ligo/src/passes/2-simplify/pascaligo.ml
2019-09-26 17:11:08 +02:00

1007 lines
34 KiB
OCaml

open Trace
open Ast_simplified
module Raw = Parser.Pascaligo.AST
module SMap = Map.String
open Combinators
let nseq_to_list (hd, tl) = hd :: tl
let npseq_to_list (hd, tl) = hd :: (List.map snd tl)
let npseq_to_nelist (hd, tl) = hd, (List.map snd tl)
let pseq_to_list = function
| None -> []
| Some lst -> npseq_to_list lst
let get_value : 'a Raw.reg -> 'a = fun x -> x.value
module Errors = struct
let unsupported_cst_constr p =
let title () = "constant constructor" in
let message () =
Format.asprintf "constant constructors are not supported yet" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_ass_None region =
let title () = "assignment of None" in
let message () =
Format.asprintf "assignments of None are not supported yet" in
let data = [
("none_expr",
fun () -> Format.asprintf "%a" Location.pp_lift @@ region)
] in
error ~data title message
let bad_bytes loc str =
let title () = "bad bytes string" in
let message () =
Format.asprintf "bytes string contained non-hexadecimal chars" in
let data = [
("location", fun () -> Format.asprintf "%a" Location.pp loc) ;
("bytes", fun () -> str) ;
] in
error ~data title message
let unsupported_entry_decl decl =
let title () = "entry point declarations" in
let message () =
Format.asprintf "entry points within the contract \
are not supported yet" in
let data = [
("declaration",
fun () -> Format.asprintf "%a" Location.pp_lift @@ decl.Region.region)
] in
error ~data title message
let unsupported_proc_decl decl =
let title () = "procedure declarations" in
let message () =
Format.asprintf "procedures are not supported yet" in
let data = [
("declaration",
fun () -> Format.asprintf "%a" Location.pp_lift @@ decl.Region.region)
] in
error ~data title message
let unsupported_local_proc region =
let title () = "local procedure declarations" in
let message () =
Format.asprintf "local procedures are not supported yet" in
let data = [
("declaration",
fun () -> Format.asprintf "%a" Location.pp_lift @@ region)
] in
error ~data title message
let corner_case ~loc message =
let title () = "corner case" in
let content () = "We don't have a good error message for this case. \
We are striving find ways to better report them and \
find the use-cases that generate them. \
Please report this to the developers." in
let data = [
("location" , fun () -> loc) ;
("message" , fun () -> message) ;
] in
error ~data title content
let unknown_predefined_type name =
let title () = "type constants" in
let message () =
Format.asprintf "unknown predefined type \"%s\"" name.Region.value in
let data = [
("typename_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region)
] in
error ~data title message
let unsupported_arith_op expr =
let title () = "arithmetic expressions" in
let message () =
Format.asprintf "this arithmetic operator is not supported yet" in
let expr_loc = Raw.expr_to_region expr in
let data = [
("expr_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ expr_loc)
] in
error ~data title message
let unsupported_proc_calls call =
let title () = "procedure calls" in
let message () =
Format.asprintf "procedure calls are not supported yet" in
let data = [
("call_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ call.Region.region)
] in
error ~data title message
let unsupported_for_loops region =
let title () = "bounded iterators" in
let message () =
Format.asprintf "only simple for loops are supported for now" in
let data = [
("loop_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ region)
] in
error ~data title message
let unsupported_deep_map_assign v =
let title () = "map assignments" in
let message () =
Format.asprintf "assignments to embedded maps are not \
supported yet" in
let data = [
("lhs_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ v.Region.region)
] in
error ~data title message
let unsupported_empty_record_patch record_expr =
let title () = "empty record patch" in
let message () =
Format.asprintf "empty record patches are not supported yet" in
let data = [
