ligo/vendors/ligo-utils/tezos-protocol-alpha/script_interpreter.ml
2019-09-05 15:21:01 +02:00

892 lines
46 KiB
OCaml

(*****************************************************************************)
(* *)
(* Open Source License *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* Permission is hereby granted, free of charge, to any person obtaining a *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)
(* and/or sell copies of the Software, and to permit persons to whom the *)
(* Software is furnished to do so, subject to the following conditions: *)
(* *)
(* The above copyright notice and this permission notice shall be included *)
(* in all copies or substantial portions of the Software. *)
(* *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)
(* DEALINGS IN THE SOFTWARE. *)
(* *)
(*****************************************************************************)
open Alpha_context
open Script
open Script_typed_ir
open Script_ir_translator
(* ---- Run-time errors -----------------------------------------------------*)
type execution_trace =
(Script.location * Gas.t * (Script.expr * string option) list) list
type error += Reject of Script.location * Script.expr * execution_trace option
type error += Overflow of Script.location * execution_trace option
type error += Runtime_contract_error : Contract.t * Script.expr -> error
type error += Bad_contract_parameter of Contract.t (* `Permanent *)
type error += Cannot_serialize_log
type error += Cannot_serialize_failure
type error += Cannot_serialize_storage
let () =
let open Data_encoding in
let trace_encoding =
(list @@ obj3
(req "location" Script.location_encoding)
(req "gas" Gas.encoding)
(req "stack"
(list
(obj2
(req "item" (Script.expr_encoding))
(opt "annot" string))))) in
(* Reject *)
register_error_kind
`Temporary
~id:"michelson_v1.script_rejected"
~title: "Script failed"
~description: "A FAILWITH instruction was reached"
(obj3
(req "location" Script.location_encoding)
(req "with" Script.expr_encoding)
(opt "trace" trace_encoding))
(function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None)
(fun (loc, v, trace) -> Reject (loc, v, trace));
(* Overflow *)
register_error_kind
`Temporary
~id:"michelson_v1.script_overflow"
~title: "Script failed (overflow error)"
~description: "A FAIL instruction was reached due to the detection of an overflow"
(obj2
(req "location" Script.location_encoding)
(opt "trace" trace_encoding))
(function Overflow (loc, trace) -> Some (loc, trace) | _ -> None)
(fun (loc, trace) -> Overflow (loc, trace));
(* Runtime contract error *)
register_error_kind
`Temporary
~id:"michelson_v1.runtime_error"
~title: "Script runtime error"
~description: "Toplevel error for all runtime script errors"
(obj2
(req "contract_handle" Contract.encoding)
(req "contract_code" Script.expr_encoding))
(function
| Runtime_contract_error (contract, expr) ->
Some (contract, expr)
| _ -> None)
(fun (contract, expr) ->
Runtime_contract_error (contract, expr)) ;
(* Bad contract parameter *)
register_error_kind
`Permanent
~id:"michelson_v1.bad_contract_parameter"
~title:"Contract supplied an invalid parameter"
~description:"Either no parameter was supplied to a contract with \
a non-unit parameter type, a non-unit parameter was \
passed to an account, or a parameter was supplied of \
the wrong type"
Data_encoding.(obj1 (req "contract" Contract.encoding))
(function Bad_contract_parameter c -> Some c | _ -> None)
(fun c -> Bad_contract_parameter c) ;
(* Cannot serialize log *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_log"
~title:"Not enough gas to serialize execution trace"
~description:"Execution trace with stacks was to big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_log -> Some () | _ -> None)
(fun () -> Cannot_serialize_log) ;
(* Cannot serialize failure *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_failure"
~title:"Not enough gas to serialize argument of FAILWITH"
~description:"Argument of FAILWITH was too big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_failure -> Some () | _ -> None)
(fun () -> Cannot_serialize_failure) ;
(* Cannot serialize storage *)
register_error_kind
`Temporary
~id:"michelson_v1.cannot_serialize_storage"
~title:"Not enough gas to serialize execution storage"
~description:"The returned storage was too big to be serialized with \
the provided gas"
Data_encoding.empty
(function Cannot_serialize_storage -> Some () | _ -> None)
(fun () -> Cannot_serialize_storage)
(* ---- interpreter ---------------------------------------------------------*)
type 'tys stack =
| Item : 'ty * 'rest stack -> ('ty * 'rest) stack
| Empty : end_of_stack stack
let unparse_stack ctxt (stack, stack_ty) =
(* We drop the gas limit as this function is only used for debugging/errors. *)
let ctxt = Gas.set_unlimited ctxt in
let rec unparse_stack
: type a. a stack * a stack_ty -> (Script.expr * string option) list tzresult Lwt.t
= function
| Empty, Empty_t -> return_nil
| Item (v, rest), Item_t (ty, rest_ty, annot) ->
unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) ->
unparse_stack (rest, rest_ty) >>=? fun rest ->
let annot = match Script_ir_annot.unparse_var_annot annot with
| [] -> None
| [ a ] -> Some a
| _ -> assert false in
let data = Micheline.strip_locations data in
return ((data, annot) :: rest) in
unparse_stack (stack, stack_ty)
module Interp_costs = Michelson_v1_gas.Cost_of
let rec interp
: type p r.
