net_id) active_net
module Operation = struct
type key = Store.Operation.key
type shell_header = Store.shell_operation = {
net_id: net_id ;
}
type t = Store.operation = {
shell: shell_header ;
proto: MBytes.t ;
}
type operation = t
exception Invalid of key * error list
let of_bytes = Store.Operation.of_bytes
let to_bytes = Store.Operation.to_bytes
let known t k = Db_proxy.Operation.known t.operation_db k
let read t k = Db_proxy.Operation.read t.operation_db k
let read_exn t k =
Db_proxy.Operation.read t.operation_db k >>= function
| None -> Lwt.fail Not_found
| Some { data = Error e } -> Lwt.fail (Invalid (k, e))
| Some { data = Ok data ; time } -> Lwt.return { Time.data ; time }
let hash = Store.Operation.hash
let raw_read t k =
Persist.use t.store.Store.operation
(fun store -> Store.Operation.raw_get store k)
let prefetch t net_id ks =
List.iter (Db_proxy.Operation.prefetch t.operation_db net_id) ks
let fetch t net_id k = Db_proxy.Operation.fetch t.operation_db net_id k
let store t bytes =
match of_bytes bytes with
| None -> fail Cannot_parse
| Some op ->
if not (net_is_active t op.shell.net_id) then
fail (Inactive_network op.shell.net_id)
else
let h = hash op in
Db_proxy.Operation.store t.operation_db h (Time.make_timed (Ok op))
>>= function
| true ->
Watcher.notify !(t.operation_watchers) (h, op) ;
return (Some (h, op))
| false ->
return None
let mark_invalid t k e =
Db_proxy.Operation.update t.operation_db k (Time.make_timed (Error e))
>>= function
| true ->
Persist.update t.store.global_store (fun store ->
InvalidOperations.set store k >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
Lwt.return true
| false -> Lwt.return false
let invalid state =
Persist.use state.store.global_store InvalidOperations.read
let create_watcher t = Watcher.create_stream t.operation_watchers ()
end
module Protocol = struct
type key = Store.Protocol.key
type component = Tezos_compiler.Protocol.component = {
name: string;
interface: string option;
implementation: string
}
type t = Store.protocol
type protocol = t
exception Invalid of key * error list
let of_bytes = Store.Protocol.of_bytes
let to_bytes = Store.Protocol.to_bytes
let known t k = Db_proxy.Protocol.known t.protocol_db k
let read t k = Db_proxy.Protocol.read t.protocol_db k
let read_exn t k =
Db_proxy.Protocol.read t.protocol_db k >>= function
| None -> Lwt.fail Not_found
| Some { data = Error e } -> Lwt.fail (Invalid (k, e))
| Some { data = Ok data ; time } -> Lwt.return { Time.data ; time }
let hash = Store.Protocol.hash
let raw_read t k =
Persist.use t.store.Store.protocol
(fun store -> Store.Protocol.raw_get store k)
let prefetch t net_id ks =
List.iter (Db_proxy.Protocol.prefetch t.protocol_db net_id) ks
let fetch t net_id k = Db_proxy.Protocol.fetch t.protocol_db net_id k
let store t bytes =
match of_bytes bytes with
| None -> fail Cannot_parse
| Some proto ->
let h = hash proto in
Db_proxy.Protocol.store t.protocol_db h (Time.make_timed (Ok proto))
>>= function
| true ->
Watcher.notify !(t.protocol_watchers) (h, proto) ;
return (Some (h, proto))
| false ->
return None
let mark_invalid t k e =
Db_proxy.Protocol.update t.protocol_db k (Time.make_timed (Error e))
>>= function
| true ->
Persist.update t.store.global_store (fun store ->
InvalidProtocols.set store k >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
Lwt.return true
| false -> Lwt.return false
let invalid state =
Persist.use state.store.global_store InvalidProtocols.read
let create_watcher t = Watcher.create_stream t.protocol_watchers ()
let keys { protocol_db } = Db_proxy.Protocol.keys protocol_db
end
let iter_predecessors
(type t)
(compare: t -> t -> int)
(predecessor: state -> t -> t option Lwt.t)
(date: t -> Time.t)
(fitness: t -> Fitness.fitness)
state ?max ?min_fitness ?min_date heads ~f =
let module Local = struct exception Exit end in
let pop, push =
