Lesenechal Remi c6b95bf07a result monad refactoring:
- do not use plain JSON rep for errors and use polymorphic variants instead
- split formatting for human readable and JSON output
- no more simple_errors simple_fails
- much less result bindings used in stages
2020-06-15 14:45:28 +02:00

440 lines
15 KiB
OCaml

open Ast_sugar
open Trace
open Stage_common.Helpers
let bind_map_cmap f map = bind_cmap (
CMap.map
(fun ({ctor_type;_} as ctor) ->
let%bind ctor' = f ctor_type in
ok {ctor with ctor_type = ctor'})
map)
let bind_map_lmap_t f map = bind_lmap (
LMap.map
(fun ({field_type;_} as field) ->
let%bind field' = f field_type in
ok {field with field_type = field'})
map)
type ('a , 'err) folder = 'a -> expression -> ('a , 'err) result
let rec fold_expression : ('a, 'err) folder -> 'a -> expression -> ('a, 'err) result = fun f init e ->
let self = fold_expression f in
let%bind init' = f init e in
match e.expression_content with
| E_literal _ | E_variable _ | E_raw_code _ | E_skip -> ok init'
| E_list lst | E_set lst | E_constant {arguments=lst} -> (
let%bind res = bind_fold_list self init' lst in
ok res
)
| E_map lst | E_big_map lst -> (
let%bind res = bind_fold_list (bind_fold_pair self) init' lst in
ok res
)
| E_application {lamb;args} -> (
let ab = (lamb,args) in
let%bind res = bind_fold_pair self init' ab in
ok res
)
| E_lambda { binder = _ ; input_type = _ ; output_type = _ ; result = e }
| E_ascription {anno_expr=e; _} | E_constructor {element=e} -> (
let%bind res = self init' e in
ok res
)
| E_matching {matchee=e; cases} -> (
let%bind res = self init' e in
let%bind res = fold_cases f res cases in
ok res
)
| E_record m -> (
let aux init'' _ expr =
let%bind res = fold_expression self init'' expr in
ok res
in
let%bind res = bind_fold_lmap aux (ok init') m in
ok res
)
| E_update {record;path;update} -> (
let%bind res = self init' record in
let aux res a = match a with
| Access_map e -> self res e
| _ -> ok res
in
let%bind res = bind_fold_list aux res path in
let%bind res = fold_expression self res update in
ok res
)
| E_accessor {record;path} -> (
let%bind res = self init' record in
let aux res a = match a with
| Access_map e -> self res e
| _ -> ok res
in
let%bind res = bind_fold_list aux res path in
ok res
)
| E_let_in { let_binder = _ ; rhs ; let_result } -> (
let%bind res = self init' rhs in
let%bind res = self res let_result in
ok res
)
| E_cond {condition; then_clause; else_clause} ->
let%bind res = self init' condition in
let%bind res = self res then_clause in
let%bind res = self res else_clause in
ok res
| E_recursive { lambda={result=e;_}; _} ->
let%bind res = self init' e in
ok res
| E_sequence {expr1;expr2} ->
let ab = (expr1,expr2) in
let%bind res = bind_fold_pair self init' ab in
ok res
| E_tuple t -> (
let aux init'' expr =
let%bind res = fold_expression self init'' expr in
ok res
in
let%bind res = bind_fold_list aux (init') t in
ok res
)
and fold_cases : ('a, 'err) folder -> 'a -> matching_expr -> ('a, 'err) result = fun f init m ->
match m with
| Match_variant lst -> (
let aux init' ((_ , _) , e) =
let%bind res' = fold_expression f init' e in
ok res' in
let%bind res = bind_fold_list aux init lst in
ok res
)
| Match_list { match_nil ; match_cons = (_ , _ , cons) } -> (
let%bind res = fold_expression f init match_nil in
let%bind res = fold_expression f res cons in
ok res
)
| Match_option { match_none ; match_some = (_ , some) } -> (
let%bind res = fold_expression f init match_none in
let%bind res = fold_expression f res some in
ok res
)
| Match_record (_, _, e) -> (
let%bind res = fold_expression f init e in
ok res
)