(?log: execution_trace ref ->
context ->
source: Contract.t -> payer:Contract.t -> self: Contract.t -> Tez.t ->
(p, r) lambda -> p ->
(r * context) tzresult Lwt.t)
= fun ?log ctxt ~source ~payer ~self amount (Lam (code, _)) arg ->
let rec step
: type b a.
context -> (b, a) descr -> b stack ->
(a stack * context) tzresult Lwt.t =
fun ctxt ({ instr ; loc ; _ } as descr) stack ->
Lwt.return (Gas.consume ctxt Interp_costs.cycle) >>=? fun ctxt ->
let logged_return : type a b.
(b, a) descr ->
a stack * context ->
(a stack * context) tzresult Lwt.t =
fun descr (ret, ctxt) ->
match log with
| None -> return (ret, ctxt)
| Some log ->
trace
Cannot_serialize_log
(unparse_stack ctxt (ret, descr.aft)) >>=? fun stack ->
log := (descr.loc, Gas.level ctxt, stack) :: !log ;
return (ret, ctxt) in
let get_log (log : execution_trace ref option) =
Option.map ~f:(fun l -> List.rev !l) log in
let consume_gas_terop : type ret arg1 arg2 arg3 rest.
(_ * (_ * (_ * rest)), ret * rest) descr ->
((arg1 -> arg2 -> arg3 -> ret) * arg1 * arg2 * arg3) ->
(arg1 -> arg2 -> arg3 -> Gas.cost) ->
rest stack ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, x1, x2, x3) cost_func rest ->
Lwt.return (Gas.consume ctxt (cost_func x1 x2 x3)) >>=? fun ctxt ->
logged_return descr (Item (op x1 x2 x3, rest), ctxt) in
let consume_gas_binop : type ret arg1 arg2 rest.
(_ * (_ * rest), ret * rest) descr ->
((arg1 -> arg2 -> ret) * arg1 * arg2) ->
(arg1 -> arg2 -> Gas.cost) ->
rest stack ->
context ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, x1, x2) cost_func rest ctxt ->
Lwt.return (Gas.consume ctxt (cost_func x1 x2)) >>=? fun ctxt ->
logged_return descr (Item (op x1 x2, rest), ctxt) in
let consume_gas_unop : type ret arg rest.
(_ * rest, ret * rest) descr ->
((arg -> ret) * arg) ->
(arg -> Gas.cost) ->
rest stack ->
context ->
((ret * rest) stack * context) tzresult Lwt.t =
fun descr (op, arg) cost_func rest ctxt ->
Lwt.return (Gas.consume ctxt (cost_func arg)) >>=? fun ctxt ->
logged_return descr (Item (op arg, rest), ctxt) in
let consume_gaz_comparison :
type t rest.