("record_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ record_expr.Region.region)
] in
error ~data title message
let unsupported_map_patches patch =
let title () = "map patches" in
let message () =
Format.asprintf "map patches (a.k.a. functional updates) are \
not supported yet" in
let data = [
("patch_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ patch.Region.region)
] in
error ~data title message
let unsupported_set_patches patch =
let title () = "set patches" in
let message () =
Format.asprintf "set patches (a.k.a. functional updates) are \
not supported yet" in
let data = [
("patch_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ patch.Region.region)
] in
error ~data title message
let unsupported_deep_map_rm path =
let title () = "binding removals" in
let message () =
Format.asprintf "removal of bindings from embedded maps \
are not supported yet" in
let data = [
("path_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ path.Region.region)
] in
error ~data title message
let unsupported_set_removal remove =
let title () = "set removals" in
let message () =
Format.asprintf "removal of elements in a set is not \
supported yet" in
let data = [
("removal_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ remove.Region.region)
] in
error ~data title message
let unsupported_non_var_pattern p =
let title () = "pattern is not a variable" in
let message () =
Format.asprintf "non-variable patterns in constructors \
are not supported yet" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let only_constructors p =
let title () = "constructors in patterns" in
let message () =
Format.asprintf "currently, only constructors are supported in patterns" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_tuple_pattern p =
let title () = "tuple pattern" in
let message () =
Format.asprintf "tuple patterns are not supported yet" in
let pattern_loc = Raw.pattern_to_region p in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ;
("pattern",
fun () -> Format.asprintf "%a" (Simple_utils.PP_helpers.printer Parser.Pascaligo.ParserLog.print_pattern) p) ;
] in
error ~data title message
let unsupported_deep_Some_patterns pattern =
let title () = "option patterns" in
let message () =
Format.asprintf "currently, only variables in Some constructors \
in patterns are supported" in
let pattern_loc = Raw.pattern_to_region pattern in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc)
] in
error ~data title message
let unsupported_deep_list_patterns cons =
let title () = "lists in patterns" in
let message () =
Format.asprintf "currently, only empty lists and x::y \
are supported in patterns" in
let data = [
("pattern_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ cons.Region.region)
] in
error ~data title message
let unsupported_sub_blocks b =
let title () = "block instructions" in
let message () =
Format.asprintf "Sub-blocks are not supported yet" in
let data = [
("block_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ b.Region.region)
] in
error ~data title message
(* Logging *)
let simplifying_instruction t =
let title () = "simplifiying instruction" in
let message () = "" in
let data = [
("instruction",
fun () -> Format.asprintf "%a" PP_helpers.(printer Parser.Pascaligo.ParserLog.print_instruction) t)
] in
error ~data title message
end
open Errors
open Operators.Simplify.Pascaligo
let r_split = Location.r_split
(*
Statements can't be simplified in isolation. `a ; b ; c` can get simplified either
as `let x = expr in (b ; c)` if `a` is a ` const x = expr` declaration or as
`sequence(a , sequence(b , c))` for everything else.
Because of this, simplifying sequences depend on their contents. To avoid peeking in
their contents, we instead simplify sequences elements as functions from their next
elements to the actual result.
For `return_let_in`, if there is no follow-up element, an error is triggered, as
you can't have `let x = expr in ...` with no `...`. A cleaner option might be to add
a `unit` instead of erroring.
`return_statement` is used for non-let_in statements.
