ligo/src/node/shell/distributed_db.ml
Pietro Abate 6ecfca9396 Reindent all files
Now `make test` fails when sources are not indented correctly, the
indentation test is also executed in the CI.
2017-11-13 23:13:34 +01:00

982 lines
32 KiB
OCaml

(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2016. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
module Message = Distributed_db_message
module Metadata = Distributed_db_metadata
type p2p = (Message.t, Metadata.t) P2p.net
type connection = (Message.t, Metadata.t) P2p.connection
type 'a request_param = {
data: 'a ;
active: unit -> P2p.Peer_id.Set.t ;
send: P2p.Peer_id.t -> Message.t -> unit ;
}
module Make_raw
(Hash : sig
type t
val name : string
val encoding : t Data_encoding.t
val pp : Format.formatter -> t -> unit
end)
(Disk_table :
Distributed_db_functors.DISK_TABLE with type key := Hash.t)
(Memory_table :
Distributed_db_functors.MEMORY_TABLE with type key := Hash.t)
(Request_message : sig
type param
val forge : param -> Hash.t list -> Message.t
end)
(Precheck : Distributed_db_functors.PRECHECK
with type key := Hash.t
and type value := Disk_table.value) = struct
module Request = struct
type param = Request_message.param request_param
let active { active } = active ()
let send { data ; send } gid keys =
send gid (Request_message.forge data keys)
end
module Scheduler =
Distributed_db_functors.Make_request_scheduler
(Hash) (Memory_table) (Request)
module Table =
Distributed_db_functors.Make_table
(Hash) (Disk_table) (Memory_table) (Scheduler) (Precheck)
type t = {
scheduler: Scheduler.t ;
table: Table.t ;
}
let create ?global_input request_param param =
let scheduler = Scheduler.create request_param in
let table = Table.create ?global_input scheduler param in
{ scheduler ; table }
let shutdown { scheduler } =
Scheduler.shutdown scheduler
end
module Fake_operation_storage = struct
type store = State.Net.t
type value = Operation.t
let known _ _ = Lwt.return_false
let read _ _ = Lwt.return (Error_monad.error_exn Not_found)
let read_opt _ _ = Lwt.return_none
let read_exn _ _ = raise Not_found
end
module Raw_operation =
Make_raw
(Operation_hash)
(Fake_operation_storage)
(Operation_hash.Table)
(struct
type param = Net_id.t
let forge net_id keys = Message.Get_operations (net_id, keys)
end)
(struct
type param = unit
type notified_value = Operation.t
let precheck _ _ v = Some v
end)
module Block_header_storage = struct
type store = State.Net.t
type value = Block_header.t
let known = State.Block.known_valid
let read net_state h =
State.Block.read net_state h >>=? fun b ->
return (State.Block.header b)
let read_opt net_state h =
State.Block.read_opt net_state h >>= fun b ->
Lwt.return (Utils.map_option ~f:State.Block.header b)
let read_exn net_state h =
State.Block.read_exn net_state h >>= fun b ->
Lwt.return (State.Block.header b)
end
module Raw_block_header =
Make_raw
(Block_hash)
(Block_header_storage)
(Block_hash.Table)
(struct
type param = Net_id.t
let forge net_id keys = Message.Get_block_headers (net_id, keys)
end)
(struct
type param = unit
type notified_value = Block_header.t
let precheck _ _ v = Some v
end)
module Operation_hashes_storage = struct
type store = State.Net.t
type value = Operation_hash.t list
let known net_state (h, _) = State.Block.known_valid net_state h
let read net_state (h, i) =