| Match_tuple (_, _, e) -> (
let%bind res = fold_expression f init e in
ok res
)
| Match_variable (_, _, e) -> (
let%bind res = fold_expression f init e in
ok res
)
type 'err exp_mapper = expression -> (expression, 'err) result
type 'err ty_exp_mapper = type_expression -> (type_expression, 'err) result
type 'err abs_mapper =
| Expression of 'err exp_mapper
| Type_expression of 'err ty_exp_mapper
let rec map_expression : 'err exp_mapper -> expression -> (expression, 'err) result = fun f e ->
let self = map_expression f in
let%bind e' = f e in
let return expression_content = ok { e' with expression_content } in
match e'.expression_content with
| E_list lst -> (
let%bind lst' = bind_map_list self lst in
return @@ E_list lst'
)
| E_set lst -> (
let%bind lst' = bind_map_list self lst in
return @@ E_set lst'
)
| E_map lst -> (
let%bind lst' = bind_map_list (bind_map_pair self) lst in
return @@ E_map lst'
)
| E_big_map lst -> (
let%bind lst' = bind_map_list (bind_map_pair self) lst in
return @@ E_big_map lst'
)
| E_ascription ascr -> (
let%bind e' = self ascr.anno_expr in
return @@ E_ascription {ascr with anno_expr=e'}
)
| E_matching {matchee=e;cases} -> (
let%bind e' = self e in
let%bind cases' = map_cases f cases in
return @@ E_matching {matchee=e';cases=cases'}
)
| E_record m -> (
let%bind m' = bind_map_lmap self m in
return @@ E_record m'
)
| E_accessor {record; path} -> (
let%bind record = self record in
let aux a = match a with
| Access_map e ->
let%bind e = self e in
ok @@ Access_map e
| e -> ok @@ e
in
let%bind path = bind_map_list aux path in
return @@ E_accessor {record; path}
)
| E_update {record; path; update} -> (
let%bind record = self record in
let aux a = match a with
| Access_map e ->
let%bind e = self e in
ok @@ Access_map e
| e -> ok @@ e
in
let%bind path = bind_map_list aux path in
let%bind update = self update in
return @@ E_update {record;path;update}
)
| E_constructor c -> (
let%bind e' = self c.element in
return @@ E_constructor {c with element = e'}
)
| E_application {lamb;args} -> (
let ab = (lamb,args) in
let%bind (lamb,args) = bind_map_pair self ab in
return @@ E_application {lamb;args}
)
| E_let_in { let_binder ; mut; rhs ; let_result; inline } -> (
let%bind rhs = self rhs in
let%bind let_result = self let_result in
return @@ E_let_in { let_binder ; mut; rhs ; let_result; inline }
)
| E_lambda { binder ; input_type ; output_type ; result } -> (
let%bind result = self result in
return @@ E_lambda { binder ; input_type ; output_type ; result }
)
| E_recursive { fun_name; fun_type; lambda} ->
let%bind result = self lambda.result in
let lambda = {lambda with result} in
return @@ E_recursive { fun_name; fun_type; lambda}
| E_constant c -> (
let%bind args = bind_map_list self c.arguments in
return @@ E_constant {c with arguments=args}
)
| E_cond {condition; then_clause; else_clause} ->
let%bind condition = self condition in
let%bind then_clause = self then_clause in
let%bind else_clause = self else_clause in
return @@ E_cond {condition;then_clause;else_clause}
| E_sequence {expr1;expr2} -> (
let%bind (expr1,expr2) = bind_map_pair self (expr1,expr2) in
return @@ E_sequence {expr1;expr2}
)
| E_tuple t -> (
let%bind t' = bind_map_list self t in
return @@ E_tuple t'
)
| E_literal _ | E_variable _ | E_raw_code _ | E_skip as e' -> return e'
and map_type_expression : 'err ty_exp_mapper -> type_expression -> (type_expression, 'err) result = fun f te ->
let self = map_type_expression f in
let%bind te' = f te in
let return type_content = ok { type_content; location=te.location } in
match te'.type_content with
| T_sum temap ->