*)
let return_let_in ?loc binder rhs = ok @@ fun expr'_opt ->
match expr'_opt with
| None -> fail @@ corner_case ~loc:__LOC__ "missing return"
| Some expr' -> ok @@ e_let_in ?loc binder rhs expr'
let return_statement expr = ok @@ fun expr'_opt ->
let expr = expr in
match expr'_opt with
| None -> ok @@ expr
| Some expr' -> ok @@ e_sequence expr expr'
let rec simpl_type_expression (t:Raw.type_expr) : type_expression result =
match t with
| TPar x -> simpl_type_expression x.value.inside
| TAlias v -> (
match List.assoc_opt v.value type_constants with
| Some s -> ok @@ T_constant (s , [])
| None -> ok @@ T_variable v.value
)
| TFun x -> (
let%bind (a , b) =
let (a , _ , b) = x.value in
bind_map_pair simpl_type_expression (a , b) in
ok @@ T_function (a , b)
)
| TApp x ->
let (name, tuple) = x.value in
let lst = npseq_to_list tuple.value.inside in
let%bind lst' = bind_list @@ List.map simpl_type_expression lst in
let%bind cst =
trace_option (unknown_predefined_type name) @@
List.assoc_opt name.value type_constants in
ok @@ T_constant (cst , lst')
| TProd p ->
let%bind tpl = simpl_list_type_expression
@@ npseq_to_list p.value in
ok tpl
| TRecord r ->
let aux = fun (x, y) ->
let%bind y = simpl_type_expression y in
ok (x, y)
in
let apply =
fun (x:Raw.field_decl Raw.reg) -> (x.value.field_name.value, x.value.field_type) in
let%bind lst = bind_list
@@ List.map aux
@@ List.map apply
@@ pseq_to_list r.value.elements in
let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in
ok @@ T_record m
| TSum s ->
let aux (v:Raw.variant Raw.reg) =
let args =
match v.value.args with
None -> []
| Some (_, product) ->
npseq_to_list product.value in
let%bind te = simpl_list_type_expression
@@ args in
ok (v.value.constr.value, te)
in
let%bind lst = bind_list
@@ List.map aux
@@ npseq_to_list s.value in
let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in
ok @@ T_sum m
and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result =
match lst with
| [] -> ok @@ t_unit
| [hd] -> simpl_type_expression hd
| lst ->
let%bind lst = bind_list @@ List.map simpl_type_expression lst in
ok @@ T_tuple lst
let simpl_projection : Raw.projection Region.reg -> _ = fun p ->
let (p' , loc) = r_split p in
let var =
let name = p'.struct_name.value in
e_variable name in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> Access_record property.value
| Component index -> Access_tuple (Z.to_int (snd index.value))
in
List.map aux @@ npseq_to_list path in
ok @@ e_accessor ~loc var path'
let rec simpl_expression (t:Raw.expr) : expr result =
let return x = ok x in
match t with
| EAnnot a -> (
let ((expr , type_expr) , loc) = r_split a in
let%bind expr' = simpl_expression expr in
let%bind type_expr' = simpl_type_expression type_expr in
return @@ e_annotation ~loc expr' type_expr'
)
| EVar c -> (
let (c' , loc) = r_split c in
match List.assoc_opt c' constants with
| None -> return @@ e_variable ~loc c.value
| Some s -> return @@ e_constant ~loc s []
)
| ECall x -> (
let ((name, args) , loc) = r_split x in
let (f , f_loc) = r_split name in
let (args , args_loc) = r_split args in
let args' = npseq_to_list args.inside in
match List.assoc_opt f constants with
| None ->
let%bind arg = simpl_tuple_expression ~loc:args_loc args' in
return @@ e_application ~loc (e_variable ~loc:f_loc f) arg
| Some s ->
let%bind lst = bind_map_list simpl_expression args' in
return @@ e_constant ~loc s lst
)
| EPar x -> simpl_expression x.value.inside
| EUnit reg ->
let loc = Location.lift reg in
return @@ e_literal ~loc Literal_unit
| EBytes x ->
