ligo/src/lib_data_encoding/binary_stream_reader.ml
2018-06-12 21:27:55 +02:00

435 lines
16 KiB
OCaml

(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2018. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
open Binary_error
let raise e = raise (Read_error e)
(** Persistent state of the binary reader. *)
type state = {
stream : Binary_stream.t ;
(** All the remaining data to be read. *)
remaining_bytes : int option ;
(** Total number of bytes that should be from 'stream' (None =
illimited). Reading less bytes should raise [Extra_bytes] and
trying to read more bytes should raise [Not_enough_data]. *)
allowed_bytes : int option ;
(** Maximum number of bytes that are allowed to be read from 'stream'
before to fail (None = illimited). *)
total_read : int ;
(** Total number of bytes that has been read from [stream] since the
beginning. *)
}
(** Return type for the function [read_rec]. See [Data_encoding] for its
description. *)
type 'ret status =
| Success of { result : 'ret ; size : int ; stream : Binary_stream.t }
| Await of (MBytes.t -> 'ret status)
| Error of read_error
let check_remaining_bytes state size =
match state.remaining_bytes with
| Some len when len < size -> raise Not_enough_data
| Some len -> Some (len - size)
| None -> None
let check_allowed_bytes state size =
match state.allowed_bytes with
| Some len when len < size -> raise Size_limit_exceeded
| Some len -> Some (len - size)
| None -> None
(** [read_atom resume size conv state k] reads [size] bytes from [state],
pass it to [conv] to be decoded, and finally call the continuation [k]
with the decoded value and the updated state.
The function [conv] is also allowed to raise [Read_error err].
In that case the exception is catched and [Error err] is returned.
If there is not enough [remaining_bytes] to be read in [state], the
function returns [Error Not_enough_data] instead of calling
the continuation.
If there is not enough [allowed_bytes] to be read in [state], the
function returns [Error Size_limit_exceeded] instead of calling
the continuation.
If there is not enough bytes to be read in [state], the function
returns [Await resume] instead of calling the continuation. *)
let read_atom resume size conv state k =
match
let remaining_bytes = check_remaining_bytes state size in
let allowed_bytes = check_allowed_bytes state size in
let res, stream = Binary_stream.read state.stream size in
conv res.buffer res.ofs,
{ remaining_bytes ; allowed_bytes ; stream ;
total_read = state.total_read + size }
with
| exception (Read_error error) -> Error error
| exception Binary_stream.Need_more_data -> Await resume
| v -> k v (* tail call *)
(** Reader for all the atomic types. *)
module Atom = struct
let uint8 r = read_atom r Binary_size.uint8 MBytes.get_uint8
let uint16 r = read_atom r Binary_size.int16 MBytes.get_uint16
let int8 r = read_atom r Binary_size.int8 MBytes.get_int8
let int16 r = read_atom r Binary_size.int16 MBytes.get_int16
let int32 r = read_atom r Binary_size.int32 MBytes.get_int32
let int64 r = read_atom r Binary_size.int64 MBytes.get_int64
let float r = read_atom r Binary_size.float MBytes.get_double
let bool resume state k =
int8 resume state @@ fun (v, state) ->
k (v <> 0, state)
let uint30 r =
read_atom r Binary_size.uint30 @@ fun buffer ofs ->
let v = Int32.to_int (MBytes.get_int32 buffer ofs) in
if v < 0 then
raise (Invalid_int { min = 0 ; v ; max = (1 lsl 30) - 1 }) ;
v
let int31 r =
read_atom r Binary_size.int31 @@ fun buffer ofs ->
Int32.to_int (MBytes.get_int32 buffer ofs)
let int = function
| `Int31 -> int31
| `Int16 -> int16
| `Int8 -> int8
| `Uint30 -> uint30
| `Uint16 -> uint16
| `Uint8 -> uint8
let ranged_int ~minimum ~maximum resume state k =
let read_int =
match Binary_size.range_to_size ~minimum ~maximum with
| `Int8 -> int8
| `Int16 -> int16
| `Int31 -> int31
| `Uint8 -> uint8
| `Uint16 -> uint16
| `Uint30 -> uint30 in
read_int resume state @@ fun (ranged, state) ->
let ranged = if minimum > 0 then ranged + minimum else ranged in
if not (minimum <= ranged && ranged <= maximum) then
Error (Invalid_int { min = minimum ; v =ranged ; max = maximum })
else
k (ranged, state)
let ranged_float ~minimum ~maximum resume state k =
float resume state @@ fun (ranged, state) ->
if not (minimum <= ranged && ranged <= maximum) then
Error (Invalid_float { min = minimum ; v = ranged ; max = maximum })
else
k (ranged, state)
let rec read_z res value bit_in_value state k =
let resume buffer =
let stream = Binary_stream.push buffer state.stream in
read_z res value bit_in_value { state with stream } k in
uint8 resume state @@ fun (byte, state) ->
let value = value lor ((byte land 0x7F) lsl bit_in_value) in