(t * (t * rest), Script_int.z Script_int.num * rest) descr ->
(t -> t -> int) ->
(t -> t -> Gas.cost) ->
t -> t ->
rest stack ->
((Script_int.z Script_int.num * rest) stack * context) tzresult Lwt.t =
fun descr op cost x1 x2 rest ->
Lwt.return (Gas.consume ctxt (cost x1 x2)) >>=? fun ctxt ->
logged_return descr (Item (Script_int.of_int @@ op x1 x2, rest), ctxt) in
let logged_return :
a stack * context ->
(a stack * context) tzresult Lwt.t =
logged_return descr in
match instr, stack with
(* stack ops *)
| Drop, Item (_, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (rest, ctxt)
| Dup, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (Item (v, Item (v, rest)), ctxt)
| Swap, Item (vi, Item (vo, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
logged_return (Item (vo, Item (vi, rest)), ctxt)
| Const v, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (v, rest), ctxt)
(* options *)
| Cons_some, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (Some v, rest), ctxt)
| Cons_none _, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| If_none (bt, _), Item (None, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bt rest
| If_none (_, bf), Item (Some v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bf (Item (v, rest))
(* pairs *)
| Cons_pair, Item (a, Item (b, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair) >>=? fun ctxt ->
logged_return (Item ((a, b), rest), ctxt)
| Car, Item ((a, _), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
logged_return (Item (a, rest), ctxt)
| Cdr, Item ((_, b), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt ->
logged_return (Item (b, rest), ctxt)
(* unions *)
| Left, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (L v, rest), ctxt)
| Right, Item (v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt ->
logged_return (Item (R v, rest), ctxt)
| If_left (bt, _), Item (L v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bt (Item (v, rest))
| If_left (_, bf), Item (R v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bf (Item (v, rest))
(* lists *)
| Cons_list, Item (hd, Item (tl, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.cons) >>=? fun ctxt ->
logged_return (Item (hd :: tl, rest), ctxt)
| Nil, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt ->
logged_return (Item ([], rest), ctxt)
| If_cons (_, bf), Item ([], rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bf rest
| If_cons (bt, _), Item (hd :: tl, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bt (Item (hd, Item (tl, rest)))
| List_map body, Item (l, rest) ->
let rec loop rest ctxt l acc =
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
match l with
| [] -> return (Item (List.rev acc, rest), ctxt)
| hd :: tl ->
step ctxt body (Item (hd, rest))
>>=? fun (Item (hd, rest), ctxt) ->
loop rest ctxt tl (hd :: acc)
in loop rest ctxt l [] >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| List_size, Item (list, rest) ->
Lwt.return
(List.fold_left
(fun acc _ ->
acc >>? fun (size, ctxt) ->
Gas.consume ctxt Interp_costs.list_size >>? fun ctxt ->
ok (size + 1 (* FIXME: overflow *), ctxt))
(ok (0, ctxt)) list) >>=? fun (len, ctxt) ->
logged_return (Item (Script_int.(abs (of_int len)), rest), ctxt)
| List_iter body, Item (l, init) ->
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ctxt body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
(* sets *)
| Empty_set t, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.empty_set) >>=? fun ctxt ->
logged_return (Item (empty_set t, rest), ctxt)
| Set_iter body, Item (set, init) ->
Lwt.return (Gas.consume ctxt (Interp_costs.set_to_list set)) >>=? fun ctxt ->
let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ctxt body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| Set_mem, Item (v, Item (set, rest)) ->
consume_gas_binop descr (set_mem, v, set) Interp_costs.set_mem rest ctxt
| Set_update, Item (v, Item (presence, Item (set, rest))) ->
consume_gas_terop descr (set_update, v, presence, set) Interp_costs.set_update rest
| Set_size, Item (set, rest) ->
consume_gas_unop descr (set_size, set) (fun _ -> Interp_costs.set_size) rest ctxt
(* maps *)
| Empty_map (t, _), rest ->
Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt ->
logged_return (Item (empty_map t, rest), ctxt)
| Map_map body, Item (map, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
let rec loop rest ctxt l acc =
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
match l with
| [] -> return (acc, ctxt)
| (k, _) as hd :: tl ->
step ctxt body (Item (hd, rest))
>>=? fun (Item (hd, rest), ctxt) ->
loop rest ctxt tl (map_update k (Some hd) acc)
in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Map_iter body, Item (map, init) ->
Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt ->
let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in
let rec loop ctxt l stack =
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
match l with
| [] -> return (stack, ctxt)