let (x' , loc) = r_split x in
return @@ e_literal ~loc (Literal_bytes (Bytes.of_string @@ fst x'))
| ETuple tpl ->
let (Raw.TupleInj tpl') = tpl in
let (tpl' , loc) = r_split tpl' in
simpl_tuple_expression ~loc @@ npseq_to_list tpl'.inside
| ERecord r ->
let%bind fields = bind_list
@@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v))
@@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr))
@@ pseq_to_list r.value.elements in
let aux prev (k, v) = SMap.add k v prev in
return @@ e_record (List.fold_left aux SMap.empty fields)
| EProj p -> simpl_projection p
| EConstr (ConstrApp c) -> (
let ((c, args) , loc) = r_split c in
match args with
None -> simpl_tuple_expression []
| Some args ->
let args, args_loc = r_split args in
let%bind arg =
simpl_tuple_expression ~loc:args_loc
@@ npseq_to_list args.inside in
return @@ e_constructor ~loc c.value arg
)
| EConstr (SomeApp a) ->
let ((_, args) , loc) = r_split a in
let (args , args_loc) = r_split args in
let%bind arg =
simpl_tuple_expression ~loc:args_loc
@@ npseq_to_list args.inside in
return @@ e_constant ~loc "SOME" [arg]
| EConstr (NoneExpr reg) -> (
let loc = Location.lift reg in
return @@ e_none ~loc ()
)
| EArith (Add c) ->
simpl_binop "ADD" c
| EArith (Sub c) ->
simpl_binop "SUB" c
| EArith (Mult c) ->
simpl_binop "TIMES" c
| EArith (Div c) ->
simpl_binop "DIV" c
| EArith (Mod c) ->
simpl_binop "MOD" c
| EArith (Int n) -> (
let (n , loc) = r_split n in
let n = Z.to_int @@ snd n in
return @@ e_literal ~loc (Literal_int n)
)
| EArith (Nat n) -> (
let (n , loc) = r_split n in
let n = Z.to_int @@ snd @@ n in
return @@ e_literal ~loc (Literal_nat n)
)
| EArith (Mtz n) -> (
let (n , loc) = r_split n in
let n = Z.to_int @@ snd @@ n in
return @@ e_literal ~loc (Literal_mutez n)
)
| EArith (Neg e) -> simpl_unop "NEG" e
| EString (String s) ->
let (s , loc) = r_split s in
let s' =
(* S contains quotes *)
String.(sub s 1 (length s - 2))
in
return @@ e_literal ~loc (Literal_string s')
| EString (Cat _) as e ->
fail @@ unsupported_string_catenation e
| ELogic l -> simpl_logic_expression l
| EList l -> simpl_list_expression l
| ESet s -> simpl_set_expression s
| ECase c -> (
let (c , loc) = r_split c in
let%bind e = simpl_expression c.expr in
let%bind lst =
let aux (x : Raw.expr Raw.case_clause) =
let%bind expr = simpl_expression x.rhs in
ok (x.pattern, expr) in
bind_list
@@ List.map aux
@@ List.map get_value
@@ npseq_to_list c.cases.value in
let%bind cases = simpl_cases lst in
return @@ e_matching ~loc e cases
)
| EMap (MapInj mi) -> (
let (mi , loc) = r_split mi in
let%bind lst =
let lst = List.map get_value @@ pseq_to_list mi.elements in
let aux : Raw.binding -> (expression * expression) result =
fun b ->
let%bind src = simpl_expression b.source in
let%bind dst = simpl_expression b.image in
ok (src, dst) in
bind_map_list aux lst in
return @@ e_map ~loc lst
)
| EMap (MapLookUp lu) -> (
let (lu , loc) = r_split lu in
let%bind path = match lu.path with
| Name v -> (
let (v , loc) = r_split v in
return @@ e_variable ~loc v
)
| Path p -> simpl_projection p
in
let%bind index = simpl_expression lu.index.value.inside in
return @@ e_look_up ~loc path index
)
and simpl_logic_expression (t:Raw.logic_expr) : expression result =
let return x = ok x in
match t with
| BoolExpr (False reg) -> (
let loc = Location.lift reg in
return @@ e_literal ~loc (Literal_bool false)
)
| BoolExpr (True reg) -> (
let loc = Location.lift reg in
return @@ e_literal ~loc (Literal_bool true)
)
| BoolExpr (Or b) ->
simpl_binop "OR" b
| BoolExpr (And b) ->
