ligo/vendors/ligo-utils/tezos-protocol-alpha/michelson_v1_gas.ml
2020-02-17 13:10:51 +01:00

766 lines
20 KiB
OCaml

(*****************************************************************************)
(* *)
(* Open Source License *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* Permission is hereby granted, free of charge, to any person obtaining a *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)
(* and/or sell copies of the Software, and to permit persons to whom the *)
(* Software is furnished to do so, subject to the following conditions: *)
(* *)
(* The above copyright notice and this permission notice shall be included *)
(* in all copies or substantial portions of the Software. *)
(* *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)
(* DEALINGS IN THE SOFTWARE. *)
(* *)
(*****************************************************************************)
open Alpha_context
open Gas
module Cost_of = struct
let log2 =
let rec help acc = function 0 -> acc | n -> help (acc + 1) (n / 2) in
help 1
let z_bytes (z : Z.t) =
let bits = Z.numbits z in
(7 + bits) / 8
let int_bytes (z : 'a Script_int.num) = z_bytes (Script_int.to_zint z)
let timestamp_bytes (t : Script_timestamp.t) =
let z = Script_timestamp.to_zint t in
z_bytes z
(* For now, returns size in bytes, but this could get more complicated... *)
let rec size_of_comparable :
type a b. (a, b) Script_typed_ir.comparable_struct -> a -> int =
fun wit v ->
match wit with
| Int_key _ ->
int_bytes v
| Nat_key _ ->
int_bytes v
| String_key _ ->
String.length v
| Bytes_key _ ->
MBytes.length v
| Bool_key _ ->
8
| Key_hash_key _ ->
Signature.Public_key_hash.size
| Timestamp_key _ ->
timestamp_bytes v
| Address_key _ ->
Signature.Public_key_hash.size
| Mutez_key _ ->
8
| Pair_key ((l, _), (r, _), _) ->
let (lval, rval) = v in
size_of_comparable l lval + size_of_comparable r rval
let string length = alloc_bytes_cost length
let bytes length = alloc_mbytes_cost length
let manager_operation = step_cost 10_000
module Legacy = struct
let zint z = alloc_bits_cost (Z.numbits z)
let set_to_list : type item. item Script_typed_ir.set -> cost =
fun (module Box) -> alloc_cost @@ Pervasives.(Box.size * 2)
let map_to_list : type key value. (key, value) Script_typed_ir.map -> cost
=
fun (module Box) ->
let size = snd Box.boxed in
3 *@ alloc_cost size
let z_to_int64 = step_cost 2 +@ alloc_cost 1
let hash data len = (10 *@ step_cost (MBytes.length data)) +@ bytes len
let set_access : type elt. elt -> elt Script_typed_ir.set -> int =
fun _key (module Box) -> log2 @@ Box.size
let set_update key _presence set = set_access key set *@ alloc_cost 3
end
module Interpreter = struct
let cycle = atomic_step_cost 10
let nop = free
let stack_op = atomic_step_cost 10
let push = atomic_step_cost 10
let wrap = atomic_step_cost 10
let variant_no_data = atomic_step_cost 10
let branch = atomic_step_cost 10
let pair = atomic_step_cost 10
let pair_access = atomic_step_cost 10
let cons = atomic_step_cost 10
let loop_size = atomic_step_cost 5
let loop_cycle = atomic_step_cost 10
let loop_iter = atomic_step_cost 20
let loop_map = atomic_step_cost 30
let empty_set = atomic_step_cost 10
let set_to_list : type elt. elt Script_typed_ir.set -> cost =
fun (module Box) -> atomic_step_cost (Box.size * 20)
let set_mem : type elt. elt -> elt Script_typed_ir.set -> cost =
fun elt (module Box) ->
let elt_bytes = size_of_comparable Box.elt_ty elt in
atomic_step_cost ((1 + (elt_bytes / 82)) * log2 Box.size)
let set_update : type elt. elt -> bool -> elt Script_typed_ir.set -> cost =
fun elt _ (module Box) ->
let elt_bytes = size_of_comparable Box.elt_ty elt in
atomic_step_cost ((1 + (elt_bytes / 82)) * log2 Box.size)
let set_size = atomic_step_cost 10
let empty_map = atomic_step_cost 10
let map_to_list : type key value. (key, value) Script_typed_ir.map -> cost
=
fun (module Box) ->
let size = snd Box.boxed in
atomic_step_cost (size * 20)
let map_access :
type key value. key -> (key, value) Script_typed_ir.map -> cost =
fun key (module Box) ->
let map_card = snd Box.boxed in
let key_bytes = size_of_comparable Box.key_ty key in
atomic_step_cost ((1 + (key_bytes / 70)) * log2 map_card)
let map_mem = map_access
let map_get = map_access
let map_update :
type key value.