State.Block.read net_state h >>=? fun b ->
State.Block.operation_hashes b i >>= fun (ops, _) ->
return ops
let read_opt net_state (h, i) =
State.Block.read_opt net_state h >>= function
| None -> Lwt.return_none
| Some b ->
State.Block.operation_hashes b i >>= fun (ops, _) ->
Lwt.return (Some ops)
let read_exn net_state (h, i) =
State.Block.read_exn net_state h >>= fun b ->
State.Block.operation_hashes b i >>= fun (ops, _) ->
Lwt.return ops
end
module Operations_table =
Hashtbl.Make(struct
type t = Block_hash.t * int
let hash = Hashtbl.hash
let equal (b1, i1) (b2, i2) =
Block_hash.equal b1 b2 && i1 = i2
end)
module Raw_operation_hashes = struct
include
Make_raw
(struct
type t = Block_hash.t * int
let name = "operation_hashes"
let pp ppf (h, n) = Format.fprintf ppf "%a:%d" Block_hash.pp h n
let encoding =
let open Data_encoding in
obj2 (req "block" Block_hash.encoding) (req "index" uint16)
end)
(Operation_hashes_storage)
(Operations_table)
(struct
type param = Net_id.t
let forge net_id keys =
Message.Get_operation_hashes_for_blocks (net_id, keys)
end)
(struct
type param = Operation_list_list_hash.t
type notified_value =
Operation_hash.t list * Operation_list_list_hash.path
let precheck (_block, expected_ofs) expected_hash (ops, path) =
let received_hash, received_ofs =
Operation_list_list_hash.check_path path
(Operation_list_hash.compute ops) in
if
received_ofs = expected_ofs &&
Operation_list_list_hash.compare expected_hash received_hash = 0
then
Some ops
else
None
end)
let inject_all table hash operations =
Lwt_list.mapi_p
(fun i ops -> Table.inject table (hash, i) ops)
operations >>= Lwt_list.for_all_s (fun x -> Lwt.return x)
let read_all table hash n =
map_p (fun i -> Table.read table (hash, i)) (0 -- (n-1))
let clear_all table hash n =
List.iter (fun i -> Table.clear_or_cancel table (hash, i)) (0 -- (n-1))
end
module Operations_storage = struct
type store = State.Net.t
type value = Operation.t list
let known net_state (h, _) = State.Block.known_valid net_state h
let read net_state (h, i) =
State.Block.read net_state h >>=? fun b ->
State.Block.operations b i >>= fun (ops, _) ->
return ops
let read_opt net_state (h, i) =
State.Block.read_opt net_state h >>= function
| None -> Lwt.return_none
| Some b ->
State.Block.operations b i >>= fun (ops, _) ->
Lwt.return (Some ops)
let read_exn net_state (h, i) =
State.Block.read_exn net_state h >>= fun b ->
State.Block.operations b i >>= fun (ops, _) ->
Lwt.return ops
end
module Raw_operations = struct
include
Make_raw
(struct
type t = Block_hash.t * int
let name = "operations"
let pp ppf (h, n) = Format.fprintf ppf "%a:%d" Block_hash.pp h n
let encoding =
let open Data_encoding in
obj2 (req "block" Block_hash.encoding) (req "index" uint16)
end)
(Operations_storage)
(Operations_table)
(struct
type param = Net_id.t
let forge net_id keys =
Message.Get_operations_for_blocks (net_id, keys)
end)
(struct
type param = Operation_list_list_hash.t
type notified_value = Operation.t list * Operation_list_list_hash.path
let precheck (_block, expected_ofs) expected_hash (ops, path) =
let received_hash, received_ofs =
Operation_list_list_hash.check_path path
(Operation_list_hash.compute
(List.map Operation.hash ops)) in
if
received_ofs = expected_ofs &&
Operation_list_list_hash.compare expected_hash received_hash = 0
then
Some ops