simpl_binop "AND" b
| BoolExpr (Not b) ->
simpl_unop "NOT" b
| CompExpr (Lt c) ->
simpl_binop "LT" c
| CompExpr (Gt c) ->
simpl_binop "GT" c
| CompExpr (Leq c) ->
simpl_binop "LE" c
| CompExpr (Geq c) ->
simpl_binop "GE" c
| CompExpr (Equal c) ->
simpl_binop "EQ" c
| CompExpr (Neq c) ->
simpl_binop "NEQ" c
and simpl_list_expression (t:Raw.list_expr) : expression result =
let return x = ok x in
match t with
| Cons c ->
simpl_binop "CONS" c
| List lst -> (
let (lst , loc) = r_split lst in
let%bind lst' =
bind_map_list simpl_expression @@
pseq_to_list lst.elements in
return @@ e_list ~loc lst'
)
| Nil reg -> (
let loc = Location.lift reg in
return @@ e_list ~loc []
)
and simpl_set_expression (t:Raw.set_expr) : expression result =
match t with
| SetMem x -> (
let (x' , loc) = r_split x in
let%bind set' = simpl_expression x'.set in
let%bind element' = simpl_expression x'.element in
ok @@ e_constant ~loc "SET_MEM" [ element' ; set' ]
)
| SetInj x -> (
let (x' , loc) = r_split x in
let elements = pseq_to_list x'.elements in
let%bind elements' = bind_map_list simpl_expression elements in
ok @@ e_set ~loc elements'
)
and simpl_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result =
let return x = ok x in
let (t , loc) = r_split t in
let%bind a = simpl_expression t.arg1 in
let%bind b = simpl_expression t.arg2 in
return @@ e_constant ~loc name [ a ; b ]
and simpl_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result =
let return x = ok x in
let (t , loc) = r_split t in
let%bind a = simpl_expression t.arg in
return @@ e_constant ~loc name [ a ]
and simpl_tuple_expression ?loc (lst:Raw.expr list) : expression result =
let return x = ok x in
match lst with
| [] -> return @@ e_literal Literal_unit
| [hd] -> simpl_expression hd
| lst ->
let%bind lst = bind_list @@ List.map simpl_expression lst in
return @@ e_tuple ?loc lst
and simpl_local_declaration : Raw.local_decl -> _ result = fun t ->
match t with
| LocalData d ->
simpl_data_declaration d
| LocalFun f ->
let (f , loc) = r_split f in
let%bind (name , e) = simpl_fun_declaration ~loc f in
return_let_in ~loc name e
| LocalProc d ->
fail @@ unsupported_local_proc d.Region.region
and simpl_data_declaration : Raw.data_decl -> _ result = fun t ->
match t with
| LocalVar x ->
let (x , loc) = r_split x in
let name = x.name.value in
let%bind t = simpl_type_expression x.var_type in
let%bind expression = simpl_expression x.init in
return_let_in ~loc (name , Some t) expression
| LocalConst x ->
let (x , loc) = r_split x in
let name = x.name.value in
let%bind t = simpl_type_expression x.const_type in
let%bind expression = simpl_expression x.init in
return_let_in ~loc (name , Some t) expression
and simpl_param : Raw.param_decl -> (type_name * type_expression) result =
fun t ->
match t with
| ParamConst c ->
let c = c.value in
let type_name = c.var.value in
let%bind type_expression = simpl_type_expression c.param_type in
ok (type_name , type_expression)
| ParamVar v ->
let c = v.value in
let type_name = c.var.value in
let%bind type_expression = simpl_type_expression c.param_type in
ok (type_name , type_expression)
and simpl_fun_declaration :
loc:_ -> Raw.fun_decl -> ((name * type_expression option) * expression) result =
fun ~loc x ->
let open! Raw in
let {name;param;ret_type;local_decls;block;return} : fun_decl = x in
(match npseq_to_list param.value.inside with
| [] ->
fail @@
corner_case ~loc:__LOC__ "parameter-less function should not exist"
| [a] -> (
let%bind input = simpl_param a in
let name = name.value in