(* Poor-man priority queue *)
let queue : t list ref = ref [] in
let pop () =
match !queue with
| [] -> None
| b :: bs -> queue := bs ; Some b in
let push b =
let rec loop = function
| [] -> [b]
| b' :: bs' as bs ->
let cmp = compare b b' in
if cmp = 0 then
bs
else if cmp < 0 then
b' :: loop bs'
else
b :: bs in
queue := loop !queue in
pop, push in
let check_count =
match max with
| None -> (fun () -> ())
| Some max ->
let cpt = ref 0 in
fun () ->
if !cpt >= max then raise Local.Exit ;
incr cpt in
let check_fitness =
match min_fitness with
| None -> (fun _ -> true)
| Some min_fitness ->
(fun b -> Fitness.compare min_fitness (fitness b) <= 0) in
let check_date =
match min_date with
| None -> (fun _ -> true)
| Some min_date -> (fun b -> Time.compare min_date (date b) <= 0) in
let rec loop () =
match pop () with
| None -> return ()
| Some b ->
check_count () ;
f b >>= fun () ->
predecessor state b >>= function
| None -> loop ()
| Some p ->
if check_fitness p && check_date p then push p ;
loop () in
List.iter push heads ;
try loop () with Local.Exit -> return ()
module Block = struct
type shell_header = Store.shell_block = {
net_id: net_id ;
predecessor: Block_hash.t ;
timestamp: Time.t ;
fitness: MBytes.t list ;
operations: Operation_hash.t list ;
}
type t = Store.block = {
shell: shell_header ;
proto: MBytes.t ;
}
type block = t
let of_bytes = Store.Block.of_bytes
let to_bytes = Store.Block.to_bytes
let known t k = Db_proxy.Block.known t.block_db k
let db_read db k =
Db_proxy.Block.read db k >>= function
| None -> Lwt.return_none
| Some (_, lazy block) -> block
let read t k = db_read t.block_db k
let read_exn t k =
read t k >>= function
| None -> Lwt.fail Not_found
| Some { data = data ; time } -> Lwt.return { Time.data ; time }
let hash = Store.Block.hash
let raw_read t k =
Persist.use t.store.Store.block
(fun store -> Store.Block.raw_get store k)
let read_pred t k =
Db_proxy.Block.read t.block_db k >>= function
| None -> Lwt.return_none
| Some (pred, _) -> Lwt.return (Some pred)
let read_pred_exn t k =
read_pred t k >>= function
| None -> Lwt.fail Not_found
| Some pred -> Lwt.return pred
let prefetch t net_id ks =
List.iter (Db_proxy.Block.prefetch t.block_db net_id) ks
let fetch t net_id k =
Db_proxy.Block.fetch t.block_db net_id k >>= fun (_, lazy block) ->
block >>= function
| None -> assert false
| Some block -> Lwt.return block
let db_store db k (v: Store.block) =
Db_proxy.Block.store db k
(v.shell.predecessor, lazy (Lwt.return (Some (Time.make_timed v))))
let store t bytes =
match of_bytes bytes with
| None -> fail Cannot_parse
| Some b ->
if not (net_is_active t b.shell.net_id) then
fail (Inactive_network b.shell.net_id)
else
let h = hash b in
db_store t.block_db h b >>= function
| true ->
Persist.update t.store.global_store (fun store ->
PostponedBlocks.set store h >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
Watcher.notify !(t.block_watchers) (h, b) ;
return (Some (h, b))
| false -> return None
let create_watcher t = Watcher.create_stream t.block_watchers ()
let check_block state h =
known state h >>= function
| true -> return ()
| false -> failwith "Unknown block"
let path state h1 h2 =
trace_exn (Failure "State.path") begin
check_block state h1 >>=? fun () ->
check_block state h2 >>=? fun () ->
let rec loop acc h =
if Block_hash.equal h h1 then
return acc
else
read_pred state h >>= function
| None -> failwith "not an ancestor"
| Some pred ->
loop (h :: acc) pred in
loop [] h2
end
let common_ancestor state h1 h2 =
trace_exn (Failure "State.common_ancestor") begin
check_block state h1 >>=? fun () ->
check_block state h2 >>=? fun () ->
let queue = Queue.create () in
let rec visit seen =
let h = Queue.pop queue in
if Block_hash_set.mem h seen then
return h
else
let seen = Block_hash_set.add h seen in
read_pred state h >>= function
| None -> failwith ".."
