ligo/lib_node_shell/node.ml
Grégoire Henry 82857dcb94 Jbuilder: split lib_node_net
- `lib_node_p2p_base`: Base datatypes for the P2P layers
- `lib_node_services`: RPC service definitions (depends on `node_p2p_base`)
- `lib_node_http`: RPC http server
- `lib_node_p2p`: the P2P workers
2017-12-04 19:15:26 +01:00

694 lines
25 KiB
OCaml

(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2017. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
open Lwt.Infix
open Logging.Node.Worker
let inject_operation validator ?force ?net_id bytes =
let t =
match Data_encoding.Binary.of_bytes Operation.encoding bytes with
| None -> failwith "Can't parse the operation"
| Some op ->
Validator.inject_operation validator ?force ?net_id op
in
let hash = Operation_hash.hash_bytes [bytes] in
Lwt.return (hash, t)
let inject_protocol state ?force:_ proto =
let proto_bytes =
Data_encoding.Binary.to_bytes Protocol.encoding proto in
let hash = Protocol_hash.hash_bytes [proto_bytes] in
let validation =
Updater.compile hash proto >>= function
| false ->
failwith
"Compilation failed (%a)"
Protocol_hash.pp_short hash
| true ->
State.Protocol.store state proto >>= function
| None ->
failwith
"Previously registred protocol (%a)"
Protocol_hash.pp_short hash
| Some _ -> return ()
in
Lwt.return (hash, validation)
let inject_block validator ?force ?net_id bytes operations =
Validator.validate_block
validator ?force ?net_id bytes operations >>=? fun (hash, block) ->
return (hash, (block >>=? fun _ -> return ()))
type t = {
state: State.t ;
distributed_db: Distributed_db.t ;
validator: Validator.t ;
mainnet_validator: Net_validator.t ;
inject_block:
?force:bool ->
?net_id:Net_id.t ->
MBytes.t -> Operation.t list list ->
(Block_hash.t * unit tzresult Lwt.t) tzresult Lwt.t ;
inject_operation:
?force:bool -> ?net_id:Net_id.t -> MBytes.t ->
(Operation_hash.t * unit tzresult Lwt.t) Lwt.t ;
inject_protocol:
?force:bool -> Protocol.t ->
(Protocol_hash.t * unit tzresult Lwt.t) Lwt.t ;
p2p: Distributed_db.p2p ; (* For P2P RPCs *)
shutdown: unit -> unit Lwt.t ;
}
let init_p2p net_params =
match net_params with
| None ->
lwt_log_notice "P2P layer is disabled" >>= fun () ->
Error_monad.return (P2p.faked_network Distributed_db_metadata.cfg)
| Some (config, limits) ->
lwt_log_notice "bootstraping network..." >>= fun () ->
P2p.create
~config ~limits
Distributed_db_metadata.cfg
Distributed_db_message.cfg >>=? fun p2p ->
Lwt.async (fun () -> P2p.maintain p2p) ;
Error_monad.return p2p
type config = {
genesis: State.Net.genesis ;
store_root: string ;
context_root: string ;
patch_context: (Context.t -> Context.t Lwt.t) option ;
p2p: (P2p.config * P2p.limits) option ;
test_network_max_tll: int option ;
bootstrap_threshold: int ;
}
and timeout = Net_validator.timeout = {
operation: float ;
block_header: float ;
block_operations: float ;
protocol: float ;
new_head_request: float ;
}
let may_create_net state genesis =
State.Net.get state (Net_id.of_block_hash genesis.State.Net.block) >>= function
| Ok net -> Lwt.return net
| Error _ ->
State.Net.create state genesis
let create { genesis ; store_root ; context_root ;
patch_context ; p2p = net_params ;
test_network_max_tll = max_child_ttl ;
bootstrap_threshold } timeout =
init_p2p net_params >>=? fun p2p ->
State.read
~store_root ~context_root ?patch_context () >>=? fun state ->
let distributed_db = Distributed_db.create state p2p in
let validator = Validator.create state distributed_db timeout in
may_create_net state genesis >>= fun mainnet_state ->
Validator.activate validator
~bootstrap_threshold
?max_child_ttl mainnet_state >>= fun mainnet_validator ->
let shutdown () =
P2p.shutdown p2p >>= fun () ->
Validator.shutdown validator >>= fun () ->
State.close state >>= fun () ->
Lwt.return_unit
in
return {
state ;
distributed_db ;
validator ;
mainnet_validator ;
inject_block = inject_block validator ;
inject_operation = inject_operation validator ;
inject_protocol = inject_protocol state ;
p2p ;
shutdown ;
}
let shutdown node = node.shutdown ()
module RPC = struct
type block = Node_rpc_services.Blocks.block
type block_info = Node_rpc_services.Blocks.block_info = {