let (binder , input_type) = input in
let%bind local_declarations =
bind_map_list simpl_local_declaration local_decls in
let%bind instructions = bind_list
@@ List.map simpl_statement
@@ npseq_to_list block.value.statements in
let%bind result = simpl_expression return in
let%bind output_type = simpl_type_expression ret_type in
let body = local_declarations @ instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let expression : expression = e_lambda ~loc binder (Some input_type)
(Some output_type) result in
let type_annotation = Some (T_function (input_type, output_type)) in
ok ((name , type_annotation) , expression)
)
| lst -> (
let arguments_name = "arguments" in
let%bind params = bind_map_list simpl_param lst in
let (binder , input_type) =
let type_expression = T_tuple (List.map snd params) in
(arguments_name , type_expression) in
let%bind tpl_declarations =
let aux = fun i x ->
let expr = e_accessor (e_variable arguments_name) [Access_tuple i] in
let type_ = Some (snd x) in
let ass = return_let_in (fst x , type_) expr in
ass
in
bind_list @@ List.mapi aux params in
let%bind local_declarations =
bind_map_list simpl_local_declaration local_decls in
let%bind instructions = bind_list
@@ List.map simpl_statement
@@ npseq_to_list block.value.statements in
let%bind result = simpl_expression return in
let%bind output_type = simpl_type_expression ret_type in
let body = tpl_declarations @ local_declarations @ instructions in
let%bind result =
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let expression =
e_lambda ~loc binder (Some input_type) (Some output_type) result in
let type_annotation = Some (T_function (input_type, output_type)) in
ok ((name.value , type_annotation) , expression)
)
)
and simpl_declaration : Raw.declaration -> declaration Location.wrap result =
fun t ->
let open! Raw in
match t with
| TypeDecl x -> (
let (x , loc) = r_split x in
let {name;type_expr} : Raw.type_decl = x in
let%bind type_expression = simpl_type_expression type_expr in
ok @@ Location.wrap ~loc (Declaration_type (name.value , type_expression))
)
| ConstDecl x ->
let simpl_const_decl = fun {name;const_type;init} ->
let%bind expression = simpl_expression init in
let%bind t = simpl_type_expression const_type in
let type_annotation = Some t in
ok @@ Declaration_constant (name.value , type_annotation , expression)
in
bind_map_location simpl_const_decl (Location.lift_region x)
| LambdaDecl (FunDecl x) -> (
let (x , loc) = r_split x in
let%bind ((name , ty_opt) , expr) = simpl_fun_declaration ~loc x in
ok @@ Location.wrap ~loc (Declaration_constant (name , ty_opt , expr))
)
| LambdaDecl (ProcDecl decl) ->
fail @@ unsupported_proc_decl decl
| LambdaDecl (EntryDecl decl) ->
fail @@ unsupported_entry_decl decl
and simpl_statement : Raw.statement -> (_ -> expression result) result =
fun s ->
match s with
| Instr i -> simpl_instruction i
| Data d -> simpl_data_declaration d
and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) result =
fun t ->
match t with
| ProcCall x -> (
let ((name, args) , loc) = r_split x in
let (f , f_loc) = r_split name in
let (args , args_loc) = r_split args in
let args' = npseq_to_list args.inside in
match List.assoc_opt f constants with
| None ->
let%bind arg = simpl_tuple_expression ~loc:args_loc args' in
return_statement @@ e_application ~loc (e_variable ~loc:f_loc f) arg
| Some s ->
let%bind lst = bind_map_list simpl_expression args' in
return_statement @@ e_constant ~loc s lst
)
| Fail e -> (
let%bind expr = simpl_expression e.value.fail_expr in
return_statement @@ e_failwith expr