key -> value option -> (key, value) Script_typed_ir.map -> cost =
fun key _value (module Box) ->
let map_card = snd Box.boxed in
let key_bytes = size_of_comparable Box.key_ty key in
atomic_step_cost ((1 + (key_bytes / 38)) * log2 map_card)
let map_size = atomic_step_cost 10
let add_timestamp (t1 : Script_timestamp.t) (t2 : 'a Script_int.num) =
let bytes1 = timestamp_bytes t1 in
let bytes2 = int_bytes t2 in
atomic_step_cost (51 + (Compare.Int.max bytes1 bytes2 / 62))
let sub_timestamp = add_timestamp
let diff_timestamps (t1 : Script_timestamp.t) (t2 : Script_timestamp.t) =
let bytes1 = timestamp_bytes t1 in
let bytes2 = timestamp_bytes t2 in
atomic_step_cost (51 + (Compare.Int.max bytes1 bytes2 / 62))
let rec concat_loop l acc =
match l with [] -> 30 | _ :: tl -> concat_loop tl (acc + 30)
let concat_string string_list =
atomic_step_cost (concat_loop string_list 0)
let slice_string string_length =
atomic_step_cost (40 + (string_length / 70))
let concat_bytes bytes_list = atomic_step_cost (concat_loop bytes_list 0)
let int64_op = atomic_step_cost 61
let z_to_int64 = atomic_step_cost 20
let int64_to_z = atomic_step_cost 20
let bool_binop _ _ = atomic_step_cost 10
let bool_unop _ = atomic_step_cost 10
let abs int = atomic_step_cost (61 + (int_bytes int / 70))
let int _int = free
let neg = abs
let add i1 i2 =
atomic_step_cost
(51 + (Compare.Int.max (int_bytes i1) (int_bytes i2) / 62))
let sub = add
let mul i1 i2 =
let bytes = Compare.Int.max (int_bytes i1) (int_bytes i2) in
atomic_step_cost (51 + (bytes / 6 * log2 bytes))
let indic_lt x y = if Compare.Int.(x < y) then 1 else 0
let div i1 i2 =
let bytes1 = int_bytes i1 in
let bytes2 = int_bytes i2 in
let cost = indic_lt bytes2 bytes1 * (bytes1 - bytes2) * bytes2 in
atomic_step_cost (51 + (cost / 3151))
let shift_left _i _shift_bits = atomic_step_cost 30
let shift_right _i _shift_bits = atomic_step_cost 30
let logor i1 i2 =
let bytes1 = int_bytes i1 in
let bytes2 = int_bytes i2 in
atomic_step_cost (51 + (Compare.Int.max bytes1 bytes2 / 70))
let logand i1 i2 =
let bytes1 = int_bytes i1 in
let bytes2 = int_bytes i2 in
atomic_step_cost (51 + (Compare.Int.min bytes1 bytes2 / 70))
let logxor = logor
let lognot i = atomic_step_cost (51 + (int_bytes i / 20))
let exec = atomic_step_cost 10
let compare_bool _ _ = atomic_step_cost 30
let compare_string s1 s2 =
let bytes1 = String.length s1 in
let bytes2 = String.length s2 in
atomic_step_cost (30 + (Compare.Int.min bytes1 bytes2 / 123))
let compare_bytes b1 b2 =
let bytes1 = MBytes.length b1 in
let bytes2 = MBytes.length b2 in
atomic_step_cost (30 + (Compare.Int.min bytes1 bytes2 / 123))
let compare_tez _ _ = atomic_step_cost 30
let compare_zint i1 i2 =
atomic_step_cost
(51 + (Compare.Int.min (int_bytes i1) (int_bytes i2) / 82))
let compare_key_hash _ _ = atomic_step_cost 92
let compare_timestamp t1 t2 =
let bytes1 = timestamp_bytes t1 in
let bytes2 = timestamp_bytes t2 in