else
None
end)
let inject_all table hash operations =
Lwt_list.mapi_p
(fun i ops -> Table.inject table (hash, i) ops)
operations >>= Lwt_list.for_all_s (fun x -> Lwt.return x)
let read_all table hash n =
map_p (fun i -> Table.read table (hash, i)) (0 -- (n-1))
let clear_all table hash n =
List.iter (fun i -> Table.clear_or_cancel table (hash, i)) (0 -- (n-1))
end
module Protocol_storage = struct
type store = State.t
type value = Protocol.t
let known = State.Protocol.known
let read = State.Protocol.read
let read_opt = State.Protocol.read_opt
let read_exn = State.Protocol.read_exn
end
module Raw_protocol =
Make_raw
(Protocol_hash)
(Protocol_storage)
(Protocol_hash.Table)
(struct
type param = unit
let forge () keys = Message.Get_protocols keys
end)
(struct
type param = unit
type notified_value = Protocol.t
let precheck _ _ v = Some v
end)
type callback = {
notify_branch:
P2p.Peer_id.t -> Block_locator.t -> unit ;
notify_head:
P2p.Peer_id.t -> Block_header.t -> Operation_hash.t list -> unit ;
disconnection: P2p.Peer_id.t -> unit ;
}
type db = {
p2p: p2p ;
p2p_readers: p2p_reader P2p.Peer_id.Table.t ;
disk: State.t ;
active_nets: net_db Net_id.Table.t ;
protocol_db: Raw_protocol.t ;
block_input: (Block_hash.t * Block_header.t) Watcher.input ;
operation_input: (Operation_hash.t * Operation.t) Watcher.input ;
}
and net_db = {
net_state: State.Net.t ;
global_db: db ;
operation_db: Raw_operation.t ;
block_header_db: Raw_block_header.t ;
operation_hashes_db: Raw_operation_hashes.t ;
operations_db: Raw_operations.t ;
mutable callback: callback ;
active_peers: P2p.Peer_id.Set.t ref ;
active_connections: p2p_reader P2p.Peer_id.Table.t ;
}
and p2p_reader = {
gid: P2p.Peer_id.t ;
conn: connection ;
peer_active_nets: net_db Net_id.Table.t ;
canceler: Lwt_utils.Canceler.t ;
mutable worker: unit Lwt.t ;
}
let noop_callback = {
notify_branch = begin fun _gid _locator -> () end ;
notify_head = begin fun _gid _block _ops -> () end ;
disconnection = begin fun _gid -> () end ;
}
type t = db
let state { disk } = disk
let net_state { net_state } = net_state
let db { global_db } = global_db
module P2p_reader = struct
let may_activate global_db state net_id f =
match Net_id.Table.find state.peer_active_nets net_id with
| net_db ->
f net_db
| exception Not_found ->
match Net_id.Table.find global_db.active_nets net_id with
| net_db ->
net_db.active_peers :=
P2p.Peer_id.Set.add state.gid !(net_db.active_peers) ;
P2p.Peer_id.Table.add net_db.active_connections
state.gid state ;
Net_id.Table.add state.peer_active_nets net_id net_db ;
f net_db
| exception Not_found ->
(* TODO decrease peer score. *)
Lwt.return_unit
let deactivate state net_db =
net_db.callback.disconnection state.gid ;
net_db.active_peers :=
P2p.Peer_id.Set.remove state.gid !(net_db.active_peers) ;
P2p.Peer_id.Table.remove net_db.active_connections state.gid
let may_handle state net_id f =
match Net_id.Table.find state.peer_active_nets net_id with
| exception Not_found ->
(* TODO decrease peer score *)
Lwt.return_unit
| net_db ->
f net_db
let may_handle_global global_db net_id f =
match Net_id.Table.find global_db.active_nets net_id with
| exception Not_found ->
Lwt.return_unit
| net_db ->
f net_db
let handle_msg global_db state msg =
let open Message in
let module Logging =
Logging.Make(struct let name = "node.distributed_db.p2p_reader" end) in