hash: Block_hash.t ;
net_id: Net_id.t ;
level: Int32.t ;
proto_level: int ; (* uint8 *)
predecessor: Block_hash.t ;
timestamp: Time.t ;
validation_passes: int ; (* uint8 *)
operations_hash: Operation_list_list_hash.t ;
fitness: MBytes.t list ;
data: MBytes.t ;
operations: (Operation_hash.t * Operation.t) list list option ;
protocol: Protocol_hash.t ;
test_network: Test_network_status.t ;
}
let convert (block: State.Block.t) =
let hash = State.Block.hash block in
let header = State.Block.header block in
State.Block.all_operations block >>= fun operations ->
let operations =
List.map (List.map (fun op -> (Operation.hash op, op))) operations in
State.Block.context block >>= fun context ->
Context.get_protocol context >>= fun protocol ->
Context.get_test_network context >>= fun test_network ->
Lwt.return {
hash ;
net_id = State.Block.net_id block ;
level = header.shell.level ;
proto_level = header.shell.proto_level ;
predecessor = header.shell.predecessor ;
timestamp = header.shell.timestamp ;
validation_passes = header.shell.validation_passes ;
operations_hash = header.shell.operations_hash ;
fitness = header.shell.fitness ;
data = header.proto ;
operations = Some operations ;
protocol ;
test_network ;
}
let inject_block node = node.inject_block
let inject_operation node = node.inject_operation
let inject_protocol node = node.inject_protocol
let raw_block_info node hash =
State.read_block node.state hash >>= function
| Some block ->
convert block
| None ->
Lwt.fail Not_found
let prevalidation_hash =
Block_hash.of_b58check_exn
"BLockPrevaLidationPrevaLidationPrevaLidationPrZ4mr6"
let get_validator node = function
| `Genesis | `Head _ | `Prevalidation -> node.mainnet_validator
| `Test_head _ | `Test_prevalidation ->
match Net_validator.child node.mainnet_validator with
| None -> raise Not_found
| Some v -> v
let get_validator_per_hash node hash =
State.read_block_exn node.state hash >>= fun block ->
let net_id = State.Block.net_id block in
if Net_id.equal (Net_validator.net_id node.mainnet_validator) net_id then
Lwt.return (Some node.mainnet_validator)
else
match Net_validator.child node.mainnet_validator with
| Some test_validator ->
if Net_id.equal (Net_validator.net_id test_validator) net_id then
Lwt.return_some test_validator
else
Lwt.return_none
| _ -> Lwt.return_none
let read_valid_block node h =
State.read_block node.state h
let read_valid_block_exn node h =
State.read_block_exn node.state h
let rec predecessor net_db n v =
if n <= 0 then
Lwt.return v
else
State.Block.predecessor v >>= function
| None -> Lwt.return v
| Some v -> predecessor net_db (n-1) v
let block_info node (block: block) =
match block with
| `Genesis ->
let net_state = Net_validator.net_state node.mainnet_validator in
Chain.genesis net_state >>= convert
| ( `Head n | `Test_head n ) as block ->
let validator = get_validator node block in
let net_db = Net_validator.net_db validator in
let net_state = Net_validator.net_state validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= convert
| `Hash h ->
read_valid_block_exn node h >>= convert
| ( `Prevalidation | `Test_prevalidation ) as block ->
let validator = get_validator node block in
let pv = Net_validator.prevalidator validator in
let net_state = Net_validator.net_state validator in
Chain.head net_state >>= fun head ->
let head_header = State.Block.header head in
let head_hash = State.Block.hash head in
let head_net_id = State.Block.net_id head in
State.Block.context head >>= fun head_context ->
Context.get_protocol head_context >>= fun head_protocol ->
Prevalidator.context pv >>= function
| Error _ -> Lwt.fail Not_found
| Ok { context ; fitness } ->
Context.get_protocol context >>= fun protocol ->
Context.get_test_network context >>= fun test_network ->
let proto_level =
if Protocol_hash.equal protocol head_protocol then
head_header.shell.proto_level
else
((head_header.shell.proto_level + 1) mod 256) in
let operations =
let pv_result, _ = Prevalidator.operations pv in
[ pv_result.applied ] in
Lwt.return
{ hash = prevalidation_hash ;
level = Int32.succ head_header.shell.level ;
proto_level ;
predecessor = head_hash ;
fitness ;