let bit_in_value = bit_in_value + 7 in
let bit_in_value, value =
if bit_in_value < 8 then
(bit_in_value, value)
else begin
Buffer.add_char res (Char.unsafe_chr (value land 0xFF)) ;
bit_in_value - 8, value lsr 8
end in
if byte land 0x80 = 0x80 then
read_z res value bit_in_value state k
else begin
if bit_in_value > 0 then Buffer.add_char res (Char.unsafe_chr value) ;
if byte = 0x00 then raise Trailing_zero ;
k (Z.of_bits (Buffer.contents res), state)
end
let n resume state k =
uint8 resume state @@ fun (first, state) ->
let first_value = first land 0x7F in
if first land 0x80 = 0x80 then
read_z (Buffer.create 100) first_value 7 state k
else
k (Z.of_int first_value, state)
let z resume state k =
uint8 resume state @@ fun (first, state) ->
let first_value = first land 0x3F in
let sign = (first land 0x40) <> 0 in
if first land 0x80 = 0x80 then
read_z (Buffer.create 100) first_value 6 state @@ fun (n, state) ->
k ((if sign then Z.neg n else n), state)
else
let n = Z.of_int first_value in
k ((if sign then Z.neg n else n), state)
let string_enum arr resume state k =
let read_index =
match Binary_size.enum_size arr with
| `Uint8 -> uint8
| `Uint16 -> uint16
| `Uint30 -> uint30 in
read_index resume state @@ fun (index, state) ->
if index >= Array.length arr then
Error No_case_matched
else
k (arr.(index), state)
let fixed_length_bytes length r =
read_atom r length @@ fun buf ofs ->
MBytes.sub buf ofs length
let fixed_length_string length r =
read_atom r length @@ fun buf ofs ->
MBytes.sub_string buf ofs length
let tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
end
let rec skip n state k =
let resume buffer =
let stream = Binary_stream.push buffer state.stream in
try skip n { state with stream } k
with Read_error err -> Error err in
Atom.fixed_length_string n resume state @@ fun (_, state : string * _) ->
k state
(** Main recursive reading function, in continuation passing style. *)
let rec read_rec
: type next ret.
bool -> next Encoding.t -> state -> ((next * state) -> ret status) -> ret status
= fun whole e state k ->
let resume buffer =
let stream = Binary_stream.push buffer state.stream in
try read_rec whole e { state with stream }k
with Read_error err -> Error err in
let open Encoding in
assert (Encoding.classify e <> `Variable || state.remaining_bytes <> None) ;
match e.encoding with
| Null -> k ((), state)
| Empty -> k ((), state)
| Constant _ -> k ((), state)
| Ignore -> k ((), state)
| Bool -> Atom.bool resume state k
| Int8 -> Atom.int8 resume state k
| Uint8 -> Atom.uint8 resume state k
| Int16 -> Atom.int16 resume state k
| Uint16 -> Atom.uint16 resume state k
| Int31 -> Atom.int31 resume state k
| Int32 -> Atom.int32 resume state k
| Int64 -> Atom.int64 resume state k
| N -> Atom.n resume state k
| Z -> Atom.z resume state k
| Float -> Atom.float resume state k
| Bytes (`Fixed n) -> Atom.fixed_length_bytes n resume state k
| Bytes `Variable ->
let size = remaining_bytes state in
Atom.fixed_length_bytes size resume state k
| String (`Fixed n) -> Atom.fixed_length_string n resume state k
| String `Variable ->
let size = remaining_bytes state in
Atom.fixed_length_string size resume state k
| Padded (e, n) ->
read_rec false e state @@ fun (v, state) ->
skip n state @@ (fun state -> k (v, state))
| RangedInt { minimum ; maximum } ->
Atom.ranged_int ~minimum ~maximum resume state k
| RangedFloat { minimum ; maximum } ->
Atom.ranged_float ~minimum ~maximum resume state k
| String_enum (_, arr) ->
Atom.string_enum arr resume state k
| Array (max_length, e) ->
let max_length = Option.unopt ~default:max_int max_length in
read_list Array_too_long max_length e state @@ fun (l, state) ->
k (Array.of_list l, state)
| List (max_length, e) ->
let max_length = Option.unopt ~default:max_int max_length in
read_list List_too_long max_length e state k
| (Obj (Req { encoding = e })) -> read_rec whole e state k
| (Obj (Dft { encoding = e })) -> read_rec whole e state k
| (Obj (Opt { kind = `Dynamic ; encoding = e })) ->
Atom.bool resume state @@ fun (present, state) ->
if not present then
k (None, state)
else
read_rec whole e state @@ fun (v, state) ->
k (Some v, state)
| (Obj (Opt { kind = `Variable ; encoding = e })) ->
let size = remaining_bytes state in
if size = 0 then
k (None, state)
else
read_rec whole e state @@ fun (v, state) ->
k (Some v, state)
| Objs { kind = `Fixed sz ; left ; right } ->
ignore (check_remaining_bytes state sz : int option) ;
ignore (check_allowed_bytes state sz : int option) ;
read_rec false left state @@ fun (left, state) ->
read_rec whole right state @@ fun (right, state) ->
k ((left, right), state)
| Objs { kind = `Dynamic ; left ; right } ->
read_rec false left state @@ fun (left, state) ->
