ligo/src/passes/operators/helpers.ml

376 lines
15 KiB
OCaml

module Typer = struct
open Trace
open Ast_typed
module Errors = struct
let wrong_param_number = fun name expected got ->
let title () = "wrong number of params" in
let full () = Format.asprintf "constant name: %s\nexpected: %d\ngot: %d\n"
name expected (List.length got) in
error title full
let error_uncomparable_types a b () =
let title () = "these types are not comparable" in
let message () = "" in
let data = [
("a" , fun () -> Format.asprintf "%a" PP.type_expression a) ;
("b" , fun () -> Format.asprintf "%a" PP.type_expression b )
] in
error ~data title message ()
let error_comparator_composed a () =
let title () = "We only allow composed types of not more than two element to be compared" in
let message () = "" in
let data = [
("received" , fun () -> Format.asprintf "%a" PP.type_expression a);
] in
error ~data title message ()
let error_first_field_comp_pair a () =
let title () = "this field is not allowed at the left of a comparable pair" in
let message () = "" in
let data = [
("received" , fun () -> Format.asprintf "%a" PP.type_expression a);
] in
error ~data title message ()
end
open Errors
type type_result = type_expression
type typer = type_expression list -> type_expression option -> type_result result
let typer_0 : string -> (type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
match lst with
| [] -> (
let%bind tv' = f tv_opt in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 0 lst
let typer_1 : string -> (type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ] -> (
let%bind tv' = f a in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 1 lst
let typer_1_opt : string -> (type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
match lst with
| [ a ] -> (
let%bind tv' = f a tv_opt in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 1 lst
let typer_2 : string -> (type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ] -> (
let%bind tv' = f a b in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 2 lst
let typer_2_opt : string -> (type_expression -> type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
match lst with
| [ a ; b ] -> (
let%bind tv' = f a b tv_opt in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 2 lst
let typer_3 : string -> (type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ; c ] -> (
let%bind tv' = f a b c in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 3 lst
let typer_4 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ; c ; d ] -> (
let%bind tv' = f a b c d in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 4 lst
let typer_5 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ; c ; d ; e ] -> (
let%bind tv' = f a b c d e in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 5 lst
let typer_6 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ; c ; d ; e ; f_ ] -> (
let%bind tv' = f a b c d e f_ in
ok (tv')
)
| _ -> fail @@ wrong_param_number s 6 lst
let constant' name cst = typer_0 name (fun _ -> ok cst)
open Combinators
let eq_1 a cst = type_expression_eq (a , cst)
let eq_2 (a , b) cst = type_expression_eq (a , cst) && type_expression_eq (b , cst)
let assert_eq_1 ?msg a b = Assert.assert_true ?msg (eq_1 a b)
let simple_comparator : string -> typer = fun s -> typer_2 s @@ fun a b ->
let%bind () =
trace_strong (error_uncomparable_types a b) @@
Assert.assert_true @@
List.exists (eq_2 (a , b)) [
t_int () ;
t_nat () ;
t_bool () ;
t_mutez () ;
t_string () ;
t_bytes () ;
t_address () ;
t_timestamp () ;
t_key_hash () ;
] in
ok @@ t_bool ()
let rec pair_comparator : string -> typer = fun s -> typer_2 s @@ fun a b ->
let%bind () =
trace_strong (error_uncomparable_types a b) @@
Assert.assert_true @@ eq_1 a b
in
let%bind (a_k, a_v) =
trace_strong (error_comparator_composed a) @@
get_t_pair a in
let%bind (b_k, b_v) = get_t_pair b in
let%bind _ =
trace_strong (error_first_field_comp_pair a) @@
simple_comparator s [a_k;b_k] None
in
comparator s [a_v;b_v] None
and comparator : string -> typer = fun s -> typer_2 s @@ fun a b ->
bind_or (simple_comparator s [a;b] None, pair_comparator s [a;b] None)
let boolean_operator_2 : string -> typer = fun s -> typer_2 s @@ fun a b ->
let%bind () =
trace_strong (simple_error "A isn't of type bool") @@
