(* Abstract Syntax Tree (AST) for Pascaligo *)

[@@@warning "-30"]

open Utils

(* Regions

   The AST carries all the regions where tokens have been found by the
   lexer, plus additional regions corresponding to whole subtrees
   (like entire expressions, patterns etc.). These regions are needed
   for error reporting and source-to-source transformations. To make
   these pervasive regions more legible, we define singleton types for
   the symbols, keywords etc. with suggestive names like "kwd_and"
   denoting the _region_ of the occurrence of the keyword "and".
*)

type 'a reg = 'a Region.reg

val nseq_to_region    : ('a -> Region.t) -> 'a nseq -> Region.t
val nsepseq_to_region : ('a -> Region.t) -> ('a,'sep) nsepseq -> Region.t
val sepseq_to_region  : ('a -> Region.t) -> ('a,'sep) sepseq -> Region.t

(* Keywords of LIGO *)

type keyword        = Region.t
type kwd_and        = Region.t
type kwd_begin      = Region.t
type kwd_block      = Region.t
type kwd_case       = Region.t
type kwd_const      = Region.t
type kwd_contains   = Region.t
type kwd_down       = Region.t
type kwd_else       = Region.t
type kwd_end        = Region.t
type kwd_for        = Region.t
type kwd_from       = Region.t
type kwd_function   = Region.t
type kwd_if         = Region.t
type kwd_in         = Region.t
type kwd_is         = Region.t
type kwd_list       = Region.t
type kwd_map        = Region.t
type kwd_mod        = Region.t
type kwd_nil        = Region.t
type kwd_not        = Region.t
type kwd_of         = Region.t
type kwd_or         = Region.t
type kwd_patch      = Region.t
type kwd_record     = Region.t
type kwd_remove     = Region.t
type kwd_set        = Region.t
type kwd_skip       = Region.t
type kwd_step       = Region.t
type kwd_then       = Region.t
type kwd_to         = Region.t
type kwd_type       = Region.t
type kwd_var        = Region.t
type kwd_while      = Region.t
type kwd_with       = Region.t

(* Data constructors *)

type c_False = Region.t
type c_None  = Region.t
type c_Some  = Region.t
type c_True  = Region.t
type c_Unit  = Region.t

(* Symbols *)

type semi     = Region.t  (* ";"   *)
type comma    = Region.t  (* ","   *)
type lpar     = Region.t  (* "("   *)
type rpar     = Region.t  (* ")"   *)
type lbrace   = Region.t  (* "{"   *)
type rbrace   = Region.t  (* "}"   *)
type lbracket = Region.t  (* "["   *)
type rbracket = Region.t  (* "]"   *)
type cons     = Region.t  (* "#"   *)
type vbar     = Region.t  (* "|"   *)
type arrow    = Region.t  (* "->"  *)
type assign   = Region.t  (* ":="  *)
type equal    = Region.t  (* "="   *)
type colon    = Region.t  (* ":"   *)
type lt       = Region.t  (* "<"   *)
type leq      = Region.t  (* "<="  *)
type gt       = Region.t  (* ">"   *)
type geq      = Region.t  (* ">="  *)
type neq      = Region.t  (* "=/=" *)
type plus     = Region.t  (* "+"   *)
type minus    = Region.t  (* "-"   *)
type slash    = Region.t  (* "/"   *)
type times    = Region.t  (* "*"   *)
type dot      = Region.t  (* "."   *)
type wild     = Region.t  (* "_"   *)
type cat      = Region.t  (* "^"   *)

(* Virtual tokens *)

type eof = Region.t

(* Literals *)

type variable   = string reg
type fun_name   = string reg
type type_name  = string reg
type field_name = string reg
type map_name   = string reg
type set_name   = string reg
type constr     = string reg

(* Parentheses *)

type 'a par = {
  lpar   : lpar;
  inside : 'a;
  rpar   : rpar
}

(* Brackets compounds *)

type 'a brackets = {
  lbracket : lbracket;
  inside   : 'a;
  rbracket : rbracket
}

(* Braced compounds *)

type 'a braces = {
  lbrace : lbrace;
  inside : 'a;
  rbrace : rbrace
}

(** The Abstract Syntax Tree

The AST mirrors the contents of Parser.mly, which defines a tree of parsing
productions that are used to make a syntax tree from a given program input.

This file defines the concrete AST for PascaLIGO, which is used to associate
regions of the source code text with the contents of the syntax tree.