| Some pred ->
if not (Block_hash.equal pred h) then
Queue.push pred queue;
visit seen
in
Queue.push h1 queue;
Queue.push h2 queue;
Lwt.catch
(fun () -> visit Block_hash_set.empty)
(function exn -> Lwt.return (error_exn exn))
end
let rec block_locator_loop state acc sz step cpt h =
if sz = 0 then Lwt.return (List.rev acc) else
read_pred state h >>= function
| None -> Lwt.return (List.rev (h :: acc))
| Some pred ->
if cpt = 0 then
block_locator_loop state
(h :: acc) (sz - 1) (step * 2) (step * 20 - 1) pred
else if cpt mod step = 0 then
block_locator_loop state (h :: acc) (sz - 1) step (cpt - 1) pred
else
block_locator_loop state acc sz step (cpt - 1) pred
let block_locator state sz h =
trace_exn (Failure "State.block_locator") begin
check_block state h >>=? fun () ->
block_locator_loop state [] sz 1 9 h >>= fun locator ->
return locator
end
let iter_predecessors =
let compare b1 b2 =
match Fitness.compare b1.shell.fitness b2.shell.fitness with
| 0 -> begin
match Time.compare b1.shell.timestamp b2.shell.timestamp with
| 0 -> Block_hash.compare (hash b1) (hash b2)
| res -> res
end
| res -> res in
let predecessor state b =
read state b.shell.predecessor >|= function
| None -> None
| Some { data } ->
if Block_hash.equal data.shell.predecessor b.shell.predecessor
&& Block_hash.equal (hash b) b.shell.predecessor
then
None
else
Some data in
iter_predecessors compare predecessor
(fun b -> b.shell.timestamp) (fun b -> b.shell.fitness)
end
module Valid_block = struct
type t = valid_block = {
net_id: net_id ;
hash: Block_hash.t ;
pred: Block_hash.t ;
timestamp: Time.t ;
fitness: Fitness.fitness ;
operations: Operation_hash.t list ;
discovery_time: Time.t ;
protocol_hash: Protocol_hash.t ;
protocol: (module Updater.REGISTRED_PROTOCOL) option ;
test_protocol_hash: Protocol_hash.t ;
test_protocol: (module Updater.REGISTRED_PROTOCOL) option ;
test_network: (net_id * Time.t) option ;
context: Context.t ;
successors: Block_hash_set.t ;
invalid_successors: Block_hash_set.t ;
}
type valid_block = t
let use state f = Persist.use state.valid_block_state f
let update state f = Persist.update state.valid_block_state f
let update_with_res state f = Persist.update_with_res state.valid_block_state f
let raw_read' { Time.data = { Store.shell = block } ;
time = discovery_time } successors invalid_successors index hash =
Context.checkout index hash >>= function
| (None | Some (Error _)) as e -> Lwt.return e
| Some (Ok context) ->
Context.get_protocol context >>= fun protocol_hash ->
Context.get_test_protocol context >>= fun test_protocol_hash ->
Context.get_test_network context >>= fun test_network ->
Context.get_test_network_expiration
context >>= fun test_network_expiration ->
let test_network =
match test_network, test_network_expiration with
| None, _ | _, None -> None
| Some net_id, Some time -> Some (net_id, time) in
let protocol = Updater.get protocol_hash in
let test_protocol = Updater.get test_protocol_hash in
let valid_block = {
net_id = block.net_id ;
hash ;
pred = block.predecessor ;
timestamp = block.timestamp ;
discovery_time ;
operations = block.operations ;
fitness = block.fitness ;
protocol_hash ;
protocol ;
test_protocol_hash ;
test_protocol ;
test_network ;
context ;
successors ;
invalid_successors ;
} in
Lwt.return (Some (Ok valid_block))
let raw_read store block_db index hash =
Block.db_read block_db hash >>= function
| None ->
(* TODO handle internal error... *)
Lwt.return_none
| Some block ->
Persist.use store (fun store ->
Store.Block_valid_succs.get store hash >|= function
| None -> Block_hash_set.empty
| Some set -> set) >>= fun valid_successors ->
Persist.use store (fun store ->
Store.Block_invalid_succs.get store hash >|= function
| None -> Block_hash_set.empty
| Some set -> set) >>= fun invalid_successors ->
raw_read' block valid_successors invalid_successors index hash
let create ?patch_context ~context_root store block_db ttl =
Context.init ?patch_context ~root:context_root >>= fun index ->
let ttl = Int64.of_int ttl in
Lwt.return
(Persist.share { global_store = store ;
block_db ; index ;
ttl ; watchers = ref [] })
let locked_valid vstate h =
Context.checkout vstate.index h >>= function
| None | Some (Error _) -> Lwt.return_false
| Some (Ok _) -> Lwt.return true
let locked_known vstate h = Context.exists vstate.index h
exception Invalid of Block_hash.t * error list
let locked_read (vstate: valid_block_state) hash =
raw_read vstate.global_store vstate.block_db vstate.index hash
let locked_read_exn vstate hash =
locked_read vstate hash >>= function
| None -> Lwt.fail Not_found
| Some (Error e) -> Lwt.fail (Invalid (hash, e))
| Some (Ok data) -> Lwt.return data
let locked_store vstate hash context =
Context.exists vstate.index hash >>= function
| true -> Lwt.return (Error []) (* TODO fail ?? *)
| false ->
Block.db_read vstate.block_db hash >>= function
| None -> assert false
| Some { data = block } ->
Context.get_protocol context >>= fun protocol_hash ->
match Updater.get protocol_hash with
