ligo/operators/operators.ml
2019-05-12 20:57:30 +00:00

408 lines
12 KiB
OCaml

open Trace
module Simplify = struct
let type_constants = [
("unit" , 0) ;
("string" , 0) ;
("bytes" , 0) ;
("nat" , 0) ;
("int" , 0) ;
("tez" , 0) ;
("bool" , 0) ;
("operation" , 0) ;
("address" , 0) ;
("contract" , 1) ;
("list" , 1) ;
("option" , 1) ;
("set" , 1) ;
("map" , 2) ;
("big_map" , 2) ;
]
let constants = [
("get_force" , 2) ;
("transaction" , 3) ;
("get_contract" , 1) ;
("size" , 1) ;
("int" , 1) ;
("abs" , 1) ;
("amount" , 0) ;
("unit" , 0) ;
("source" , 0) ;
]
module Camligo = struct
let constants = [
("Bytes.pack" , 1) ;
("Crypto.hash" , 1) ;
("Operation.transaction" , 3) ;
("Operation.get_contract" , 1) ;
("sender" , 0) ;
("unit" , 0) ;
("source" , 0) ;
]
end
end
module Typer = struct
module Errors = struct
let wrong_param_number = fun name ->
let title () = "wrong number of params" in
let full () = name in
error title full
end
open Ast_typed
type typer_predicate = type_value list -> bool
type type_result = string * type_value
type typer' = type_value list -> type_value option -> type_result result
type typer = string * int * (typer_predicate * typer') list
let predicate_0 : typer_predicate = fun lst ->
match lst with
| [] -> true
| _ -> false
let predicate_1 : (type_value -> bool) -> typer_predicate = fun f lst ->
match lst with
| [ a ] -> f a
| _ -> false
let predicate_2 : (type_value -> type_value -> bool) -> typer_predicate = fun f lst ->
match lst with
| [ a ; b ] -> f a b
| _ -> false
let predicate_3 : (type_value -> type_value -> type_value -> bool) -> typer_predicate = fun f lst ->
match lst with
| [ a ; b ; c ] -> f a b c
| _ -> false
let true_1 = predicate_1 (fun _ -> true)
let true_2 = predicate_2 (fun _ _ -> true)
let true_3 = predicate_3 (fun _ _ _ -> true)
let eq_1 : type_value -> typer_predicate = fun v ->
let aux = fun a -> type_value_eq (a, v) in
predicate_1 aux
let eq_2 : type_value -> typer_predicate = fun v ->
let aux = fun a b -> type_value_eq (a, v) && type_value_eq (b, v) in
predicate_2 aux
let typer'_0 : (type_value option -> type_result result) -> typer' = fun f lst tv ->
match lst with
| [] -> f tv
| _ -> simple_fail "!!!"
let typer'_1 : (type_value -> type_result result) -> typer' = fun f lst _ ->
match lst with
| [ a ] -> f a
| _ -> simple_fail "!!!"
let typer'_1_opt : (type_value -> type_value option -> type_result result) -> typer' = fun f lst tv_opt ->
match lst with
| [ a ] -> f a tv_opt
| _ -> simple_fail "!!!"
let typer'_2 : (type_value -> type_value -> type_result result) -> typer' = fun f lst _ ->
match lst with
| [ a ; b ] -> f a b
| _ -> simple_fail "!!!"
let typer'_3 : (type_value -> type_value -> type_value -> type_result result) -> typer' = fun f lst _ ->
match lst with
| [ a ; b ; c ] -> f a b c
| _ -> simple_fail "!!!"