let%bind temap' = bind_map_cmap self temap in
return @@ (T_sum temap')
| T_record temap ->
let%bind temap' = bind_map_lmap_t self temap in
return @@ (T_record temap')
| T_tuple telst ->
let%bind telst' = bind_map_list self telst in
return @@ (T_tuple telst')
| T_arrow {type1 ; type2} ->
let%bind type1' = self type1 in
let%bind type2' = self type2 in
return @@ (T_arrow {type1=type1' ; type2=type2'})
| T_operator _
| T_variable _ | T_constant _ -> ok te'
and map_cases : 'err exp_mapper -> matching_expr -> (matching_expr, 'err) result = fun f m ->
match m with
| Match_variant lst -> (
let aux ((a , b) , e) =
let%bind e' = map_expression f e in
ok ((a , b) , e')
in
let%bind lst' = bind_map_list aux lst in
ok @@ Match_variant lst'
)
| Match_list { match_nil ; match_cons = (hd , tl , cons) } -> (
let%bind match_nil = map_expression f match_nil in
let%bind cons = map_expression f cons in
ok @@ Match_list { match_nil ; match_cons = (hd , tl , cons) }
)
| Match_option { match_none ; match_some = (name , some) } -> (
let%bind match_none = map_expression f match_none in
let%bind some = map_expression f some in
ok @@ Match_option { match_none ; match_some = (name , some) }
)
| Match_record (names, ty_opt, e) -> (
let%bind e' = map_expression f e in
ok @@ Match_record (names, ty_opt, e')
)
| Match_tuple (names, ty_opt, e) -> (
let%bind e' = map_expression f e in
ok @@ Match_tuple (names, ty_opt, e')
)
| Match_variable (name, ty_opt, e) -> (
let%bind e' = map_expression f e in
ok @@ Match_variable (name, ty_opt, e')
)
and map_program : 'err abs_mapper -> program -> (program, 'err) result = fun m p ->
let aux = fun (x : declaration) ->
match x,m with
| (Declaration_constant (t , o , i, e), Expression m') -> (
let%bind e' = map_expression m' e in
ok (Declaration_constant (t , o , i, e'))
)
| (Declaration_type (tv,te), Type_expression m') -> (
let%bind te' = map_type_expression m' te in
ok (Declaration_type (tv, te'))
)
| decl,_ -> ok decl
(* | Declaration_type of (type_variable * type_expression) *)
in
bind_map_list (bind_map_location aux) p
type ('a, 'err) fold_mapper = 'a -> expression -> (bool * 'a * expression, 'err) result
let rec fold_map_expression : ('a, 'err) fold_mapper -> 'a -> expression -> ('a * expression, 'err) result = fun f a e ->
let self = fold_map_expression f in
let%bind (continue, init',e') = f a e in
if (not continue) then ok(init',e')
else
let return expression_content = { e' with expression_content } in
match e'.expression_content with
| E_list lst -> (
let%bind (res, lst') = bind_fold_map_list self init' lst in
ok (res, return @@ E_list lst')
)
| E_set lst -> (
let%bind (res, lst') = bind_fold_map_list self init' lst in
ok (res, return @@ E_set lst')
)
| E_map lst -> (
let%bind (res, lst') = bind_fold_map_list (bind_fold_map_pair self) init' lst in
ok (res, return @@ E_map lst')
)
| E_big_map lst -> (
let%bind (res, lst') = bind_fold_map_list (bind_fold_map_pair self) init' lst in
ok (res, return @@ E_big_map lst')
)
| E_ascription ascr -> (
let%bind (res,e') = self init' ascr.anno_expr in
ok (res, return @@ E_ascription {ascr with anno_expr=e'})
)
| E_matching {matchee=e;cases} -> (
let%bind (res, e') = self init' e in
let%bind (res,cases') = fold_map_cases f res cases in
ok (res, return @@ E_matching {matchee=e';cases=cases'})
)
| E_record m -> (
let%bind (res, lst') = bind_fold_map_list (fun res (k,e) -> let%bind (res,e) = self res e in ok (res,(k,e))) init' (LMap.to_kv_list m) in
let m' = LMap.of_list lst' in
ok (res, return @@ E_record m')
)
| E_accessor {record;path} -> (
let%bind (res, record) = self init' record in