| None ->
lwt_log_error
"State.Validated_block: unknown protocol (%a)"
Protocol_hash.pp_short protocol_hash >>= fun () ->
Lwt.return (Error [Unknown_protocol protocol_hash])
| Some (module Proto) ->
Proto.fitness context >>= fun fitness ->
if Fitness.compare fitness block.Store.shell.fitness <> 0
then begin
let err = Invalid_fitness (block.Store.shell.fitness, fitness) in
Context.commit_invalid
vstate.index block hash [err] >>= fun () ->
Lwt.return (Error [err])
end else begin
Context.read_and_reset_fork_test_network
context >>= fun (fork, context) ->
begin
if fork then begin
let eol = Time.(add block.shell.timestamp vstate.ttl) in
Context.set_test_network
context (Net hash) >>= fun context ->
Context.set_test_network_expiration context
eol >>= fun context ->
lwt_log_notice "Fork test network for %a (eol: %a)"
Block_hash.pp_short hash Time.pp_hum eol >>= fun () ->
Lwt.return context
end else begin
Context.get_test_network_expiration context >>= function
| Some eol when Time.(eol <= now ()) ->
lwt_log_notice
"Stop test network for %a (eol: %a, now: %a)"
Block_hash.pp_short hash
Time.pp_hum eol Time.pp_hum (Time.now ())
>>= fun () ->
Context.del_test_network context >>= fun context ->
Context.del_test_network_expiration context
| None | Some _ -> Lwt.return context
end
end >>= fun context ->
Context.commit vstate.index block hash context >>= fun () ->
locked_read_exn vstate hash >>= fun valid_block ->
Persist.update vstate.global_store (fun store ->
KnownHeads.del store block.shell.predecessor >>= fun store ->
KnownHeads.set store hash >>= fun store ->
PostponedBlocks.del store hash >>= fun store ->
begin
Store.Block_valid_succs.get
store block.shell.predecessor >|= function
| None -> Block_hash_set.singleton hash
| Some set -> Block_hash_set.add hash set
end >>= fun successors ->
Store.Block_valid_succs.set
store block.shell.predecessor successors >>= fun () ->
Lwt.return (Some store)) >>= fun _ ->
Watcher.notify !(vstate.watchers) valid_block ;
Lwt.return (Ok valid_block)
end
let create_genesis_block state (genesis: Store.genesis) test_protocol =
use state (fun vstate ->
locked_read vstate genesis.block >>= function
| Some res ->
(* TODO check coherency: test_protocol. *)
Lwt.return res
| None ->
let test_protocol = Utils.unopt genesis.protocol test_protocol in
Context.create_genesis_context
vstate.index genesis test_protocol >>= fun _context ->
Block.db_store vstate.block_db genesis.block {
shell = {
net_id = Net genesis.block ;
predecessor = genesis.block ;
timestamp = genesis.time ;
fitness = [] ;
operations = [] ;
} ;
proto = MBytes.create 0 ;
} >>= fun _ ->
locked_read vstate genesis.block >>= function
| None -> failwith ""
| Some (Error _ as err) -> Lwt.return err
| Some (Ok valid_block) ->
Persist.update vstate.global_store (fun store ->
KnownHeads.set store valid_block.hash >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
return valid_block)
let locked_store_invalid vstate hash exns =
Context.exists vstate.index hash >>= function
| true -> Lwt.return false (* TODO fail ?? *)
| false ->
Block.db_read vstate.block_db hash >>= function
| None -> assert false
| Some { data = block } ->
Context.commit_invalid vstate.index block hash exns >>= fun () ->
Persist.update vstate.global_store (fun store ->
InvalidBlocks.set store hash >>= fun store ->
begin
Store.Block_invalid_succs.get
store block.shell.predecessor >|= function
| None -> Block_hash_set.singleton hash
| Some set -> Block_hash_set.add hash set
end >>= fun successors ->
Store.Block_invalid_succs.set
store block.shell.predecessor successors >>= fun () ->
Lwt.return (Some store)) >>= fun _ ->
Lwt.return true
let get_store { valid_block_state } = valid_block_state
let valid state h =
use state (fun vstate -> locked_valid vstate h)
let known state h =
use state (fun vstate -> locked_known vstate h)
let read state hash =
use state (fun vstate -> locked_read vstate hash)
let read_exn state hash =
use state (fun vstate -> locked_read_exn vstate hash)
let store state hash context =
use state
(fun vstate -> locked_store vstate hash context) >>= fun block ->
Lwt.return block
let store_invalid state hash exns =
use state (fun vstate -> locked_store_invalid vstate hash exns)
let known_heads state =
use state (fun vstate ->
Persist.use vstate.global_store KnownHeads.read >>= fun heads ->
let elements = Block_hash_set.elements heads in
Lwt_list.fold_left_s
(fun set hash ->
Block.db_read vstate.block_db hash >>= function
| None -> Lwt.return set
| Some block ->
Persist.use vstate.global_store (fun store ->
begin
Store.Block_invalid_succs.get
store block.data.shell.predecessor >|= function
| None -> Block_hash_set.singleton hash
| Some set -> set
end) >>= fun invalid_successors ->
raw_read' block Block_hash_set.empty
invalid_successors vstate.index hash >>= function
| Some (Ok bl) -> Lwt.return (Block_hash_map.add hash bl set)
| None | Some (Error _) ->
lwt_log_error
"Error while reading \"known_heads\". Ignoring %a."