let open Logging in
lwt_debug "Read message from %a: %a"
P2p.Peer_id.pp_short state.gid Message.pp_json msg >>= fun () ->
match msg with
| Get_current_branch net_id ->
may_handle_global global_db net_id @@ fun net_db ->
if not (Net_id.Table.mem state.peer_active_nets net_id) then
ignore
@@ P2p.try_send global_db.p2p state.conn
@@ Get_current_branch net_id ;
Chain.head net_db.net_state >>= fun head ->
Block_locator.compute head 200 >>= fun locator ->
ignore
@@ P2p.try_send global_db.p2p state.conn
@@ Current_branch (net_id, locator) ;
Lwt.return_unit
| Current_branch (net_id, locator) ->
may_activate global_db state net_id @@ fun net_db ->
let head, hist = (locator :> Block_header.t * Block_hash.t list) in
Lwt_list.exists_p
(State.Block.known_invalid net_db.net_state)
(Block_header.hash head :: hist) >>= fun known_invalid ->
if not known_invalid then
net_db.callback.notify_branch state.gid locator ;
(* TODO Kickban *)
Lwt.return_unit
| Deactivate net_id ->
may_handle state net_id @@ fun net_db ->
deactivate state net_db ;
Net_id.Table.remove state.peer_active_nets net_id ;
Lwt.return_unit
| Get_current_head net_id ->
may_handle state net_id @@ fun net_db ->
Chain.head net_db.net_state >>= fun head ->
Chain.mempool net_db.net_state >>= fun mempool ->
ignore
@@ P2p.try_send global_db.p2p state.conn
@@ Current_head (net_id, State.Block.header head,
Utils.list_sub mempool 200) ;
Lwt.return_unit
| Current_head (net_id, header, mempool) ->
may_handle state net_id @@ fun net_db ->
let head = Block_header.hash header in
State.Block.known_invalid net_db.net_state head >>= fun known_invalid ->
if not known_invalid then
net_db.callback.notify_head state.gid header mempool ;
(* TODO Kickban *)
Lwt.return_unit
| Get_block_headers (net_id, hashes) ->
may_handle state net_id @@ fun net_db ->
(* TODO: Blame request of unadvertised blocks ? *)
Lwt_list.iter_p
(fun hash ->
State.Block.read_opt net_db.net_state hash >|= function
| None -> ()
| Some b ->
let header = State.Block.header b in
ignore @@
P2p.try_send global_db.p2p state.conn (Block_header header))
hashes
| Block_header block ->
may_handle state block.shell.net_id @@ fun net_db ->
let hash = Block_header.hash block in
Raw_block_header.Table.notify
net_db.block_header_db.table state.gid hash block >>= fun () ->
Lwt.return_unit
| Get_operations (net_id, hashes) ->
may_handle state net_id @@ fun net_db ->
(* TODO: only answers for prevalidated operations *)
Lwt_list.iter_p
(fun hash ->
Raw_operation.Table.read_opt
net_db.operation_db.table hash >|= function
| None -> ()
| Some p ->
ignore @@
P2p.try_send global_db.p2p state.conn (Operation p))
hashes
| Operation operation ->
may_handle state operation.shell.net_id @@ fun net_db ->
let hash = Operation.hash operation in
Raw_operation.Table.notify
net_db.operation_db.table state.gid hash operation >>= fun () ->
Lwt.return_unit
| Get_protocols hashes ->
Lwt_list.iter_p
(fun hash ->
State.Protocol.read_opt global_db.disk hash >|= function
| None -> ()
| Some p ->
ignore @@
P2p.try_send global_db.p2p state.conn (Protocol p))
hashes
| Protocol protocol ->
let hash = Protocol.hash protocol in
Raw_protocol.Table.notify
global_db.protocol_db.table state.gid hash protocol >>= fun () ->
Lwt.return_unit
| Get_operation_hashes_for_blocks (net_id, blocks) ->