atomic_step_cost (51 + (Compare.Int.min bytes1 bytes2 / 82))
let compare_address _ _ = atomic_step_cost 92
let compare_res = atomic_step_cost 30
let unpack_failed bytes =
(* We cannot instrument failed deserialization,
so we take worst case fees: a set of size 1 bytes values. *)
let len = MBytes.length bytes in
(len *@ alloc_mbytes_cost 1)
+@ (len *@ (log2 len *@ (alloc_cost 3 +@ step_cost 1)))
let address = atomic_step_cost 10
let contract = step_cost 10000
let transfer = step_cost 10
let create_account = step_cost 10
let create_contract = step_cost 10
let implicit_account = step_cost 10
let set_delegate = step_cost 10 +@ write_bytes_cost (Z.of_int 32)
let balance = atomic_step_cost 10
let now = atomic_step_cost 10
let check_signature_secp256k1 bytes = atomic_step_cost (10342 + (bytes / 5))
let check_signature_ed25519 bytes = atomic_step_cost (36864 + (bytes / 5))
let check_signature_p256 bytes = atomic_step_cost (36864 + (bytes / 5))
let check_signature (pkey : Signature.public_key) bytes =
match pkey with
| Ed25519 _ ->
check_signature_ed25519 (MBytes.length bytes)
| Secp256k1 _ ->
check_signature_secp256k1 (MBytes.length bytes)
| P256 _ ->
check_signature_p256 (MBytes.length bytes)
let hash_key = atomic_step_cost 30
let hash_blake2b b = atomic_step_cost (102 + (MBytes.length b / 5))
let hash_sha256 b = atomic_step_cost (409 + MBytes.length b)
let hash_sha512 b =
let bytes = MBytes.length b in
atomic_step_cost (409 + ((bytes lsr 1) + (bytes lsr 4)))
let steps_to_quota = atomic_step_cost 10
let source = atomic_step_cost 10
let self = atomic_step_cost 10
let amount = atomic_step_cost 10
let chain_id = step_cost 1
let stack_n_op n =
atomic_step_cost (20 + ((n lsr 1) + (n lsr 2) + (n lsr 4)))
let apply = alloc_cost 8 +@ step_cost 1
let rec compare :
type a s. (a, s) Script_typed_ir.comparable_struct -> a -> a -> cost =
fun ty x y ->
match ty with
| Bool_key _ ->
compare_bool x y
| String_key _ ->
compare_string x y
| Bytes_key _ ->
compare_bytes x y
| Mutez_key _ ->
compare_tez x y
| Int_key _ ->
compare_zint x y
| Nat_key _ ->
compare_zint x y
| Key_hash_key _ ->
compare_key_hash x y
| Timestamp_key _ ->
compare_timestamp x y
| Address_key _ ->
compare_address x y
| Pair_key ((tl, _), (tr, _), _) ->
(* Reasonable over-approximation of the cost of lexicographic comparison. *)
let (xl, xr) = x and (yl, yr) = y in
compare tl xl yl +@ compare tr xr yr
end
module Typechecking = struct
let cycle = step_cost 1
let bool = free
let unit = free
let string = string
let bytes = bytes
let z = Legacy.zint
let int_of_string str =
alloc_cost @@ Pervasives.( / ) (String.length str) 5
let tez = step_cost 1 +@ alloc_cost 1
let string_timestamp = step_cost 3 +@ alloc_cost 3
let key = step_cost 3 +@ alloc_cost 3
let key_hash = step_cost 1 +@ alloc_cost 1
let signature = step_cost 1 +@ alloc_cost 1
let chain_id = step_cost 1 +@ alloc_cost 1
let contract = step_cost 5
let get_script = step_cost 20 +@ alloc_cost 5