Block_hash.pp_short hash >>= fun () ->
Lwt.return set)
Block_hash_map.empty
elements)
let postponed state =
use state (fun vstate ->
Persist.use vstate.global_store PostponedBlocks.read)
let invalid state =
use state (fun vstate ->
Persist.use vstate.global_store InvalidBlocks.read)
let path state b1 b2 =
let rec loop acc b =
if Block_hash.equal b.hash b1.hash then
Lwt.return (Some acc)
else
read state b.pred >>= function
| None -> Lwt.return None
| Some (Error _) -> assert false
| Some (Ok pred) -> loop (b :: acc) pred in
loop [] b2
let common_ancestor state b1 b2 =
let queue = Queue.create () in
let rec visit seen =
let b = Queue.pop queue in
if Block_hash_set.mem b.hash seen then
Lwt.return b
else
let seen = Block_hash_set.add b.hash seen in
read state b.pred >>= function
| None -> visit seen
| Some (Error _) -> assert false
| Some (Ok pred) ->
if not (Block_hash.equal pred.hash b.hash) then
Queue.push pred queue;
visit seen
in
Queue.push b1 queue;
Queue.push b2 queue;
visit Block_hash_set.empty
let block_locator state sz b =
Block.block_locator_loop state [] sz 1 9 b.hash
let new_blocks state cur_block new_block =
common_ancestor state cur_block new_block >>= fun ancestor ->
path state ancestor new_block >>= function
| None -> assert false
| Some path -> Lwt.return (ancestor, path)
let create_watcher state =
use state (fun vstate ->
Lwt.return (Watcher.create_stream vstate.watchers ()))
module Store = struct
type t = valid_block_state
type key = Block_hash.t
type value = Context.t tzresult
let mem vstate h = locked_known vstate h
let del _ _ = assert false (* unused *)
let get vstate hash =
locked_read vstate hash >>= function
| None -> Lwt.return None
| Some (Ok { context }) -> Lwt.return (Some (Ok context))
| Some (Error exns) -> Lwt.return (Some (Error exns))
let set vstate hash = function
| Ok context -> begin
locked_store vstate hash context >>= fun _ ->
Lwt.return vstate
end
| Error exns ->
locked_store_invalid vstate hash exns >>= fun _changed ->
Lwt.return vstate
let keys _ = Store.undefined_key_fn
end
let iter_predecessors =
let compare b1 b2 =
match Fitness.compare b1.fitness b2.fitness with
| 0 -> begin
match Time.compare b1.timestamp b2.timestamp with
| 0 -> Block_hash.compare b1.hash b2.hash
| res -> res
end
| res -> res in
let predecessor state b =
if Block_hash.equal b.hash b.pred then
Lwt.return None
else
read state b.pred >|= function
| None | Some (Error _) -> None
| Some (Ok b) -> Some b in
iter_predecessors compare predecessor
(fun b -> b.timestamp) (fun b -> b.fitness)
end
module Blockchain = struct
let use state f = Persist.use state.blockchain_state f
let update state f = Persist.update state.blockchain_state f
let read_state, store_state =
let current_block_key = ["current_block"] in
let module Mempool_key = struct
include Operation_hash
let prefix = ["mempool"]
let length = path_len
end in
let module Mempool =
Persist.MakeBufferedPersistentSet
(Store.Faked_functional_store) (Mempool_key) (Operation_hash_set) in
let read genesis gstore sstore (vstate: valid_block_state) =
begin
Valid_block.locked_read vstate genesis.Store.block >>= function
| None | Some (Error _) -> fatal_error ""
| Some (Ok genesis_block) ->
match genesis_block.test_network with
| None -> Lwt.return genesis_block
| Some _ ->
let context = genesis_block.context in
Context.del_test_network context >>= fun context ->
Context.set_protocol
context genesis_block.test_protocol_hash >>= fun context ->
Lwt.return
{ genesis_block with
net_id = Net genesis_block.hash ;
context ;
protocol = genesis_block.test_protocol ;
protocol_hash = genesis_block.test_protocol_hash ;
test_network = None ;
}
end >>= fun genesis_block ->
begin
Persist.use gstore (fun store ->
Store.get store current_block_key) >>= function
| None -> Lwt.return genesis.Store.block
| Some current_block -> Lwt.return (Block_hash.of_bytes current_block)
end >>= fun current_head_hash ->
begin
if Block_hash.equal current_head_hash genesis_block.hash then
Lwt.return genesis_block
else
Valid_block.locked_read vstate current_head_hash >>= function
| None -> fatal_error "Internal error while loading the current block."