read_rec whole right state @@ fun (right, state) ->
k ((left, right), state)
| Objs { kind = `Variable ; left ; right } ->
read_variable_pair left right state k
| Tup e -> read_rec whole e state k
| Tups { kind = `Fixed sz ; left ; right } ->
ignore (check_remaining_bytes state sz : int option) ;
ignore (check_allowed_bytes state sz : int option) ;
read_rec false left state @@ fun (left, state) ->
read_rec whole right state @@ fun (right, state) ->
k ((left, right), state)
| Tups { kind = `Dynamic ; left ; right } ->
read_rec false left state @@ fun (left, state) ->
read_rec whole right state @@ fun (right, state) ->
k ((left, right), state)
| Tups { kind = `Variable ; left ; right } ->
read_variable_pair left right state k
| Conv { inj ; encoding } ->
read_rec whole encoding state @@ fun (v, state) ->
k (inj v, state)
| Union { tag_size ; cases } -> begin
Atom.tag tag_size resume state @@ fun (ctag, state) ->
match
List.find
(function
| Case { tag = Tag tag } -> tag = ctag
| Case { tag = Json_only } -> false)
cases
with
| exception Not_found -> Error (Unexpected_tag ctag)
| Case { encoding ; inj } ->
read_rec whole encoding state @@ fun (v, state) ->
k (inj v, state)
end
| Dynamic_size { kind ; encoding = e } ->
Atom.int kind resume state @@ fun (sz, state) ->
let remaining = check_remaining_bytes state sz in
let state = { state with remaining_bytes = Some sz } in
ignore (check_allowed_bytes state sz : int option) ;
read_rec true e state @@ fun (v, state) ->
if state.remaining_bytes <> Some 0 then
Error Extra_bytes
else
k (v, { state with remaining_bytes = remaining })
| Check_size { limit ; encoding = e } ->
let old_allowed_bytes = state.allowed_bytes in
let limit =
match state.allowed_bytes with
| None -> limit
| Some current_limit -> min current_limit limit in
begin
match state.remaining_bytes with
| Some remaining when whole && limit < remaining ->
raise Size_limit_exceeded
| _ -> ()
end ;
let state = { state with allowed_bytes = Some limit } in
read_rec whole e state @@ fun (v, state) ->
let allowed_bytes =
match old_allowed_bytes with
| None -> None
| Some old_limit ->
let remaining =
match state.allowed_bytes with
| None -> assert false
| Some remaining -> remaining in
let read = limit - remaining in
Some (old_limit - read) in
k (v, { state with allowed_bytes })
| Describe { encoding = e } -> read_rec whole e state k
| Splitted { encoding = e } -> read_rec whole e state k
| Mu { fix } -> read_rec whole (fix e) state k
| Delayed f -> read_rec whole (f ()) state k
and remaining_bytes { remaining_bytes } =
match remaining_bytes with
| None ->
(* This function should only be called with a variable encoding,
for which the `remaining_bytes` should never be `None`. *)
assert false
| Some len -> len
and read_variable_pair
: type left right ret.
left Encoding.t -> right Encoding.t -> state ->
(((left * right) * state) -> ret status) -> ret status
= fun e1 e2 state k ->
let size = remaining_bytes state in
match Encoding.classify e1, Encoding.classify e2 with
| (`Dynamic | `Fixed _), `Variable ->
read_rec false e1 state @@ fun (left, state) ->
read_rec true e2 state @@ fun (right, state) ->
k ((left, right), state)
| `Variable, `Fixed n ->
if n > size then
Error Not_enough_data
else
let state = { state with remaining_bytes = Some (size - n) } in
read_rec true e1 state @@ fun (left, state) ->
assert (state.remaining_bytes = Some 0) ;
let state = { state with remaining_bytes = Some n } in
read_rec true e2 state @@ fun (right, state) ->
assert (state.remaining_bytes = Some 0) ;
k ((left, right), state)
| _ -> assert false (* Should be rejected by [Encoding.Kind.combine] *)
and read_list
: type a ret.
read_error -> int -> a Encoding.t -> state -> ((a list * state) -> ret status) -> ret status
= fun error max_length e state k ->
let rec loop state acc max_length =
let size = remaining_bytes state in
if size = 0 then
k (List.rev acc, state)
else if max_length = 0 then
raise error
else
read_rec false e state @@ fun (v, state) ->
loop state (v :: acc) (max_length - 1) in
loop state [] max_length
let read_rec e state k =
try read_rec false e state k
with Read_error err -> Error err
(** ******************** *)
(** Various entry points *)
let success (v, state) =
Success { result = v ; size = state.total_read ; stream = state.stream }
let read_stream ?(init = Binary_stream.empty) encoding =
match Encoding.classify encoding with
| `Variable ->
invalid_arg "Data_encoding.Binary.read_stream: variable encoding"
| `Dynamic | `Fixed _ ->
(* No hardcoded read limit in a stream. *)
let state = { remaining_bytes = None ; allowed_bytes = None ;
stream = init ; total_read = 0 } in
read_rec encoding state success