let contract_exists = step_cost 15 +@ alloc_cost 5
let pair = alloc_cost 2
let union = alloc_cost 1
let lambda = alloc_cost 5 +@ step_cost 3
let some = alloc_cost 1
let none = alloc_cost 0
let list_element = alloc_cost 2 +@ step_cost 1
let set_element size = log2 size *@ (alloc_cost 3 +@ step_cost 2)
let map_element size = log2 size *@ (alloc_cost 4 +@ step_cost 2)
let primitive_type = alloc_cost 1
let one_arg_type = alloc_cost 2
let two_arg_type = alloc_cost 3
let operation b = bytes b
let type_ nb_args = alloc_cost (nb_args + 1)
(* Cost of parsing instruction, is cost of allocation of
constructor + cost of contructor parameters + cost of
allocation on the stack type *)
let instr : type b a. (b, a) Script_typed_ir.instr -> cost =
fun i ->
let open Script_typed_ir in
alloc_cost 1
+@
(* cost of allocation of constructor *)
match i with
| Drop ->
alloc_cost 0
| Dup ->
alloc_cost 1
| Swap ->
alloc_cost 0
| Const _ ->
alloc_cost 1
| Cons_pair ->
alloc_cost 2
| Car ->
alloc_cost 1
| Cdr ->
alloc_cost 1
| Cons_some ->
alloc_cost 2
| Cons_none _ ->
alloc_cost 3
| If_none _ ->
alloc_cost 2
| Left ->
alloc_cost 3
| Right ->
alloc_cost 3
| If_left _ ->
alloc_cost 2
| Cons_list ->
alloc_cost 1
| Nil ->
alloc_cost 1
| If_cons _ ->
alloc_cost 2
| List_map _ ->
alloc_cost 5
| List_iter _ ->
alloc_cost 4
| List_size ->
alloc_cost 1
| Empty_set _ ->
alloc_cost 1
| Set_iter _ ->
alloc_cost 4
| Set_mem ->
alloc_cost 1
| Set_update ->
alloc_cost 1
| Set_size ->
alloc_cost 1
| Empty_map _ ->
alloc_cost 2
| Map_map _ ->
alloc_cost 5
| Map_iter _ ->
alloc_cost 4
| Map_mem ->
alloc_cost 1
| Map_get ->
alloc_cost 1
| Map_update ->
alloc_cost 1
| Map_size ->
alloc_cost 1
| Empty_big_map _ ->
alloc_cost 2
| Big_map_mem ->
alloc_cost 1
| Big_map_get ->
alloc_cost 1
| Big_map_update ->
alloc_cost 1
| Concat_string ->
alloc_cost 1
| Concat_string_pair ->
alloc_cost 1
| Concat_bytes ->
alloc_cost 1
| Concat_bytes_pair ->
alloc_cost 1
| Slice_string ->
alloc_cost 1
| Slice_bytes ->
alloc_cost 1
| String_size ->
alloc_cost 1
| Bytes_size ->
alloc_cost 1
| Add_seconds_to_timestamp ->
alloc_cost 1
| Add_timestamp_to_seconds ->
alloc_cost 1
| Sub_timestamp_seconds ->
alloc_cost 1
| Diff_timestamps ->
alloc_cost 1
| Add_tez ->
alloc_cost 1
| Sub_tez ->
alloc_cost 1
| Mul_teznat ->
alloc_cost 1
| Mul_nattez ->
alloc_cost 1
| Ediv_teznat ->
alloc_cost 1
| Ediv_tez ->
alloc_cost 1
| Or ->
alloc_cost 1
| And ->
alloc_cost 1
| Xor ->
alloc_cost 1
| Not ->
alloc_cost 1
| Is_nat ->
alloc_cost 1
| Neg_nat ->
alloc_cost 1
| Neg_int ->
alloc_cost 1
| Abs_int ->
alloc_cost 1
| Int_nat ->
alloc_cost 1
| Add_intint ->
alloc_cost 1
| Add_intnat ->
alloc_cost 1
| Add_natint ->
alloc_cost 1
| Add_natnat ->
alloc_cost 1
| Sub_int ->
alloc_cost 1
| Mul_intint ->
alloc_cost 1
| Mul_intnat ->
alloc_cost 1
| Mul_natint ->
alloc_cost 1
| Mul_natnat ->
alloc_cost 1
| Ediv_intint ->
alloc_cost 1
| Ediv_intnat ->
alloc_cost 1
| Ediv_natint ->