let aux res a = match a with
| Access_map e ->
let%bind (res,e) = self res e in
ok @@ (res,Access_map e)
| e -> ok @@ (res,e)
in
let%bind (res, path) = bind_fold_map_list aux res path in
ok (res, return @@ E_accessor {record; path})
)
| E_update {record; path; update} -> (
let%bind (res, record) = self init' record in
let aux res a = match a with
| Access_map e ->
let%bind (res,e) = self res e in
ok @@ (res,Access_map e)
| e -> ok @@ (res,e)
in
let%bind (res, path) = bind_fold_map_list aux res path in
let%bind (res, update) = self res update in
ok (res, return @@ E_update {record;path;update})
)
| E_tuple t -> (
let%bind (res, t') = bind_fold_map_list self init' t in
ok (res, return @@ E_tuple t')
)
| E_constructor c -> (
let%bind (res,e') = self init' c.element in
ok (res, return @@ E_constructor {c with element = e'})
)
| E_application {lamb;args} -> (
let ab = (lamb,args) in
let%bind (res,(a,b)) = bind_fold_map_pair self init' ab in
ok (res, return @@ E_application {lamb=a;args=b})
)
| E_let_in { let_binder ; mut; rhs ; let_result; inline } -> (
let%bind (res,rhs) = self init' rhs in
let%bind (res,let_result) = self res let_result in
ok (res, return @@ E_let_in { let_binder ; mut; rhs ; let_result ; inline })
)
| E_lambda { binder ; input_type ; output_type ; result } -> (
let%bind (res,result) = self init' result in
ok ( res, return @@ E_lambda { binder ; input_type ; output_type ; result })
)
| E_recursive { fun_name; fun_type; lambda} ->
let%bind (res, result) = self init' lambda.result in
let lambda = {lambda with result} in
ok ( res, return @@ E_recursive { fun_name; fun_type; lambda})
| E_constant c -> (
let%bind (res,args) = bind_fold_map_list self init' c.arguments in
ok (res, return @@ E_constant {c with arguments=args})
)
| E_cond {condition; then_clause; else_clause} ->
let%bind res,condition = self init' condition in
let%bind res,then_clause = self res then_clause in
let%bind res,else_clause = self res else_clause in
ok (res, return @@ E_cond {condition;then_clause;else_clause})
| E_sequence {expr1;expr2} -> (
let%bind (res,(expr1,expr2)) = bind_fold_map_pair self init' (expr1,expr2) in
ok (res, return @@ E_sequence {expr1;expr2})
)
| E_literal _ | E_variable _ | E_raw_code _ | E_skip as e' -> ok (init', return e')
and fold_map_cases : ('a,'err) fold_mapper -> 'a -> matching_expr -> ('a * matching_expr, 'err) result = fun f init m ->
match m with
| Match_variant lst -> (
let aux init ((a , b) , e) =
let%bind (init,e') = fold_map_expression f init e in
ok (init, ((a , b) , e'))
in
let%bind (init,lst') = bind_fold_map_list aux init lst in
ok @@ (init, Match_variant lst')
)
| Match_list { match_nil ; match_cons = (hd , tl , cons) } -> (
let%bind (init, match_nil) = fold_map_expression f init match_nil in
let%bind (init, cons) = fold_map_expression f init cons in
ok @@ (init, Match_list { match_nil ; match_cons = (hd , tl , cons) })
)
| Match_option { match_none ; match_some = (name , some) } -> (
let%bind (init, match_none) = fold_map_expression f init match_none in
let%bind (init, some) = fold_map_expression f init some in
ok @@ (init, Match_option { match_none ; match_some = (name , some) })
)
| Match_record (names, ty_opt, e) -> (
let%bind (init, e') = fold_map_expression f init e in
ok @@ (init, Match_record (names, ty_opt, e'))
)
| Match_tuple (names, ty_opt, e) -> (
let%bind (init, e') = fold_map_expression f init e in
ok @@ (init, Match_tuple (names, ty_opt, e'))
)
| Match_variable (name, ty_opt, e) -> (
let%bind (init, e') = fold_map_expression f init e in
ok @@ (init, Match_variable (name, ty_opt, e'))
)