)
| Skip reg -> (
let loc = Location.lift reg in
return_statement @@ e_skip ~loc ()
)
| Loop (While l) ->
let l = l.value in
let%bind cond = simpl_expression l.cond in
let%bind body = simpl_block l.block.value in
let%bind body = body None in
return_statement @@ e_loop cond body
| Loop (For (ForInt {region; _} | ForCollect {region ; _})) ->
fail @@ unsupported_for_loops region
| Cond c -> (
let (c , loc) = r_split c in
let%bind expr = simpl_expression c.test in
let%bind match_true = match c.ifso with
| ClauseInstr i -> simpl_instruction_block i
| ClauseBlock b -> simpl_statements @@ fst b.value.inside in
let%bind match_false = match c.ifnot with
| ClauseInstr i -> simpl_instruction_block i
| ClauseBlock b -> simpl_statements @@ fst b.value.inside in
let%bind match_true = match_true None in
let%bind match_false = match_false None in
return_statement @@ e_matching expr ~loc (Match_bool {match_true; match_false})
)
| Assign a -> (
let (a , loc) = r_split a in
let%bind value_expr = match a.rhs with
| Expr e -> simpl_expression e
| NoneExpr reg -> fail @@ unsupported_ass_None reg
in
match a.lhs with
| Path path -> (
let (name , path') = simpl_path path in
return_statement @@ e_assign ~loc name path' value_expr
)
| MapPath v -> (
let v' = v.value in
let%bind name = match v'.path with
| Name name -> ok name
| _ -> fail @@ unsupported_deep_map_assign v in
let%bind key_expr = simpl_expression v'.index.value.inside in
let old_expr = e_variable name.value in
let expr' = e_map_add key_expr value_expr old_expr in
return_statement @@ e_assign ~loc name.value [] expr'
)
)
| CaseInstr c -> (
let (c , loc) = r_split c in
let%bind expr = simpl_expression c.expr in
let%bind cases =
let aux (x : Raw.instruction Raw.case_clause Raw.reg) =
let%bind i = simpl_instruction_block x.value.rhs in
let%bind i = i None in
ok (x.value.pattern, i) in
bind_list
@@ List.map aux
@@ npseq_to_list c.cases.value in
let%bind m = simpl_cases cases in
return_statement @@ e_matching ~loc expr m
)
| RecordPatch r -> (
let r = r.value in
let (name , access_path) = simpl_path r.path in
let%bind inj = bind_list
@@ List.map (fun (x:Raw.field_assign Region.reg) ->
let (x , loc) = r_split x in
let%bind e = simpl_expression x.field_expr
in ok (x.field_name.value, e , loc)
)
@@ pseq_to_list r.record_inj.value.elements in
let%bind expr =
let aux = fun (access , v , loc) ->
e_assign ~loc name (access_path @ [ Access_record access ]) v in
let assigns = List.map aux inj in
match assigns with
| [] -> fail @@ unsupported_empty_record_patch r.record_inj
| hd :: tl -> (
let aux acc cur = e_sequence acc cur in
ok @@ List.fold_left aux hd tl
)
in
return_statement @@ expr
)
| MapPatch patch ->
fail @@ unsupported_map_patches patch
| SetPatch patch ->
fail @@ unsupported_set_patches patch
| MapRemove r -> (
let (v , loc) = r_split r in
let key = v.key in
let%bind map = match v.map with
| Name v -> ok v.value
| Path path -> fail @@ unsupported_deep_map_rm path in
let%bind key' = simpl_expression key in
let expr = e_constant ~loc "MAP_REMOVE" [key' ; e_variable map] in
return_statement @@ e_assign ~loc map [] expr
)
| SetRemove r -> fail @@ unsupported_set_removal r
and simpl_path : Raw.path -> string * Ast_simplified.access_path = fun p ->
match p with
| Raw.Name v -> (v.value , [])
| Raw.Path p -> (
let p' = p.value in
let var = p'.struct_name.value in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> Access_record property.value
| Component index -> Access_tuple (Z.to_int (snd index.value))
in
List.map aux @@ npseq_to_list path in