| Some (Error exn) ->
fatal_error
"@[<v 2>Internal error while loading the current block:@ %a@]"
(fun ppf -> Error_monad.pp_print_error ppf) exn
| Some (Ok current_head) ->
Lwt.return current_head
end >>= fun current_head ->
Persist.use gstore Mempool.read >>= fun mempool ->
let current_protocol =
match current_head.protocol with
| None -> fatal_error "Protocol version for the current head is unknown"
| Some protocol -> protocol in
Lwt.return
(Persist.share { current_head ; current_protocol ; genesis_block ;
mempool ; blockchain_store = sstore })
in
let store net { current_head ; mempool } =
Persist.update net.net_store.net_store (fun store ->
Store.set store current_block_key
(Block_hash.to_bytes current_head.hash) >>= fun () ->
Mempool.write store mempool >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
Lwt.return_unit
in
(read, store)
let locked_head bstate = Lwt.return bstate.current_head
let locked_protocol bstate = Lwt.return bstate.current_protocol
let locked_mem (bstate : blockchain_state) store h =
let genesis = bstate.genesis_block.hash in
if Block_hash.equal genesis h then
Lwt.return true
else
Store.Blockchain.mem store h
let genesis net =
use net (fun vstate -> Lwt.return vstate.genesis_block)
let head net = use net locked_head
let protocol net = use net locked_protocol
let mem net h =
use net (fun bstate ->
Persist.use bstate.blockchain_store (fun store ->
locked_mem bstate store h))
let find_new net hist sz =
let rec path net_id store sz acc h =
if sz <= 0 then return (List.rev acc)
else
Store.Blockchain_succ.get store h >>= function
| None -> return (List.rev acc)
| Some s -> path net_id store (sz-1) (s :: acc) s
in
let rec common_ancestor (bstate: blockchain_state) store hist =
match hist with
| [] ->
Lwt.return bstate.genesis_block.hash
| h :: hist ->
locked_mem bstate store h >>= function
| false -> common_ancestor bstate store hist
| true -> Lwt.return h in
use net (fun bstate ->
Persist.use bstate.blockchain_store
(fun store ->
common_ancestor bstate store hist >>= fun ancestor ->
let net_id = Net bstate.genesis_block.hash in
if Block_hash.equal ancestor bstate.genesis_block.hash then
Store.Blockchain_test_succ.get store ancestor >>= function
| None ->
if Block_hash.equal ancestor bstate.current_head.hash then
return []
else
return [ancestor]
| Some s -> path net_id store (sz-1) [ancestor] s
else
path net_id store sz [] ancestor
))
let pop_block state bstate =
lwt_debug "pop_block %a"
Block_hash.pp_short bstate.current_head.hash >>= fun () ->
Valid_block.read_exn state bstate.current_head.pred >>= fun pred_block ->
Persist.use bstate.blockchain_store (fun sstore ->
Store.Blockchain.del sstore bstate.current_head.hash >>= fun () ->
if Block_hash.equal pred_block.hash bstate.genesis_block.hash then
Store.Blockchain_test_succ.del sstore pred_block.hash
else
Store.Blockchain_succ.del sstore pred_block.hash) >>= fun () ->
let mempool =
List.fold_left
(fun mempool h -> Operation_hash_set.add h mempool)
bstate.mempool bstate.current_head.operations in
Lwt.return { bstate with current_head = pred_block ; mempool }
let rec pop_blocks state bstate ancestor =
if not (Block_hash.equal bstate.current_head.hash ancestor) then begin
pop_block state bstate >>= fun bstate ->
pop_blocks state bstate ancestor
end else
Lwt.return bstate
let push_block time (bstate: blockchain_state) (block: valid_block) =
lwt_debug "push_block %a" Block_hash.pp_short block.hash >>= fun () ->
Persist.use bstate.blockchain_store (fun sstore ->
Store.Blockchain.set sstore block.hash time >>= fun () ->
if Block_hash.equal block.pred bstate.genesis_block.hash then
Store.Blockchain_test_succ.set sstore block.pred block.hash
else
Store.Blockchain_succ.set sstore block.pred block.hash) >>= fun () ->
let mempool =
List.fold_left
(fun mempool h -> Operation_hash_set.remove h mempool)
bstate.mempool block.operations in
Lwt.return { bstate with current_head = block ; mempool }
let locked_set_head net bstate block =
let Net net_id = block.net_id in
if not (Block_hash.equal net_id net.net_store.net_genesis.block) then
invalid_arg "State.Blockchain.set_head" ;