alloc_cost 1
| Ediv_natnat ->
alloc_cost 1
| Lsl_nat ->
alloc_cost 1
| Lsr_nat ->
alloc_cost 1
| Or_nat ->
alloc_cost 1
| And_nat ->
alloc_cost 1
| And_int_nat ->
alloc_cost 1
| Xor_nat ->
alloc_cost 1
| Not_nat ->
alloc_cost 1
| Not_int ->
alloc_cost 1
| Seq _ ->
alloc_cost 8
| If _ ->
alloc_cost 8
| Loop _ ->
alloc_cost 4
| Loop_left _ ->
alloc_cost 5
| Dip _ ->
alloc_cost 4
| Exec ->
alloc_cost 1
| Apply _ ->
alloc_cost 1
| Lambda _ ->
alloc_cost 2
| Failwith _ ->
alloc_cost 1
| Nop ->
alloc_cost 0
| Compare _ ->
alloc_cost 1
| Eq ->
alloc_cost 1
| Neq ->
alloc_cost 1
| Lt ->
alloc_cost 1
| Gt ->
alloc_cost 1
| Le ->
alloc_cost 1
| Ge ->
alloc_cost 1
| Address ->
alloc_cost 1
| Contract _ ->
alloc_cost 2
| Transfer_tokens ->
alloc_cost 1
| Create_account ->
alloc_cost 2
| Implicit_account ->
alloc_cost 1
| Create_contract _ ->
alloc_cost 8
(* Deducted the cost of removed arguments manager, spendable and delegatable:
- manager: key_hash = 1
- spendable: bool = 0
- delegatable: bool = 0
*)
| Create_contract_2 _ ->
alloc_cost 7
| Set_delegate ->
alloc_cost 1
| Now ->
alloc_cost 1
| Balance ->
alloc_cost 1
| Check_signature ->
alloc_cost 1
| Hash_key ->
alloc_cost 1
| Pack _ ->
alloc_cost 2
| Unpack _ ->
alloc_cost 2
| Blake2b ->
alloc_cost 1
| Sha256 ->
alloc_cost 1
| Sha512 ->
alloc_cost 1
| Steps_to_quota ->
alloc_cost 1
| Source ->
alloc_cost 1
| Sender ->
alloc_cost 1
| Self _ ->
alloc_cost 2
| Amount ->
alloc_cost 1
| Dig (n, _) ->
n *@ alloc_cost 1 (* _ is a unary development of n *)
| Dug (n, _) ->
n *@ alloc_cost 1
| Dipn (n, _, _) ->
n *@ alloc_cost 1
| Dropn (n, _) ->
n *@ alloc_cost 1
| ChainId ->
alloc_cost 1
end
module Unparse = struct
let prim_cost l annot = Script.prim_node_cost_nonrec_of_length l annot
let seq_cost = Script.seq_node_cost_nonrec_of_length
let string_cost length = Script.string_node_cost_of_length length
let cycle = step_cost 1
let bool = prim_cost 0 []
let unit = prim_cost 0 []
(* We count the length of strings and bytes to prevent hidden
miscalculations due to non detectable expansion of sharing. *)
let string s = Script.string_node_cost s
let bytes s = Script.bytes_node_cost s
let z i = Script.int_node_cost i
let int i = Script.int_node_cost (Script_int.to_zint i)
let tez = Script.int_node_cost_of_numbits 60 (* int64 bound *)
let timestamp x = Script_timestamp.to_zint x |> Script_int.of_zint |> int
let operation bytes = Script.bytes_node_cost bytes
let chain_id bytes = Script.bytes_node_cost bytes
let key = string_cost 54
let key_hash = string_cost 36
let signature = string_cost 128
let contract = string_cost 36
let pair = prim_cost 2 []
let union = prim_cost 1 []
let some = prim_cost 1 []
let none = prim_cost 0 []
let list_element = alloc_cost 2
let set_element = alloc_cost 2
let map_element = alloc_cost 2
let one_arg_type = prim_cost 1
let two_arg_type = prim_cost 2
let set_to_list = Legacy.set_to_list
let map_to_list = Legacy.map_to_list
end
end