(var , path')
)
and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t ->
let open Raw in
let get_var (t:Raw.pattern) =
match t with
| PVar v -> ok v.value
| p -> fail @@ unsupported_non_var_pattern p in
let get_tuple (t: Raw.pattern) =
match t with
| PTuple v -> npseq_to_list v.value.inside
| x -> [ x ] in
let get_single (t: Raw.pattern) =
let t' = get_tuple t in
let%bind () =
trace_strong (unsupported_tuple_pattern t) @@
Assert.assert_list_size t' 1 in
ok (List.hd t') in
let get_toplevel (t : Raw.pattern) =
match t with
| PCons x -> (
let (x' , lst) = x.value in
match lst with
| [] -> ok x'
| _ -> ok t
)
| _ -> fail @@ corner_case ~loc:__LOC__ "unexpected pattern" in
let get_constr (t: Raw.pattern) =
match t with
| PConstr v -> (
let (const , pat_opt) = v.value in
let%bind pat =
trace_option (unsupported_cst_constr t) @@
pat_opt in
let%bind single_pat = get_single (PTuple pat) in
let%bind var = get_var single_pat in
ok (const.value , var)
)
(*
| PConstr {value = constr, Some tuple; _} ->
let%bind var = get_single (PTuple tuple) >>? get_var in
ok (constr.value, var)
| PConstr {value = constr, None; _} ->
*)
| _ -> fail @@ only_constructors t in
let%bind patterns =
let aux (x , y) =
let%bind x' = get_toplevel x in
ok (x' , y)
in bind_map_list aux t in
match patterns with
| [(PFalse _ , f) ; (PTrue _ , t)]
| [(PTrue _ , t) ; (PFalse _ , f)] ->
ok @@ Match_bool {match_true = t ; match_false = f}
| [(PSome v , some) ; (PNone _ , none)]
| [(PNone _ , none) ; (PSome v , some)] -> (
let (_, v) = v.value in
let%bind v = match v.value.inside with
| PVar v -> ok v.value
| p -> fail @@ unsupported_deep_Some_patterns p in
ok @@ Match_option {match_none = none ; match_some = (v, some) }
)
| [(PCons c , cons) ; (PList (PNil _) , nil)]
| [(PList (PNil _) , nil) ; (PCons c, cons)] ->
let%bind (a, b) =
match c.value with
| a, [(_, b)] ->
let%bind a = get_var a in
let%bind b = get_var b in
ok (a, b)
| _ -> fail @@ unsupported_deep_list_patterns c
in
ok @@ Match_list {match_cons = (a, b, cons) ; match_nil = nil}
| lst ->
trace (simple_info "currently, only booleans, options, lists and \
user-defined constructors are supported in patterns") @@
let%bind constrs =
let aux (x , y) =
let error =
let title () = "Pattern" in
let content () =
Format.asprintf "Pattern : %a" (PP_helpers.printer Parser.Pascaligo.ParserLog.print_pattern) x in
error title content in
let%bind x' =
trace error @@
get_constr x in
ok (x' , y) in
bind_map_list aux lst in
ok @@ Match_variant constrs
and simpl_instruction_block : Raw.instruction -> (_ -> expression result) result =
fun t ->
match t with
| Single s -> simpl_single_instruction s
| Block b -> simpl_block b.value
and simpl_instruction : Raw.instruction -> (_ -> expression result) result =
fun t ->
trace (simplifying_instruction t) @@
match t with
| Single s -> simpl_single_instruction s
| Block b -> fail @@ unsupported_sub_blocks b
and simpl_statements : Raw.statements -> (_ -> expression result) result =
fun ss ->
let lst = npseq_to_list ss in
let%bind fs = bind_map_list simpl_statement lst in
let aux : _ -> (expression option -> expression result) -> _ =
fun prec cur ->
let%bind res = cur prec in
ok @@ Some res in
ok @@ fun (expr' : _ option) ->
let%bind ret = bind_fold_right_list aux expr' fs in
ok @@ Option.unopt_exn ret
and simpl_block : Raw.block -> (_ -> expression result) result = fun t ->
simpl_statements t.statements
let simpl_program : Raw.ast -> program result = fun t ->
bind_list @@ List.map simpl_declaration @@ nseq_to_list t.decl