timestamp = Prevalidator.timestamp pv ;
protocol ;
validation_passes = List.length operations ;
operations_hash =
Operation_list_list_hash.compute
(List.map
(fun ops -> Operation_list_hash.compute (List.map fst ops))
operations) ;
operations = Some operations ;
data = MBytes.of_string "" ;
net_id = head_net_id ;
test_network ;
}
let rpc_context block : Updater.rpc_context Lwt.t =
let block_hash = State.Block.hash block in
let block_header = State.Block.header block in
State.Block.context block >|= fun context ->
{ Updater.block_hash ;
block_header ;
operation_hashes = (fun () -> State.Block.all_operation_hashes block) ;
operations = (fun () -> State.Block.all_operations block) ;
context ;
}
let get_rpc_context node block =
match block with
| `Genesis ->
let net_state = Net_validator.net_state node.mainnet_validator in
Chain.genesis net_state >>= fun block ->
rpc_context block >>= fun ctxt ->
Lwt.return (Some ctxt)
| ( `Head n | `Test_head n ) as block ->
let validator = get_validator node block in
let net_state = Net_validator.net_state validator in
let net_db = Net_validator.net_db validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= fun block ->
rpc_context block >>= fun ctxt ->
Lwt.return (Some ctxt)
| `Hash hash-> begin
read_valid_block node hash >>= function
| None ->
Lwt.return_none
| Some block ->
rpc_context block >>= fun ctxt ->
Lwt.return (Some ctxt)
end
| ( `Prevalidation | `Test_prevalidation ) as block ->
let validator = get_validator node block in
let pv = Net_validator.prevalidator validator in
let net_state = Net_validator.net_state validator in
Chain.head net_state >>= fun head ->
let head_header = State.Block.header head in
let head_hash = State.Block.hash head in
State.Block.context head >>= fun head_context ->
Context.get_protocol head_context >>= fun head_protocol ->
Prevalidator.context pv >>= function
| Error _ -> Lwt.fail Not_found
| Ok { context ; fitness } ->
Context.get_protocol context >>= fun protocol ->
let proto_level =
if Protocol_hash.equal protocol head_protocol then
head_header.shell.proto_level
else
((head_header.shell.proto_level + 1) mod 256) in
let operation_hashes, operations =
let pv_result, _ = Prevalidator.operations pv in
[ List.map fst pv_result.applied ],
[ List.map snd pv_result.applied ] in
let operations_hash =
Operation_list_list_hash.compute
(List.map Operation_list_hash.compute operation_hashes) in
Lwt.return (Some {
Updater.block_hash = prevalidation_hash ;
block_header = {
shell = {
level = Int32.succ head_header.shell.level ;
proto_level ;
predecessor = head_hash ;
timestamp = Prevalidator.timestamp pv ;
validation_passes = List.length operation_hashes ;
operations_hash ;
fitness ;
} ;
proto = MBytes.create 0 ;
} ;
operation_hashes = (fun () -> Lwt.return operation_hashes) ;
operations = (fun () -> Lwt.return operations) ;
context ;
})
let operation_hashes node block =
match block with
| `Genesis -> Lwt.return []
| ( `Head n | `Test_head n ) as block ->
let validator = get_validator node block in
let net_state = Net_validator.net_state validator in
let net_db = Net_validator.net_db validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= fun block ->
State.Block.all_operation_hashes block
| (`Prevalidation | `Test_prevalidation) as block ->
let validator = get_validator node block in
let pv = Net_validator.prevalidator validator in
let { Preapply_result.applied }, _ = Prevalidator.operations pv in
Lwt.return [List.map fst applied]
| `Hash hash ->
read_valid_block node hash >>= function
| None -> Lwt.return_nil
| Some block ->
State.Block.all_operation_hashes block
let operations node block =
match block with
| `Genesis -> Lwt.return []
| ( `Head n | `Test_head n ) as block ->
let validator = get_validator node block in
let net_state = Net_validator.net_state validator in
let net_db = Net_validator.net_db validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= fun block ->
State.Block.all_operations block
| (`Prevalidation | `Test_prevalidation) as block ->
let validator = get_validator node block in
let pv = Net_validator.prevalidator validator in
let { Preapply_result.applied }, _ = Prevalidator.operations pv in