| hd :: tl ->
step ctxt body (Item (hd, stack))
>>=? fun (stack, ctxt) ->
loop ctxt tl stack
in loop ctxt l init >>=? fun (res, ctxt) ->
logged_return (res, ctxt)
| Map_mem, Item (v, Item (map, rest)) ->
consume_gas_binop descr (map_mem, v, map) Interp_costs.map_mem rest ctxt
| Map_get, Item (v, Item (map, rest)) ->
consume_gas_binop descr (map_get, v, map) Interp_costs.map_get rest ctxt
| Map_update, Item (k, Item (v, Item (map, rest))) ->
consume_gas_terop descr (map_update, k, v, map) Interp_costs.map_update rest
| Map_size, Item (map, rest) ->
consume_gas_unop descr (map_size, map) (fun _ -> Interp_costs.map_size) rest ctxt
(* Big map operations *)
| Big_map_mem, Item (key, Item (map, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.big_map_mem key map)) >>=? fun ctxt ->
Script_ir_translator.big_map_mem ctxt self key map >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Big_map_get, Item (key, Item (map, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.big_map_get key map)) >>=? fun ctxt ->
Script_ir_translator.big_map_get ctxt self key map >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Big_map_update, Item (key, Item (maybe_value, Item (map, rest))) ->
consume_gas_terop descr
(Script_ir_translator.big_map_update, key, maybe_value, map)
Interp_costs.big_map_update rest
(* timestamp operations *)
| Add_seconds_to_timestamp, Item (n, Item (t, rest)) ->
consume_gas_binop descr
(Script_timestamp.add_delta, t, n)
Interp_costs.add_timestamp rest ctxt
| Add_timestamp_to_seconds, Item (t, Item (n, rest)) ->
consume_gas_binop descr (Script_timestamp.add_delta, t, n)
Interp_costs.add_timestamp rest ctxt
| Sub_timestamp_seconds, Item (t, Item (s, rest)) ->
consume_gas_binop descr (Script_timestamp.sub_delta, t, s)
Interp_costs.sub_timestamp rest ctxt
| Diff_timestamps, Item (t1, Item (t2, rest)) ->
consume_gas_binop descr (Script_timestamp.diff, t1, t2)
Interp_costs.diff_timestamps rest ctxt
(* string operations *)
| Concat_string_pair, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_string [x; y])) >>=? fun ctxt ->
let s = String.concat "" [x; y] in
logged_return (Item (s, rest), ctxt)
| Concat_string, Item (ss, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_string ss)) >>=? fun ctxt ->
let s = String.concat "" ss in
logged_return (Item (s, rest), ctxt)
| Slice_string, Item (offset, Item (length, Item (s, rest))) ->
let s_length = Z.of_int (String.length s) in
let offset = Script_int.to_zint offset in
let length = Script_int.to_zint length in
if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt ->
logged_return (Item (Some (String.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt)
else
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| String_size, Item (s, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (Script_int.(abs (of_int (String.length s))), rest), ctxt)
(* bytes operations *)
| Concat_bytes_pair, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes [x; y])) >>=? fun ctxt ->
let s = MBytes.concat "" [x; y] in
logged_return (Item (s, rest), ctxt)
| Concat_bytes, Item (ss, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes ss)) >>=? fun ctxt ->
let s = MBytes.concat "" ss in
logged_return (Item (s, rest), ctxt)
| Slice_bytes, Item (offset, Item (length, Item (s, rest))) ->
let s_length = Z.of_int (MBytes.length s) in
let offset = Script_int.to_zint offset in
let length = Script_int.to_zint length in
if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt ->
logged_return (Item (Some (MBytes.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt)
else
Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| Bytes_size, Item (s, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (Script_int.(abs (of_int (MBytes.length s))), rest), ctxt)
(* currency operations *)
| Add_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return Tez.(x +? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
| Sub_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return Tez.(x -? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
| Mul_teznat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
begin
match Script_int.to_int64 y with
| None -> fail (Overflow (loc, get_log log))
| Some y ->
Lwt.return Tez.(x *? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
end
| Mul_nattez, Item (y, Item (x, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt ->
begin
match Script_int.to_int64 y with
| None -> fail (Overflow (loc, get_log log))
| Some y ->
Lwt.return Tez.(x *? y) >>=? fun res ->
logged_return (Item (res, rest), ctxt)
end
(* boolean operations *)
| Or, Item (x, Item (y, rest)) ->
consume_gas_binop descr ((||), x, y) Interp_costs.bool_binop rest ctxt
| And, Item (x, Item (y, rest)) ->
consume_gas_binop descr ((&&), x, y) Interp_costs.bool_binop rest ctxt
| Xor, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Compare.Bool.(<>), x, y) Interp_costs.bool_binop rest ctxt
| Not, Item (x, rest) ->