may_handle state net_id @@ fun net_db ->
(* TODO: Blame request of unadvertised blocks ? *)
Lwt_list.iter_p
(fun (hash, ofs) ->
State.Block.read_opt net_db.net_state hash >>= function
| None -> Lwt.return_unit
| Some b ->
State.Block.operation_hashes b ofs >>= fun (hashes, path) ->
ignore @@
P2p.try_send global_db.p2p state.conn
(Operation_hashes_for_block
(net_id, hash, ofs, hashes, path)) ;
Lwt.return_unit)
blocks
| Operation_hashes_for_block (net_id, block, ofs, ops, path) -> begin
may_handle state net_id @@ fun net_db ->
(* TODO early detection of non-requested list. *)
let found_hash, found_ofs =
Operation_list_list_hash.check_path
path (Operation_list_hash.compute ops) in
if found_ofs <> ofs then
Lwt.return_unit
else
Raw_block_header.Table.read_opt
net_db.block_header_db.table block >>= function
| None -> Lwt.return_unit
| Some bh ->
if Operation_list_list_hash.compare
found_hash bh.shell.operations_hash <> 0 then
Lwt.return_unit
else
Raw_operation_hashes.Table.notify
net_db.operation_hashes_db.table state.gid
(block, ofs) (ops, path) >>= fun () ->
Lwt.return_unit
end
| Get_operations_for_blocks (net_id, blocks) ->
may_handle state net_id @@ fun net_db ->
(* TODO: Blame request of unadvertised blocks ? *)
Lwt_list.iter_p
(fun (hash, ofs) ->
State.Block.read_opt net_db.net_state hash >>= function
| None -> Lwt.return_unit
| Some b ->
State.Block.operations b ofs >>= fun (hashes, path) ->
ignore @@
P2p.try_send global_db.p2p state.conn
(Operations_for_block
(net_id, hash, ofs, hashes, path)) ;
Lwt.return_unit)
blocks
| Operations_for_block (net_id, block, ofs, ops, path) ->
may_handle state net_id @@ fun net_db ->
(* TODO early detection of non-requested operations. *)
let found_hash, found_ofs =
Operation_list_list_hash.check_path
path (Operation_list_hash.compute (List.map Operation.hash ops)) in
if found_ofs <> ofs then
Lwt.return_unit
else
Raw_block_header.Table.read_opt
net_db.block_header_db.table block >>= function
| None -> Lwt.return_unit
| Some bh ->
if Operation_list_list_hash.compare
found_hash bh.shell.operations_hash <> 0 then
Lwt.return_unit
else
Raw_operations.Table.notify
net_db.operations_db.table state.gid
(block, ofs) (ops, path) >>= fun () ->
Lwt.return_unit
let rec worker_loop global_db state =
Lwt_utils.protect ~canceler:state.canceler begin fun () ->
P2p.recv global_db.p2p state.conn
end >>= function
| Ok msg ->
handle_msg global_db state msg >>= fun () ->
worker_loop global_db state
| Error _ ->
Net_id.Table.iter
(fun _ -> deactivate state)
state.peer_active_nets ;
P2p.Peer_id.Table.remove global_db.p2p_readers state.gid ;
Lwt.return_unit
let run db gid conn =
let canceler = Lwt_utils.Canceler.create () in
let state = {
conn ; gid ; canceler ;
peer_active_nets = Net_id.Table.create 17 ;
worker = Lwt.return_unit ;
} in
Net_id.Table.iter (fun net_id _net_db ->
Lwt.async begin fun () ->
P2p.send db.p2p conn (Get_current_branch net_id)
end)
db.active_nets ;
state.worker <-
Lwt_utils.worker "db_network_reader"
~run:(fun () -> worker_loop db state)
~cancel:(fun () -> Lwt_utils.Canceler.cancel canceler) ;
P2p.Peer_id.Table.add db.p2p_readers gid state
let shutdown s =
Lwt_utils.Canceler.cancel s.canceler >>= fun () ->
s.worker
end
let active_peer_ids p2p () =
List.fold_left
(fun acc conn ->
let { P2p.Connection_info.peer_id } = P2p.connection_info p2p conn in