Assert.assert_true @@
type_expression_eq (t_bool () , a) in
let%bind () =
trace_strong (simple_error "B isn't of type bool") @@
Assert.assert_true @@
type_expression_eq (t_bool () , b) in
ok @@ t_bool ()
module Converter = struct
open Ast_typed
open Trace
let record_checks kvl =
let%bind () = Assert.assert_true_err
(simple_error "converted record must have at least two elements")
(List.length kvl >=2) in
let all_undefined = List.for_all (fun (_,{field_decl_pos;_}) -> field_decl_pos = 0) kvl in
let%bind () = Assert.assert_true_err
(simple_error "can't retrieve type declaration order in the converted record, you need to annotate it")
(not all_undefined) in
ok ()
let variant_checks kvl =
let%bind () = Assert.assert_true_err
(simple_error "converted variant must have at least two elements")
(List.length kvl >=2) in
let all_undefined = List.for_all (fun (_,{ctor_decl_pos;_}) -> ctor_decl_pos = 0) kvl in
let%bind () = Assert.assert_true_err
(simple_error "can't retrieve type declaration order in the converted variant, you need to annotate it")
(not all_undefined) in
ok ()
let annotate_field (field:field_content) (ann:string) : field_content =
{field with michelson_annotation=Some ann}
let annotate_ctor (ctor:ctor_content) (ann:string) : ctor_content =
{ctor with michelson_annotation=Some ann}
let comb_pair (t:type_content) : field_content =
let field_type = {
type_content = t ;
type_meta = None ;
location = Location.generated ; } in
{field_type ; michelson_annotation = Some "" ; field_decl_pos = 0}
let comb_ctor (t:type_content) : ctor_content =
let ctor_type = {
type_content = t ;
type_meta = None ;
location = Location.generated ; } in
{ctor_type ; michelson_annotation = Some "" ; ctor_decl_pos = 0}
let rec to_right_comb_pair l new_map =
match l with
| [] -> new_map
| [ (Label ann_l, field_content_l) ; (Label ann_r, field_content_r) ] ->
LMap.add_bindings [
(Label "0" , annotate_field field_content_l ann_l) ;
(Label "1" , annotate_field field_content_r ann_r) ] new_map
| (Label ann, field)::tl ->
let new_map' = LMap.add (Label "0") (annotate_field field ann) new_map in
LMap.add (Label "1") (comb_pair (T_record (to_right_comb_pair tl new_map'))) new_map'
let rec to_right_comb_variant l new_map =
match l with
| [] -> new_map
| [ (Constructor ann_l, field_content_l) ; (Constructor ann_r, field_content_r) ] ->
CMap.add_bindings [
(Constructor "M_left" , annotate_ctor field_content_l ann_l) ;
(Constructor "M_right" , annotate_ctor field_content_r ann_r) ] new_map
| (Constructor ann, field)::tl ->
let new_map' = CMap.add (Constructor "M_left") (annotate_ctor field ann) new_map in
CMap.add (Constructor "M_right") (comb_ctor (T_sum (to_right_comb_variant tl new_map'))) new_map'
let rec to_left_comb_pair' first l new_map =
match l with
| [] -> new_map
| (Label ann_l, field_content_l) :: (Label ann_r, field_content_r) ::tl when first ->
let new_map' = LMap.add_bindings [
(Label "0" , annotate_field field_content_l ann_l) ;
(Label "1" , annotate_field field_content_r ann_r) ] LMap.empty in
to_left_comb_pair' false tl new_map'
| (Label ann, field)::tl ->
let new_map' = LMap.add_bindings [
(Label "0" , comb_pair (T_record new_map)) ;
(Label "1" , annotate_field field ann ) ;] LMap.empty in
to_left_comb_pair' first tl new_map'
let to_left_comb_pair = to_left_comb_pair' true
let rec to_left_comb_variant' first l new_map =
match l with
| [] -> new_map
| (Constructor ann_l, ctor_content_l) :: (Constructor ann_r, ctor_content_r) ::tl when first ->
let new_map' = CMap.add_bindings [
(Constructor "M_left" , annotate_ctor ctor_content_l ann_l) ;
(Constructor "M_right" , annotate_ctor ctor_content_r ann_r) ] CMap.empty in
to_left_comb_variant' false tl new_map'
| (Constructor ann, ctor)::tl ->
let new_map' = CMap.add_bindings [
(Constructor "M_left" , comb_ctor (T_sum new_map)) ;
(Constructor "M_right" , annotate_ctor ctor ann ) ;] CMap.empty in
to_left_comb_variant' first tl new_map'
let to_left_comb_variant = to_left_comb_variant' true
let rec from_right_comb_pair (l:field_content label_map) (size:int) : (field_content list) result =
let l' = List.rev @@ LMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,l) ; (_,{field_type=tr;_}) ], _ ->
let%bind comb_lmap = get_t_record tr in