lwt_debug "set_head %a" Block_hash.pp_short block.hash >>= fun () ->
let current_protocol =
match block.protocol with
| None ->
fatal_error "Protocol version for the new head is unknown"
| Some protocol -> protocol in
Valid_block.new_blocks
net.state bstate.current_head block >>= fun (ancestor, path) ->
pop_blocks net.state bstate ancestor.hash >>= fun bstate ->
let time = Time.now () in
Lwt_list.fold_left_s
(push_block time) bstate path >>= fun bstate ->
let bstate = { bstate with current_protocol } in
store_state net bstate >>= fun () ->
Lwt.return (Some bstate)
let set_head net block =
update net (fun bstate -> locked_set_head net bstate block) >>= fun _ ->
Lwt.return_unit
let test_and_set_head net ~old block =
update net (fun bstate ->
if not (Block_hash.equal bstate.current_head.hash old.hash) then
Lwt.return None
else
locked_set_head net bstate block)
end
module Mempool = struct
let use = Blockchain.use
let update = Blockchain.update
let get net =
use net (fun bstate -> Lwt.return bstate.mempool)
let add net h =
update net (fun bstate ->
if Operation_hash_set.mem h bstate.mempool then
Lwt.return_none
else begin
let bstate =
{ bstate with
mempool = Operation_hash_set.add h bstate.mempool } in
Lwt.return (Some bstate)
end)
let remove net h =
update net (fun bstate ->
if Operation_hash_set.mem h bstate.mempool then begin
let bstate =
{ bstate with
mempool = Operation_hash_set.remove h bstate.mempool } in
Lwt.return (Some bstate)
end else
Lwt.return_none)
let for_block net block =
let rec pop acc ancestor block =
if Block_hash.equal ancestor.hash block.hash then
Lwt.return acc
else begin
let acc =
let add acc x = Operation_hash_set.add x acc in
List.fold_left add acc block.operations in
Valid_block.read_exn net.state block.pred >>= fun pred ->
pop acc ancestor pred
end in
use net (fun bstate ->
Valid_block.new_blocks
net.state bstate.current_head block >>= fun (ancestor, path) ->
pop bstate.mempool ancestor bstate.current_head >|= fun ops ->
List.fold_left
(fun ops (b: valid_block) ->
let del acc x = Operation_hash_set.remove x acc in
List.fold_left del ops b.operations)
ops
path)
end
module Net = struct
type t = net
type net = t
module Blockchain = Blockchain
module Mempool = Mempool
let raw_create state (net_store : Store.net_store) =
Persist.use state.valid_block_state (fun vstate ->
Blockchain.read_state
net_store.net_genesis
net_store.net_store
state.store.blockchain vstate)
>|= fun blockchain_state ->
{ state ; net_store ; blockchain_state }
let read_state, store_state =
let read state store =
Persist.use store.Store.global_store KnownNets.read >>= fun nets ->
let elements = Block_hash_set.elements nets in
Lwt_list.iter_p
(fun hash ->
store.net_read (Net hash) >>= function
| Error err ->
lwt_log_error "@[<v 2>Error while loading net:@ %a@]"
Error_monad.pp_print_error err
| Ok net_store ->
raw_create state net_store >>= fun net ->
Block_hash_table.add state.nets hash net ;
Lwt.return ()
)
elements
in
let store { store = { global_store }; nets } =
Persist.update global_store
(fun store ->
let nets =
Block_hash_table.fold
(fun h _ s -> Block_hash_set.add h s)
nets Block_hash_set.empty in
KnownNets.write store nets >>= fun store ->
Lwt.return (Some store)) >>= fun _ ->
Lwt.return_unit in
(read, store)
let state { state } = state
let active { active_net } = active_net
let get { nets } (Net b) =
try ok (Block_hash_table.find nets b)
with Not_found -> error (Unknown_network (Net b))
let all { nets } =
Block_hash_table.fold (fun _ net acc -> net :: acc) nets []
let id { net_store = { net_genesis = { block } } } = Net block
let expiration { net_store = { net_expiration } } = net_expiration
let same_id (Net id') net =
let Net id = id net in
Block_hash.equal id id'
let is_active { active_net } net_id =
List.exists (same_id net_id) active_net
let activate net =
let s = net.state in
let net_id = id net in
if not (List.exists (same_id net_id) s.active_net) then
s.active_net <- net :: s.active_net
let deactivate net =
let s = net.state in
let net_id = id net in
s.active_net <-
List.filter (fun net -> not (same_id net_id net)) s.active_net