P2p.Peer_id.Set.add peer_id acc)
P2p.Peer_id.Set.empty
(P2p.connections p2p)
let raw_try_send p2p peer_id msg =
match P2p.find_connection p2p peer_id with
| None -> ()
| Some conn -> ignore (P2p.try_send p2p conn msg : bool)
let create disk p2p =
let global_request =
{ data = () ;
active = active_peer_ids p2p ;
send = raw_try_send p2p ;
} in
let protocol_db = Raw_protocol.create global_request disk in
let active_nets = Net_id.Table.create 17 in
let p2p_readers = P2p.Peer_id.Table.create 17 in
let block_input = Watcher.create_input () in
let operation_input = Watcher.create_input () in
let db =
{ p2p ; p2p_readers ; disk ;
active_nets ; protocol_db ;
block_input ; operation_input } in
P2p.on_new_connection p2p (P2p_reader.run db) ;
P2p.iter_connections p2p (P2p_reader.run db) ;
db
let activate ({ p2p ; active_nets } as global_db) net_state =
let net_id = State.Net.id net_state in
match Net_id.Table.find active_nets net_id with
| exception Not_found ->
let active_peers = ref P2p.Peer_id.Set.empty in
let p2p_request =
{ data = net_id ;
active = (fun () -> !active_peers) ;
send = raw_try_send p2p ;
} in
let operation_db =
Raw_operation.create
~global_input:global_db.operation_input p2p_request net_state in
let block_header_db =
Raw_block_header.create
~global_input:global_db.block_input p2p_request net_state in
let operation_hashes_db =
Raw_operation_hashes.create p2p_request net_state in
let operations_db =
Raw_operations.create p2p_request net_state in
let net = {
global_db ; operation_db ; block_header_db ;
operation_hashes_db ; operations_db ;
net_state ; callback = noop_callback ; active_peers ;
active_connections = P2p.Peer_id.Table.create 53 ;
} in
P2p.iter_connections p2p (fun _peer_id conn ->
Lwt.async begin fun () ->
P2p.send p2p conn (Get_current_branch net_id)
end) ;
Net_id.Table.add active_nets net_id net ;
net
| net ->
net
let set_callback net_db callback =
net_db.callback <- callback
let deactivate net_db =
let { active_nets ; p2p } = net_db.global_db in
let net_id = State.Net.id net_db.net_state in
Net_id.Table.remove active_nets net_id ;
P2p.Peer_id.Table.iter
(fun _peer_id reader ->
P2p_reader.deactivate reader net_db ;
Lwt.async begin fun () ->
P2p.send p2p reader.conn (Deactivate net_id)
end)
net_db.active_connections ;
Raw_operation.shutdown net_db.operation_db >>= fun () ->
Raw_block_header.shutdown net_db.block_header_db >>= fun () ->
Lwt.return_unit >>= fun () ->
Lwt.return_unit
let get_net { active_nets } net_id =
try Some (Net_id.Table.find active_nets net_id)
with Not_found -> None
let disconnect { global_db = { p2p } } peer_id =
match P2p.find_connection p2p peer_id with
| None -> Lwt.return_unit
| Some conn -> P2p.disconnect p2p conn
let shutdown { p2p ; p2p_readers ; active_nets } =
P2p.Peer_id.Table.fold
(fun _peer_id reader acc ->
P2p_reader.shutdown reader >>= fun () -> acc)
p2p_readers
Lwt.return_unit >>= fun () ->
Net_id.Table.fold
(fun _ net_db acc ->
Raw_operation.shutdown net_db.operation_db >>= fun () ->
Raw_block_header.shutdown net_db.block_header_db >>= fun () ->
acc)
active_nets
Lwt.return_unit >>= fun () ->
P2p.shutdown p2p >>= fun () ->
Lwt.return_unit
let read_all_operations net_db hash n =
Lwt_list.map_p
(fun i ->
Raw_operations.Table.read_opt net_db.operations_db.table (hash, i))