let%bind next = from_right_comb_pair comb_lmap (size-1) in
ok (l :: next)
| _ -> simple_fail "Could not convert michelson_pair_right_comb pair to a record"
let rec from_left_comb_pair (l:field_content label_map) (size:int) : (field_content list) result =
let l' = List.rev @@ LMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,{field_type=tl;_}) ; (_,r) ], _ ->
let%bind comb_lmap = get_t_record tl in
let%bind next = from_left_comb_pair comb_lmap (size-1) in
ok (List.append next [r])
| _ -> simple_fail "Could not convert michelson_pair_left_comb pair to a record"
let rec from_right_comb_variant (l:ctor_content constructor_map) (size:int) : (ctor_content list) result =
let l' = List.rev @@ CMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,l) ; (_,{ctor_type=tr;_}) ], _ ->
let%bind comb_cmap = get_t_sum tr in
let%bind next = from_right_comb_variant comb_cmap (size-1) in
ok (l :: next)
| _ -> simple_fail "Could not convert michelson_or right comb to a variant"
let rec from_left_comb_variant (l:ctor_content constructor_map) (size:int) : (ctor_content list) result =
let l' = List.rev @@ CMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,{ctor_type=tl;_}) ; (_,r) ], _ ->
let%bind comb_cmap = get_t_sum tl in
let%bind next = from_left_comb_variant comb_cmap (size-1) in
ok (List.append next [r])
| _ -> simple_fail "Could not convert michelson_or left comb to a record"
let convert_pair_to_right_comb l =
let l' = List.sort (fun (_,{field_decl_pos=a;_}) (_,{field_decl_pos=b;_}) -> Int.compare a b) l in
T_record (to_right_comb_pair l' LMap.empty)
let convert_pair_to_left_comb l =
let l' = List.sort (fun (_,{field_decl_pos=a;_}) (_,{field_decl_pos=b;_}) -> Int.compare a b) l in
T_record (to_left_comb_pair l' LMap.empty)
let convert_pair_from_right_comb (src: field_content label_map) (dst: field_content label_map) : type_content result =
let%bind fields = from_right_comb_pair src (LMap.cardinal dst) in
let labels = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{field_decl_pos=a;_}) (_,{field_decl_pos=b;_}) -> Int.compare a b ) @@
LMap.to_kv_list dst in
ok @@ (T_record (LMap.of_list @@ List.combine labels fields))
let convert_pair_from_left_comb (src: field_content label_map) (dst: field_content label_map) : type_content result =
let%bind fields = from_left_comb_pair src (LMap.cardinal dst) in
let labels = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{field_decl_pos=a;_}) (_,{field_decl_pos=b;_}) -> Int.compare a b ) @@
LMap.to_kv_list dst in
ok @@ (T_record (LMap.of_list @@ List.combine labels fields))
let convert_variant_to_right_comb l =
let l' = List.sort (fun (_,{ctor_decl_pos=a;_}) (_,{ctor_decl_pos=b;_}) -> Int.compare a b) l in
T_sum (to_right_comb_variant l' CMap.empty)
let convert_variant_to_left_comb l =
let l' = List.sort (fun (_,{ctor_decl_pos=a;_}) (_,{ctor_decl_pos=b;_}) -> Int.compare a b) l in
T_sum (to_left_comb_variant l' CMap.empty)
let convert_variant_from_right_comb (src: ctor_content constructor_map) (dst: ctor_content constructor_map) : type_content result =
let%bind ctors = from_right_comb_variant src (CMap.cardinal dst) in
let ctors_name = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{ctor_decl_pos=a;_}) (_,{ctor_decl_pos=b;_}) -> Int.compare a b ) @@
CMap.to_kv_list dst in
ok @@ (T_sum (CMap.of_list @@ List.combine ctors_name ctors))
let convert_variant_from_left_comb (src: ctor_content constructor_map) (dst: ctor_content constructor_map) : type_content result =
let%bind ctors = from_left_comb_variant src (CMap.cardinal dst) in
let ctors_name = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{ctor_decl_pos=a;_}) (_,{ctor_decl_pos=b;_}) -> Int.compare a b ) @@
CMap.to_kv_list dst in
ok @@ (T_sum (CMap.of_list @@ List.combine ctors_name ctors))
end
end
module Compiler = struct
open Tezos_utils.Michelson
type predicate =
| Constant of michelson
| Unary of michelson
| Binary of michelson
| Ternary of michelson
| Tetrary of michelson
| Pentary of michelson
| Hexary of michelson
let simple_constant c = Constant c
let simple_unary c = Unary c
let simple_binary c = Binary c
let simple_ternary c = Ternary c
let simple_tetrary c = Tetrary c
let simple_pentary c = Pentary c
let simple_hexary c = Hexary c
end