let typer_constant cst : typer' = fun _ _ -> ok cst
let constant_2 : string -> type_value -> typer' = fun s tv ->
let aux = fun _ _ -> ok (s, tv) in
typer'_2 aux
let make_2 : string -> _ list -> typer = fun name pfs ->
(name , 2 , List.map (Tuple.map_h_2 predicate_2 typer'_2) pfs)
let same_2 : string -> (string * type_value) list -> typer = fun s lst ->
let aux (s, tv) = eq_2 tv, constant_2 s tv in
(s , 2 , List.map aux lst)
let very_same_2 : string -> type_value -> typer = fun s tv -> same_2 s [s , tv]
open Combinators
let comparator : string -> typer = fun s -> s , 2 , [
(eq_2 (t_int ()), constant_2 s (t_bool ())) ;
(eq_2 (t_nat ()), constant_2 s (t_bool ())) ;
(eq_2 (t_tez ()), constant_2 s (t_bool ())) ;
(eq_2 (t_bytes ()), constant_2 s (t_bool ())) ;
(eq_2 (t_string ()), constant_2 s (t_bool ())) ;
(eq_2 (t_address ()), constant_2 s (t_bool ())) ;
]
let boolean_operator_2 : string -> typer = fun s -> very_same_2 s (t_bool ())
let none = "NONE" , 0 , [
predicate_0 , typer'_0 (fun tv_opt -> match tv_opt with
| None -> simple_fail "untyped NONE"
| Some t -> ok ("NONE", t))
]
let sub = "SUB" , 2 , [
eq_2 (t_int ()) , constant_2 "SUB_INT" (t_int ()) ;
eq_2 (t_nat ()) , constant_2 "SUB_NAT" (t_int ()) ;
]
let some = "SOME" , 1 , [
true_1 , typer'_1 (fun s -> ok ("SOME", t_option s ())) ;
]
let map_remove : typer = "MAP_REMOVE" , 2 , [
(true_2 , typer'_2 (fun k m ->
let%bind (src, _) = get_t_map m in
let%bind () = assert_type_value_eq (src, k) in
ok ("MAP_REMOVE", m)
))
]
let map_update : typer = "MAP_UPDATE" , 3 , [
(true_3 , typer'_3 (fun k v m ->
let%bind (src, dst) = get_t_map m in
let%bind () = assert_type_value_eq (src, k) in
let%bind () = assert_type_value_eq (dst, v) in
ok ("MAP_UPDATE", m)))
]
let size : typer = "size" , 1 , [
(true_1, typer'_1 (fun t ->
let%bind () = bind_or (assert_t_map t, assert_t_list t) in
ok ("SIZE", t_nat ())))
]
let get_force : typer = "get_force" , 2 , [
(true_2, typer'_2 (fun i_ty m_ty ->
let%bind (src, dst) = get_t_map m_ty in
let%bind _ = assert_type_value_eq (src, i_ty) in
ok ("GET_FORCE", dst)))
]
let int : typer = "int" , 1 , [
(eq_1 (t_nat ()), typer_constant ("INT" , t_int ()))
]
let bytes_pack : typer = "Bytes.pack" , 1 , [
(true_1 , typer'_1 (fun _ -> ok ("PACK" , t_bytes ())))
]
let bytes_unpack = "Bytes.unpack" , 1 , [
eq_1 (t_bytes ()) , typer'_1_opt (fun _ tv_opt -> match tv_opt with
| None -> simple_fail "untyped UNPACK"
| Some t -> ok ("UNPACK", t))
]
let crypto_hash = "Crypto.hash" , 1 , [
eq_1 (t_bytes ()) , typer_constant ("HASH" , t_bytes ()) ;
]
let sender = "sender" , 0 , [
predicate_0 , typer_constant ("SENDER", t_address ())
]
let source = "source" , 0 , [
predicate_0 , typer_constant ("SOURCE", t_address ())
]
let unit = "unit" , 0 , [
predicate_0 , typer_constant ("UNIT", t_unit ())
]
let amount = "amount" , 0 , [
predicate_0 , typer_constant ("AMOUNT", t_tez ())
]
let transaction = "Operation.transaction" , 3 , [
true_3 , typer'_3 (
fun param amount contract ->
let%bind () =
assert_t_tez amount in
let%bind contract_param =
get_t_contract contract in
let%bind () =
assert_type_value_eq (param , contract_param) in
ok ("TRANSFER_TOKENS" , t_operation ())
)
]
let transaction' = "transaction" , 3 , [
true_3 , typer'_3 (
fun param amount contract ->
let%bind () =
assert_t_tez amount in
let%bind contract_param =
get_t_contract contract in
let%bind () =
assert_type_value_eq (param , contract_param) in
ok ("TRANSFER_TOKENS" , t_operation ())
)
]
let get_contract = "Operation.get_contract" , 1 , [
eq_1 (t_address ()) , typer'_1_opt (
fun _ tv_opt ->
let%bind tv =
trace_option (simple_error "get_contract needs a type annotation") tv_opt in
let%bind tv' =
trace_strong (simple_error "get_contract has a not-contract annotation") @@
get_t_contract tv in
ok ("CONTRACT" , t_contract tv' ())
)
]
let get_contract' = "get_contract" , 1 , [
eq_1 (t_address ()) , typer'_1_opt (
fun _ tv_opt ->
let%bind tv =
trace_option (simple_error "get_contract needs a type annotation") tv_opt in