consume_gas_unop descr (not, x) Interp_costs.bool_unop rest ctxt
(* integer operations *)
| Is_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.is_nat, x) Interp_costs.abs rest ctxt
| Abs_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.abs, x) Interp_costs.abs rest ctxt
| Int_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.int, x) Interp_costs.int rest ctxt
| Neg_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
| Neg_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt
| Add_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt
| Add_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.add_n, x, y) Interp_costs.add rest ctxt
| Sub_int, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.sub, x, y) Interp_costs.sub rest ctxt
| Mul_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt
| Mul_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.mul_n, x, y) Interp_costs.mul rest ctxt
| Ediv_teznat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
let x = Script_int.of_int64 (Tez.to_mutez x) in
consume_gas_binop descr
((fun x y ->
match Script_int.ediv x y with
| None -> None
| Some (q, r) ->
match Script_int.to_int64 q,
Script_int.to_int64 r with
| Some q, Some r ->
begin
match Tez.of_mutez q, Tez.of_mutez r with
| Some q, Some r -> Some (q,r)
(* Cannot overflow *)
| _ -> assert false
end
(* Cannot overflow *)
| _ -> assert false),
x, y)
Interp_costs.div
rest
ctxt
| Ediv_tez, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt ->
let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in
let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in
consume_gas_binop descr
((fun x y -> match Script_int.ediv_n x y with
| None -> None
| Some (q, r) ->
match Script_int.to_int64 r with
| None -> assert false (* Cannot overflow *)
| Some r ->
match Tez.of_mutez r with
| None -> assert false (* Cannot overflow *)
| Some r -> Some (q, r)),
x, y)
Interp_costs.div
rest
ctxt
| Ediv_intint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_intnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_natint, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt
| Ediv_natnat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.ediv_n, x, y) Interp_costs.div rest ctxt
| Lsl_nat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.shift_left x y)) >>=? fun ctxt ->
begin
match Script_int.shift_left_n x y with
| None -> fail (Overflow (loc, get_log log))
| Some x -> logged_return (Item (x, rest), ctxt)
end
| Lsr_nat, Item (x, Item (y, rest)) ->
Lwt.return (Gas.consume ctxt (Interp_costs.shift_right x y)) >>=? fun ctxt ->
begin
match Script_int.shift_right_n x y with
| None -> fail (Overflow (loc, get_log log))
| Some r -> logged_return (Item (r, rest), ctxt)
end
| Or_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logor, x, y) Interp_costs.logor rest ctxt
| And_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
| And_int_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt
| Xor_nat, Item (x, Item (y, rest)) ->
consume_gas_binop descr (Script_int.logxor, x, y) Interp_costs.logxor rest ctxt
| Not_int, Item (x, rest) ->
consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
| Not_nat, Item (x, rest) ->
consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt
(* control *)
| Seq (hd, tl), stack ->
step ctxt hd stack >>=? fun (trans, ctxt) ->
step ctxt tl trans
| If (bt, _), Item (true, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bt rest
| If (_, bf), Item (false, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt ->
step ctxt bf rest
| Loop body, Item (true, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
step ctxt body rest >>=? fun (trans, ctxt) ->
step ctxt descr trans
| Loop _, Item (false, rest) ->
logged_return (rest, ctxt)
| Loop_left body, Item (L v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
step ctxt body (Item (v, rest)) >>=? fun (trans, ctxt) ->
step ctxt descr trans
| Loop_left _, Item (R v, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt ->
logged_return (Item (v, rest), ctxt)
| Dip b, Item (ign, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt ->
step ctxt b rest >>=? fun (res, ctxt) ->
logged_return (Item (ign, res), ctxt)
| Exec, Item (arg, Item (lam, rest)) ->
Lwt.return (Gas.consume ctxt Interp_costs.exec) >>=? fun ctxt ->
interp ?log ctxt ~source ~payer ~self amount lam arg >>=? fun (res, ctxt) ->
logged_return (Item (res, rest), ctxt)
| Lambda lam, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt ->
logged_return (Item (lam, rest), ctxt)
| Failwith tv, Item (v, _) ->
trace Cannot_serialize_failure
(unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) ->
let v = Micheline.strip_locations v in
fail (Reject (loc, v, get_log log))
| Nop, stack ->
logged_return (stack, ctxt)
(* comparison *)
| Compare (Bool_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Compare.Bool.compare Interp_costs.compare_bool a b rest