Lwt.return [List.map snd applied]
| `Hash hash ->
read_valid_block node hash >>= function
| None -> Lwt.return_nil
| Some block ->
State.Block.all_operations block
let pending_operations node (block: block) =
match block with
| ( `Head 0 | `Prevalidation
| `Test_head 0 | `Test_prevalidation ) as block ->
let validator = get_validator node block in
let pv = Net_validator.prevalidator validator in
Lwt.return (Prevalidator.operations pv)
| ( `Head n | `Test_head n ) as block ->
let validator = get_validator node block in
let prevalidator = Net_validator.prevalidator validator in
let net_state = Net_validator.net_state validator in
let net_db = Net_validator.net_db validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= fun b ->
Prevalidator.pending ~block:b prevalidator >|= fun ops ->
Preapply_result.empty, ops
| `Genesis ->
let net_state = Net_validator.net_state node.mainnet_validator in
let prevalidator =
Net_validator.prevalidator node.mainnet_validator in
Chain.genesis net_state >>= fun b ->
Prevalidator.pending ~block:b prevalidator >|= fun ops ->
Preapply_result.empty, ops
| `Hash h -> begin
get_validator_per_hash node h >>= function
| None ->
Lwt.return (Preapply_result.empty, Operation_hash.Map.empty)
| Some validator ->
let net_state = Net_validator.net_state validator in
let prevalidator = Net_validator.prevalidator validator in
State.Block.read_exn net_state h >>= fun block ->
Prevalidator.pending ~block prevalidator >|= fun ops ->
Preapply_result.empty, ops
end
let protocols { state } =
State.Protocol.list state >>= fun set ->
Lwt.return (Protocol_hash.Set.elements set)
let protocol_content node hash =
State.Protocol.read node.state hash
let preapply
node block
~timestamp ~proto_header ~sort_operations:sort ops =
begin
match block with
| `Genesis ->
let net_state = Net_validator.net_state node.mainnet_validator in
Chain.genesis net_state >>= return
| ( `Head 0 | `Prevalidation
| `Test_head 0 | `Test_prevalidation ) as block ->
let validator = get_validator node block in
let net_state = Net_validator.net_state validator in
Chain.head net_state >>= return
| `Head n | `Test_head n as block -> begin
let validator = get_validator node block in
let net_state = Net_validator.net_state validator in
let net_db = Net_validator.net_db validator in
Chain.head net_state >>= fun head ->
predecessor net_db n head >>= return
end
| `Hash hash ->
read_valid_block node hash >>= function
| None -> Lwt.return (error_exn Not_found)
| Some data -> return data
end >>=? fun predecessor ->
Prevalidation.start_prevalidation
~proto_header ~predecessor ~timestamp () >>=? fun validation_state ->
let ops = List.map (fun x -> Operation.hash x, x) ops in
Prevalidation.prevalidate
validation_state ~sort ops >>= fun (validation_state, r) ->
let operations_hash =
Operation_list_list_hash.compute
[Operation_list_hash.compute (List.map fst r.applied)] in
Prevalidation.end_prevalidation
validation_state >>=? fun { fitness ; context } ->
let pred_shell_header = State.Block.shell_header predecessor in
State.Block.protocol_hash predecessor >>= fun pred_protocol ->
Context.get_protocol context >>= fun protocol ->
let proto_level =
if Protocol_hash.equal protocol pred_protocol then
pred_shell_header.proto_level
else
((pred_shell_header.proto_level + 1) mod 256) in
let shell_header : Block_header.shell_header = {
level = Int32.succ pred_shell_header.level ;
proto_level ;
predecessor = State.Block.hash predecessor ;
timestamp ;
validation_passes = 1 ;
operations_hash ;
fitness ;
} in
return (shell_header, r)
let complete node ?block str =
match block with
| None ->
Base58.complete str
| Some block ->
get_rpc_context node block >>= function
| None -> Lwt.fail Not_found
| Some { context = ctxt } ->
Context.get_protocol ctxt >>= fun protocol_hash ->
let (module Proto) = State.Registred_protocol.get_exn protocol_hash in
Base58.complete str >>= fun l1 ->
Proto.complete_b58prefix ctxt str >>= fun l2 ->
Lwt.return (l1 @ l2)
let context_dir node block =
get_rpc_context node block >>= function
| None -> Lwt.return None
| Some rpc_context ->
Context.get_protocol rpc_context.context >>= fun protocol_hash ->