let%bind tv' =
trace_strong (simple_error "get_contract has a not-contract annotation") @@
get_t_contract tv in
ok ("CONTRACT" , t_contract tv' ())
)
]
let num_2 : typer_predicate =
let aux = fun a b ->
(type_value_eq (a , t_int ()) || type_value_eq (a , t_nat ())) &&
(type_value_eq (b , t_int ()) || type_value_eq (b , t_nat ())) in
predicate_2 aux
let mod_ = "MOD" , 2 , [
num_2 , constant_2 "MOD" (t_nat ()) ;
]
let abs = "abs" , 1 , [
eq_1 (t_int ()) , typer_constant ("ABS" , (t_nat ())) ;
]
let times = "TIMES" , 2 , [
(eq_2 (t_nat ()) , constant_2 "TIMES_NAT" (t_nat ())) ;
(num_2 , constant_2 "TIMES_INT" (t_int ())) ;
(
let aux a b =
(type_value_eq (a , t_nat ()) && type_value_eq (b , t_tez ())) ||
(type_value_eq (b , t_nat ()) && type_value_eq (a , t_tez ())) in
predicate_2 aux , constant_2 "TIMES_TEZ" (t_tez ())
) ;
]
let constant_typers =
let typer_to_kv : typer -> (string * _) = fun (a, b, c) -> (a, (b, c)) in
Map.String.of_list
@@ List.map typer_to_kv [
same_2 "ADD" [
("ADD_INT" , t_int ()) ;
("ADD_NAT" , t_nat ()) ;
("CONCAT" , t_string ()) ;
] ;
times ;
same_2 "DIV" [
("DIV_INT" , t_int ()) ;
("DIV_NAT" , t_nat ()) ;
] ;
mod_ ;
sub ;
none ;
some ;
comparator "EQ" ;
comparator "NEQ" ;
comparator "LT" ;
comparator "GT" ;
comparator "LE" ;
comparator "GE" ;
boolean_operator_2 "OR" ;
boolean_operator_2 "AND" ;
map_remove ;
map_update ;
int ;
size ;
get_force ;
bytes_pack ;
bytes_unpack ;
crypto_hash ;
sender ;
source ;
unit ;
amount ;
transaction ;
transaction' ;
get_contract ;
get_contract' ;
abs ;
]
end
module Compiler = struct
module Michelson = Tezos_utils.Micheline.Michelson
open Michelson
type predicate =
| Constant of michelson
| Unary of michelson
| Binary of michelson
| Ternary of michelson
let simple_constant c = Constant c
let simple_unary c = Unary c
let simple_binary c = Binary c
let simple_ternary c = Ternary c
let predicates = Map.String.of_list [
("ADD_INT" , simple_binary @@ prim I_ADD) ;
("ADD_NAT" , simple_binary @@ prim I_ADD) ;
("SUB_INT" , simple_binary @@ prim I_SUB) ;
("SUB_NAT" , simple_binary @@ prim I_SUB) ;
("TIMES_INT" , simple_binary @@ prim I_MUL) ;
("TIMES_NAT" , simple_binary @@ prim I_MUL) ;
("TIMES_TEZ" , simple_binary @@ prim I_MUL) ;
("DIV_INT" , simple_binary @@ seq [prim I_EDIV ; i_assert_some_msg (i_push_string "DIV by 0") ; i_car]) ;
("DIV_NAT" , simple_binary @@ seq [prim I_EDIV ; i_assert_some_msg (i_push_string "DIV by 0") ; i_car]) ;
("MOD" , simple_binary @@ seq [prim I_EDIV ; i_assert_some_msg (i_push_string "MOD by 0") ; i_cdr]) ;
("NEG" , simple_unary @@ prim I_NEG) ;
("OR" , simple_binary @@ prim I_OR) ;
("AND" , simple_binary @@ prim I_AND) ;
("PAIR" , simple_binary @@ prim I_PAIR) ;
("CAR" , simple_unary @@ prim I_CAR) ;
("CDR" , simple_unary @@ prim I_CDR) ;
("EQ" , simple_binary @@ seq [prim I_COMPARE ; prim I_EQ]) ;
("NEQ" , simple_binary @@ seq [prim I_COMPARE ; prim I_NEQ]) ;
("LT" , simple_binary @@ seq [prim I_COMPARE ; prim I_LT]) ;
("LE" , simple_binary @@ seq [prim I_COMPARE ; prim I_LE]) ;
("GT" , simple_binary @@ seq [prim I_COMPARE ; prim I_GT]) ;
("GE" , simple_binary @@ seq [prim I_COMPARE ; prim I_GE]) ;
("UPDATE" , simple_ternary @@ prim I_UPDATE) ;
("SOME" , simple_unary @@ prim I_SOME) ;
("GET_FORCE" , simple_binary @@ seq [prim I_GET ; i_assert_some_msg (i_push_string "GET_FORCE")]) ;
("GET" , simple_binary @@ prim I_GET) ;
("SIZE" , simple_unary @@ prim I_SIZE) ;
("FAILWITH" , simple_unary @@ prim I_FAILWITH) ;
("ASSERT" , simple_binary @@ i_if (seq [i_failwith]) (seq [i_drop ; i_push_unit])) ;
("INT" , simple_unary @@ prim I_INT) ;
("ABS" , simple_unary @@ prim I_ABS) ;
("CONS" , simple_binary @@ prim I_CONS) ;
("UNIT" , simple_constant @@ prim I_UNIT) ;
("AMOUNT" , simple_constant @@ prim I_AMOUNT) ;
("TRANSFER_TOKENS" , simple_ternary @@ prim I_TRANSFER_TOKENS) ;
("SOURCE" , simple_constant @@ prim I_SOURCE) ;
("SENDER" , simple_constant @@ prim I_SENDER) ;
( "MAP_UPDATE" , simple_ternary @@ seq [dip (i_some) ; prim I_UPDATE ]) ;
]
end