| Compare (String_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Compare.String.compare Interp_costs.compare_string a b rest
| Compare (Bytes_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr MBytes.compare Interp_costs.compare_bytes a b rest
| Compare (Mutez_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Tez.compare Interp_costs.compare_tez a b rest
| Compare (Int_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Script_int.compare Interp_costs.compare_int a b rest
| Compare (Nat_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Script_int.compare Interp_costs.compare_nat a b rest
| Compare (Key_hash_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Signature.Public_key_hash.compare
Interp_costs.compare_key_hash a b rest
| Compare (Timestamp_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Script_timestamp.compare Interp_costs.compare_timestamp a b rest
| Compare (Address_key _), Item (a, Item (b, rest)) ->
consume_gaz_comparison descr Contract.compare Interp_costs.compare_address a b rest
(* comparators *)
| Eq, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres = 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Neq, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres <> 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Lt, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres < 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Le, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres <= 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Gt, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres > 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
| Ge, Item (cmpres, rest) ->
let cmpres = Script_int.compare cmpres Script_int.zero in
let cmpres = Compare.Int.(cmpres >= 0) in
Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt ->
logged_return (Item (cmpres, rest), ctxt)
(* packing *)
| Pack t, Item (value, rest) ->
Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) ->
logged_return (Item (bytes, rest), ctxt)
| Unpack t, Item (bytes, rest) ->
Lwt.return (Gas.check_enough ctxt (Script.serialized_cost bytes)) >>=? fun () ->
if Compare.Int.(MBytes.length bytes >= 1) &&
Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then
let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in
match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with
| None ->
Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
| Some expr ->
Lwt.return (Gas.consume ctxt (Script.deserialized_cost expr)) >>=? fun ctxt ->
parse_data ctxt t (Micheline.root expr) >>= function
| Ok (value, ctxt) ->
logged_return (Item (Some value, rest), ctxt)
| Error _ignored ->
Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt ->
logged_return (Item (None, rest), ctxt)
else
logged_return (Item (None, rest), ctxt)
(* protocol *)
| Address, Item ((_, contract), rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.address) >>=? fun ctxt ->
logged_return (Item (contract, rest), ctxt)
| Contract t, Item (contract, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.contract) >>=? fun ctxt ->
Script_ir_translator.parse_contract_for_script ctxt loc t contract >>=? fun (ctxt, maybe_contract) ->
logged_return (Item (maybe_contract, rest), ctxt)
| Transfer_tokens,
Item (p, Item (amount, Item ((tp, destination), rest))) ->
Lwt.return (Gas.consume ctxt Interp_costs.transfer) >>=? fun ctxt ->
unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) ->
let operation =
Transaction
{ amount ; destination ;
parameters = Some (Script.lazy_expr (Micheline.strip_locations p)) } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt)
| Create_account,
Item (manager, Item (delegate, Item (delegatable, Item (credit, rest)))) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
let operation =
Origination
{ credit ; manager ; delegate ; preorigination = Some contract ;
delegatable ; script = None ; spendable = true } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item (Internal_operation { source = self ; operation ; nonce },
Item (contract, rest)), ctxt)
| Implicit_account, Item (key, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.implicit_account) >>=? fun ctxt ->
let contract = Contract.implicit_contract key in
logged_return (Item ((Unit_t None, contract), rest), ctxt)
| Create_contract (storage_type, param_type, Lam (_, code)),
Item (manager, Item
(delegate, Item
(spendable, Item
(delegatable, Item
(credit, Item
(init, rest)))))) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt ->
unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) ->
unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) ->
let code =
Micheline.strip_locations
(Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ;
Prim (0, K_storage, [ unparsed_storage_type ], []) ;
Prim (0, K_code, [ Micheline.root code ], []) ])) in
unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) ->
let storage = Micheline.strip_locations storage in
Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) ->
let operation =