let (module Proto) = State.Registred_protocol.get_exn protocol_hash in
let dir = RPC_server.Directory.map (fun () -> rpc_context) Proto.rpc_services in
Lwt.return (Some (RPC_server.Directory.map (fun _ -> ()) dir))
let heads node =
let net_state = Net_validator.net_state node.mainnet_validator in
Chain.known_heads net_state >>= fun heads ->
begin
match Net_validator.child node.mainnet_validator with
| None -> Lwt.return_nil
| Some test_validator ->
let net_state = Net_validator.net_state test_validator in
Chain.known_heads net_state
end >>= fun test_heads ->
Lwt_list.fold_left_s
(fun map block ->
convert block >|= fun bi ->
Block_hash.Map.add
(State.Block.hash block) bi map)
Block_hash.Map.empty (test_heads @ heads)
let predecessors node len head =
let rec loop acc len block =
if len = 0 then
Lwt.return (List.rev acc)
else
State.Block.predecessor block >>= function
| None -> Lwt.return (List.rev acc)
| Some block ->
loop (State.Block.hash block :: acc) (len-1) block
in
try
State.read_block_exn node.state head >>= fun block ->
loop [] len block
with Not_found -> Lwt.return_nil
let predecessors_bi ignored len head =
try
let rec loop acc len block =
convert block >>= fun bi ->
State.Block.predecessor block >>= function
| None ->
Lwt.return (List.rev (bi :: acc))
| Some pred ->
if len = 0 ||
Block_hash.Set.mem (State.Block.hash block) ignored then
Lwt.return (List.rev acc)
else
loop (bi :: acc) (len-1) pred
in
loop [] len head
with Not_found -> Lwt.return_nil
let list node len heads =
Lwt_list.fold_left_s
(fun (ignored, acc) head ->
State.read_block_exn node.state head >>= fun block ->
predecessors_bi ignored len block >>= fun predecessors ->
let ignored =
List.fold_right
(fun x s -> Block_hash.Set.add x.hash s)
predecessors ignored in
Lwt.return (ignored, predecessors :: acc)
)
(Block_hash.Set.empty, [])
heads >>= fun (_, blocks) ->
Lwt.return (List.rev blocks)
let list_invalid node =
State.Block.list_invalid (Net_validator.net_state node.mainnet_validator)
let block_header_watcher node =
Distributed_db.watch_block_header node.distributed_db
let block_watcher node =
let stream, shutdown = Validator.watcher node.validator in
Lwt_stream.map_s (fun block -> convert block) stream,
shutdown
let operation_watcher node =
Distributed_db.watch_operation node.distributed_db
let protocol_watcher node =
Distributed_db.Protocol.watch node.distributed_db
let bootstrapped node =
let block_stream, stopper =
Net_validator.new_head_watcher node.mainnet_validator in
let first_run = ref true in
let next () =
if !first_run then begin
first_run := false ;
let net_state = Net_validator.net_state node.mainnet_validator in
Chain.head net_state >>= fun head ->
let head_hash = State.Block.hash head in
let head_header = State.Block.header head in
Lwt.return (Some (head_hash, head_header.shell.timestamp))
end else begin
Lwt.pick [
( Lwt_stream.get block_stream >|=
Option.map ~f:(fun b ->
(State.Block.hash b, (State.Block.header b).shell.timestamp)) ) ;
(Net_validator.bootstrapped node.mainnet_validator >|= fun () -> None) ;
]
end in
let shutdown () = Lwt_watcher.shutdown stopper in
RPC_server.Answer.{ next ; shutdown }
module Network = struct
let stat (node : t) =
P2p.RPC.stat node.p2p
let watch (node : t) =
P2p.RPC.watch node.p2p
let connect (node : t) =
P2p.RPC.connect node.p2p
module Connection = struct
let info (node : t) =
P2p.RPC.Connection.info node.p2p
let kick (node : t) =
P2p.RPC.Connection.kick node.p2p
let list (node : t) =
P2p.RPC.Connection.list node.p2p
let count (node : t) =
P2p.RPC.Connection.count node.p2p
end
module Point = struct
let info (node : t) =
P2p.RPC.Point.info node.p2p
let list ?restrict (node : t) =
P2p.RPC.Point.list ?restrict node.p2p
let events ?max ?rev (node : t) =
P2p.RPC.Point.events node.p2p ?max ?rev
let watch (node : t) =
P2p.RPC.Point.watch node.p2p
end
module Peer_id = struct
let info (node : t) =
P2p.RPC.Peer_id.info node.p2p
let list ?restrict (node : t) =
P2p.RPC.Peer_id.list ?restrict node.p2p
let events ?max ?rev (node : t) =
P2p.RPC.Peer_id.events node.p2p ?max ?rev
let watch (node : t) =
P2p.RPC.Peer_id.watch node.p2p
end
end
end