(0 -- (n-1)) >>= fun operations ->
mapi_p
(fun i ops ->
match ops with
| Some ops -> return ops
| None ->
Raw_operation_hashes.Table.read
net_db.operation_hashes_db.table (hash, i) >>=? fun hashes ->
map_p (Raw_operation.Table.read net_db.operation_db.table) hashes)
operations
let commit_block net_db hash validation_result =
Raw_block_header.Table.read
net_db.block_header_db.table hash >>=? fun header ->
read_all_operations net_db
hash header.shell.validation_passes >>=? fun operations ->
State.Block.store
net_db.net_state header operations validation_result >>=? fun res ->
Raw_block_header.Table.clear_or_cancel net_db.block_header_db.table hash ;
Raw_operation_hashes.clear_all
net_db.operation_hashes_db.table hash header.shell.validation_passes ;
Raw_operations.clear_all
net_db.operations_db.table hash header.shell.validation_passes ;
(* TODO: proper handling of the operations table by the prevalidator. *)
List.iter
(List.iter
(fun op -> Raw_operation.Table.clear_or_cancel
net_db.operation_db.table
(Operation.hash op)))
operations ;
return res
let commit_invalid_block net_db hash =
Raw_block_header.Table.read
net_db.block_header_db.table hash >>=? fun header ->
State.Block.store_invalid net_db.net_state header >>=? fun res ->
Raw_block_header.Table.clear_or_cancel net_db.block_header_db.table hash ;
Raw_operation_hashes.clear_all
net_db.operation_hashes_db.table hash header.shell.validation_passes ;
Raw_operations.clear_all
net_db.operations_db.table hash header.shell.validation_passes ;
return res
let inject_operation net_db h op =
fail_unless
(Net_id.equal op.Operation.shell.net_id (State.Net.id net_db.net_state))
(failure "Inconsitent net_id in operation") >>=? fun () ->
Raw_operation.Table.inject net_db.operation_db.table h op >>= fun res ->
return res
let inject_protocol db h p =
Raw_protocol.Table.inject db.protocol_db.table h p
let commit_protocol db h =
Raw_protocol.Table.read db.protocol_db.table h >>=? fun p ->
State.Protocol.store db.disk p >>= fun res ->
Raw_protocol.Table.clear_or_cancel db.protocol_db.table h ;
return (res <> None)
type operation =
| Blob of Operation.t
| Hash of Operation_hash.t
let resolve_operation net_db = function
| Blob op ->
fail_unless
(Net_id.equal op.shell.net_id (State.Net.id net_db.net_state))
(failure "Inconsistent net_id in operation.") >>=? fun () ->
return (Operation.hash op, op)
| Hash oph ->
Raw_operation.Table.read net_db.operation_db.table oph >>=? fun op ->
return (oph, op)
let inject_block db bytes operations =
let hash = Block_hash.hash_bytes [bytes] in
match Block_header.of_bytes bytes with
| None ->
failwith "Cannot parse block header."
| Some block ->
match get_net db block.shell.net_id with
| None ->
failwith "Unknown network."
| Some net_db ->
map_p
(map_p (resolve_operation net_db))
operations >>=? fun operations ->
let hashes = List.map (List.map fst) operations in
let operations = List.map (List.map snd) operations in
let computed_hash =
Operation_list_list_hash.compute
(List.map Operation_list_hash.compute hashes) in
fail_when
(Operation_list_list_hash.compare
computed_hash block.shell.operations_hash <> 0)
(Exn (Failure "Incoherent operation list")) >>=? fun () ->
Raw_block_header.Table.inject
net_db.block_header_db.table hash block >>= function
| false ->
failwith "Previously injected block."