Origination
{ credit ; manager ; delegate ; preorigination = Some contract ;
delegatable ; spendable ;
script = Some { code = Script.lazy_expr code ;
storage = Script.lazy_expr storage } } in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return
(Item (Internal_operation { source = self ; operation ; nonce },
Item (contract, rest)), ctxt)
| Set_delegate,
Item (delegate, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt ->
let operation = Delegation delegate in
Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) ->
logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt)
| Balance, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.balance) >>=? fun ctxt ->
Contract.get_balance ctxt self >>=? fun balance ->
logged_return (Item (balance, rest), ctxt)
| Now, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.now) >>=? fun ctxt ->
let now = Script_timestamp.now ctxt in
logged_return (Item (now, rest), ctxt)
| Check_signature, Item (key, Item (signature, Item (message, rest))) ->
Lwt.return (Gas.consume ctxt Interp_costs.check_signature) >>=? fun ctxt ->
let res = Signature.check key signature message in
logged_return (Item (res, rest), ctxt)
| Hash_key, Item (key, rest) ->
Lwt.return (Gas.consume ctxt Interp_costs.hash_key) >>=? fun ctxt ->
logged_return (Item (Signature.Public_key.hash key, rest), ctxt)
| Blake2b, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt ->
let hash = Raw_hashes.blake2b bytes in
logged_return (Item (hash, rest), ctxt)
| Sha256, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt ->
let hash = Raw_hashes.sha256 bytes in
logged_return (Item (hash, rest), ctxt)
| Sha512, Item (bytes, rest) ->
Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 64)) >>=? fun ctxt ->
let hash = Raw_hashes.sha512 bytes in
logged_return (Item (hash, rest), ctxt)
| Steps_to_quota, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.steps_to_quota) >>=? fun ctxt ->
let steps = match Gas.level ctxt with
| Limited { remaining } -> remaining
| Unaccounted -> Z.of_string "99999999" in
logged_return (Item (Script_int.(abs (of_zint steps)), rest), ctxt)
| Source, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
logged_return (Item (payer, rest), ctxt)
| Sender, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt ->
logged_return (Item (source, rest), ctxt)
| Self t, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.self) >>=? fun ctxt ->
logged_return (Item ((t,self), rest), ctxt)
| Amount, rest ->
Lwt.return (Gas.consume ctxt Interp_costs.amount) >>=? fun ctxt ->
logged_return (Item (amount, rest), ctxt) in
let stack = (Item (arg, Empty)) in
begin match log with
| None -> return_unit
| Some log ->
trace Cannot_serialize_log
(unparse_stack ctxt (stack, code.bef)) >>=? fun stack ->
log := (code.loc, Gas.level ctxt, stack) :: !log ;
return_unit
end >>=? fun () ->
step ctxt code stack >>=? fun (Item (ret, Empty), ctxt) ->
return (ret, ctxt)
(* ---- contract handling ---------------------------------------------------*)
and execute ?log ctxt mode ~source ~payer ~self script amount arg :
(Script.expr * packed_internal_operation list * context *
Script_typed_ir.ex_big_map option) tzresult Lwt.t =
parse_script ctxt script
>>=? fun ((Ex_script { code ; arg_type ; storage ; storage_type }), ctxt) ->
trace
(Bad_contract_parameter self)
(parse_data ctxt arg_type arg) >>=? fun (arg, ctxt) ->
Script.force_decode ctxt script.code >>=? fun (script_code, ctxt) ->
trace
(Runtime_contract_error (self, script_code))
(interp ?log ctxt ~source ~payer ~self amount code (arg, storage))
>>=? fun ((ops, sto), ctxt) ->
trace Cannot_serialize_storage
(unparse_data ctxt mode storage_type sto) >>=? fun (storage, ctxt) ->
return (Micheline.strip_locations storage, ops, ctxt,
Script_ir_translator.extract_big_map storage_type sto)
type execution_result =
{ ctxt : context ;
storage : Script.expr ;
big_map_diff : Contract.big_map_diff option ;
operations : packed_internal_operation list }
let trace ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount =
let log = ref [] in
execute ~log ctxt mode ~source ~payer ~self script amount (Micheline.root parameter)
>>=? fun (storage, operations, ctxt, big_map) ->
begin match big_map with
| None -> return (None, ctxt)
| Some big_map ->
Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) ->
return (Some big_map_diff, ctxt)
end >>=? fun (big_map_diff, ctxt) ->
let trace = List.rev !log in
return ({ ctxt ; storage ; big_map_diff ; operations }, trace)
let execute ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount =
execute ctxt mode ~source ~payer ~self script amount (Micheline.root parameter)
>>=? fun (storage, operations, ctxt, big_map) ->
begin match big_map with
| None -> return (None, ctxt)
| Some big_map ->
Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) ->
return (Some big_map_diff, ctxt)
end >>=? fun (big_map_diff, ctxt) ->
return { ctxt ; storage ; big_map_diff ; operations }