let create state ?expiration ?test_protocol net_genesis =
Valid_block.create_genesis_block
state net_genesis test_protocol >>=? fun _ ->
state.store.net_init ?expiration net_genesis >>= fun net_store ->
raw_create state net_store >>= fun net ->
store_state state >>= fun () ->
Block_hash_table.add state.nets net_genesis.block net ;
return net
let cleanup_blocks_and_operations net =
let Net net_id = id net in
let same_id (Net id) = Block_hash.equal net_id id in
let cleanup_operation h =
ignore @@
Persist.use net.state.store.operation (fun store ->
Store.Operation.del store h) in
let rec cleanup_block h =
Block.read net.state h >>= function
| Some b when same_id b.data.shell.net_id ->
Persist.use net.state.store.block (fun store ->
Store.Block.del store h) >>= fun () ->
List.iter cleanup_operation b.data.shell.operations ;
cleanup_block b.data.shell.predecessor ;
| None | Some _ -> Lwt.return_unit in
Mempool.get net >>= fun ops ->
Operation_hash_set.iter cleanup_operation ops ;
Valid_block.postponed net.state >>= fun postponed ->
Block_hash_set.iter (fun h -> ignore (cleanup_block h)) postponed ;
Valid_block.known_heads net.state >>= fun known_heads ->
Block_hash_map.iter
(fun _ v ->
if same_id v.net_id then
ignore @@ begin
Persist.use net.state.store.block (fun store ->
Store.Block.del store v.hash) >>= fun () ->
cleanup_block v.pred
end)
known_heads ;
Lwt.return_unit
let destroy net =
lwt_debug "destroy %a" Store.pp_net_id (id net) >>= fun () ->
let Net net_genesis as net_id = id net in
Block_hash_table.remove net.state.nets net_genesis ;
net.state.active_net <-
List.filter (fun net -> id net <> net_id) net.state.active_net ;
store_state net.state >>= fun () ->
net.state.store.net_destroy net.net_store >>= fun () ->
Lwt.async (fun () -> cleanup_blocks_and_operations net);
Lwt.return_unit
end
let () =
let open Data_encoding in
register_error_kind `Permanent
~id:"refusedOperation"
~title: "Refused operation"
~description:
"An operation that will never be accepted (by any protocol version)."
~pp:(fun ppf hash ->
Format.fprintf ppf "Refused operation %a"
Operation_hash.pp_short hash)
(obj1 (req "operation_hash" Operation_hash.encoding))
(function Exn (Operation.Invalid (hash, _)) -> Some hash | _ -> None)
(fun hash -> Exn (Operation.Invalid (hash, [(* TODO *)])))
let () =
let open Data_encoding in
register_error_kind `Permanent
~id: "invalidBlock"
~title: "Invalid block"
~description:
"The economical protocol refused to validate the block."
~pp:(fun ppf block_hash ->
Format.fprintf ppf "Cannot validate the block %a"
Block_hash.pp_short block_hash)
(obj1 (req "block_hash" Block_hash.encoding))
(function Exn (Valid_block.Invalid (block_hash, _)) -> Some block_hash
| _ -> None)
(fun block_hash -> Exn (Valid_block.Invalid (block_hash, [(* TODO *)])))
(** Whole protocol state : read and store. *)
let read
~request_operations ~request_blocks ~request_protocols
~store_root ~context_root ~ttl ?patch_context () =
Store.init store_root >>= fun store ->
lwt_log_info "Initialising the distributed database..." >>= fun () ->
let operation_db =
Db_proxy.Operation.create { request_operations } store.operation in
let protocol_db =
Db_proxy.Protocol.create { request_protocols } store.protocol in
let block_db =
Db_proxy.Block.create { request_blocks } store.block in
Valid_block.create
?patch_context ~context_root
store.global_store block_db ttl >>= fun valid_block_state ->
let rec state = {
store ;
active_net = [] ;
nets = Block_hash_table.create 7 ;
operation_db ;
operation_watchers = ref [] ;
protocol_db ;
protocol_watchers = ref [] ;
block_db ; block_watchers = ref [] ;
valid_block_state ;
}
in
Net.read_state state store >>= fun _nets ->
Lwt.return state
let store state =
let nets =
Block_hash_table.fold (fun _ net acc -> net :: acc) state.nets [] in
Net.store_state state >>= fun () ->
Lwt_list.iter_s
(fun net ->
Blockchain.use net
(fun bstate -> Blockchain.store_state net bstate))
nets
let shutdown state =
Lwt.join [ Db_proxy.Operation.shutdown state.operation_db ;
Db_proxy.Block.shutdown state.block_db ;
] >>= fun () ->
store state