| true ->
Raw_operation_hashes.inject_all
net_db.operation_hashes_db.table hash hashes >>= fun _ ->
Raw_operations.inject_all
net_db.operations_db.table hash operations >>= fun _ ->
return (hash, block)
let clear_block net_db hash n =
Raw_operations.clear_all net_db.operations_db.table hash n ;
Raw_operation_hashes.clear_all net_db.operation_hashes_db.table hash n ;
Raw_block_header.Table.clear_or_cancel net_db.block_header_db.table hash
let watch_block_header { block_input } =
Watcher.create_stream block_input
let watch_operation { operation_input } =
Watcher.create_stream operation_input
let watch_protocol { protocol_db } =
Raw_protocol.Table.watch protocol_db.table
module Raw = struct
let encoding = P2p.Raw.encoding Message.cfg.encoding
let supported_versions = Message.cfg.versions
end
module type DISTRIBUTED_DB = sig
type t
type key
type value
type param
val known: t -> key -> bool Lwt.t
type error += Missing_data of key
type error += Canceled of key
type error += Timeout of key
val read: t -> key -> value tzresult Lwt.t
val read_opt: t -> key -> value option Lwt.t
val read_exn: t -> key -> value Lwt.t
val watch: t -> (key * value) Lwt_stream.t * Watcher.stopper
val prefetch:
t ->
?peer:P2p.Peer_id.t ->
?timeout:float ->
key -> param -> unit
val fetch:
t ->
?peer:P2p.Peer_id.t ->
?timeout:float ->
key -> param -> value tzresult Lwt.t
val clear_or_cancel: t -> key -> unit
end
module Make
(Table : Distributed_db_functors.DISTRIBUTED_DB)
(Kind : sig
type t
val proj: t -> Table.t
end) = struct
type t = Kind.t
type key = Table.key
type value = Table.value
let known t k = Table.known (Kind.proj t) k
type error += Missing_data = Table.Missing_data
type error += Canceled = Table.Canceled
type error += Timeout = Table.Timeout
let read t k = Table.read (Kind.proj t) k
let read_opt t k = Table.read_opt (Kind.proj t) k
let read_exn t k = Table.read_exn (Kind.proj t) k
let prefetch t ?peer ?timeout k p =
Table.prefetch (Kind.proj t) ?peer ?timeout k p
let fetch t ?peer ?timeout k p =
Table.fetch (Kind.proj t) ?peer ?timeout k p
let clear_or_cancel t k = Table.clear_or_cancel (Kind.proj t) k
let inject t k v = Table.inject (Kind.proj t) k v
let watch t = Table.watch (Kind.proj t)
end
module Block_header =
Make (Raw_block_header.Table) (struct
type t = net_db
let proj net = net.block_header_db.table
end)
module Operation_hashes =
Make (Raw_operation_hashes.Table) (struct
type t = net_db
let proj net = net.operation_hashes_db.table
end)
module Operations =
Make (Raw_operations.Table) (struct
type t = net_db
let proj net = net.operations_db.table
end)
module Operation =
Make (Raw_operation.Table) (struct
type t = net_db
let proj net = net.operation_db.table
end)
module Protocol =
Make (Raw_protocol.Table) (struct
type t = db
let proj db = db.protocol_db.table
end)
let broadcast net_db msg =
P2p.Peer_id.Table.iter
(fun _peer_id state ->
ignore (P2p.try_send net_db.global_db.p2p state.conn msg))
net_db.active_connections
let try_send net_db peer_id msg =
try
let conn = P2p.Peer_id.Table.find net_db.active_connections peer_id in
ignore (P2p.try_send net_db.global_db.p2p conn.conn msg : bool)
with Not_found -> ()
let send net_db ?peer msg =
match peer with
| Some peer -> try_send net_db peer msg
| None -> broadcast net_db msg
module Request = struct
let current_head net_db ?peer () =
let net_id = State.Net.id net_db.net_state in
send net_db ?peer @@ Get_current_head net_id
let current_branch net_db ?peer () =
let net_id = State.Net.id net_db.net_state in
send net_db ?peer @@ Get_current_branch net_id
end
module Advertise = struct
let current_head net_db ?peer ?(mempool = []) head =
let net_id = State.Net.id net_db.net_state in
assert (Net_id.equal net_id (State.Block.net_id head)) ;
send net_db ?peer @@
Current_head (net_id, State.Block.header head, mempool)
let current_branch net_db ?peer head =
let net_id = State.Net.id net_db.net_state in
assert (Net_id.equal net_id (State.Block.net_id head)) ;
Block_locator.compute head 200 >>= fun locator ->
send net_db ?peer @@ Current_branch (net_id, locator) ;
Lwt.return_unit
end