*)
type t = {
  decl : declaration nseq;
  eof  : eof
}

and ast = t

and declaration =
  TypeDecl  of type_decl reg
| ConstDecl of const_decl reg
| FunDecl   of fun_decl reg

and const_decl = {
  kwd_const  : kwd_const;
  name       : variable;
  colon      : colon;
  const_type : type_expr;
  equal      : equal;
  init       : expr;
  terminator : semi option
}

(* Type declarations *)

and type_decl = {
  kwd_type   : kwd_type;
  name       : type_name;
  kwd_is     : kwd_is;
  type_expr  : type_expr;
  terminator : semi option
}

and type_expr =
  TProd   of cartesian
| TSum    of (variant reg, vbar) nsepseq reg
| TRecord of field_decl reg ne_injection reg
| TApp    of (type_name * type_tuple) reg
| TFun    of (type_expr * arrow * type_expr) reg
| TPar    of type_expr par reg
| TAlias  of variable

and cartesian = (type_expr, times) nsepseq reg

and variant = {
  constr : constr;
  args   : (kwd_of * type_expr) option
}

and field_decl = {
  field_name : field_name;
  colon      : colon;
  field_type : type_expr
}

and type_tuple = (type_expr, comma) nsepseq par reg

(* Function declarations *)

and fun_decl ={
    kwd_function : kwd_function;
    name         : variable;
    param        : parameters;
    colon        : colon;
    ret_type     : type_expr;
    kwd_is       : kwd_is;
    local_decls  : local_decl list;
    block        : block reg option;
    kwd_with     : kwd_with option;
    return       : expr;
    terminator   : semi option }

and parameters = (param_decl, semi) nsepseq par reg

and param_decl =
  ParamConst of param_const reg
| ParamVar   of param_var reg

and param_const = {
  kwd_const  : kwd_const;
  var        : variable;
  colon      : colon;
  param_type : type_expr
}

and param_var = {
  kwd_var    : kwd_var;
  var        : variable;
  colon      : colon;
  param_type : type_expr
}

and block = {
  opening    : block_opening;
  statements : statements;
  terminator : semi option;
  closing    : block_closing
}

and block_opening =
  Block of kwd_block * lbrace
| Begin of kwd_begin

and block_closing =
  Block of rbrace
| End   of kwd_end

and statements = (statement, semi) nsepseq

and statement =
  Instr of instruction
| Data  of data_decl

and local_decl =
  LocalFun  of fun_decl reg
| LocalData of data_decl

and data_decl =
  LocalConst of const_decl reg
| LocalVar   of var_decl reg

and var_decl = {
  kwd_var    : kwd_var;
  name       : variable;
  colon      : colon;
  var_type   : type_expr;
  assign     : assign;
  init       : expr;
  terminator : semi option
}

and instruction =
  Cond        of conditional reg
| CaseInstr   of instruction case reg
| Assign      of assignment reg
| Loop        of loop
| ProcCall    of fun_call
| Skip        of kwd_skip
| RecordPatch of record_patch reg
| MapPatch    of map_patch reg
| SetPatch    of set_patch reg
| MapRemove   of map_remove reg
| SetRemove   of set_remove reg

and set_remove = {
  kwd_remove : kwd_remove;
  element    : expr;
  kwd_from   : kwd_from;
  kwd_set    : kwd_set;
  set        : path
}

and map_remove = {
  kwd_remove : kwd_remove;
  key        : expr;
  kwd_from   : kwd_from;
  kwd_map    : kwd_map;
  map        : path
}

and set_patch  = {
  kwd_patch : kwd_patch;
  path      : path;
  kwd_with  : kwd_with;
  set_inj   : expr ne_injection reg
}

and map_patch  = {
  kwd_patch : kwd_patch;
  path      : path;
  kwd_with  : kwd_with;
  map_inj   : binding reg ne_injection reg
}

and binding = {
  source : expr;
  arrow  : arrow;
  image  : expr
}

and record_patch = {
  kwd_patch  : kwd_patch;
  path       : path;
  kwd_with   : kwd_with;
  record_inj : field_assign reg ne_injection reg
}

and cond_expr = {
  kwd_if     : kwd_if;
  test       : expr;
  kwd_then   : kwd_then;
  ifso       : expr;
  terminator : semi option;
  kwd_else   : kwd_else;
  ifnot      : expr
}

and conditional = {
  kwd_if     : kwd_if;
  test       : expr;
  kwd_then   : kwd_then;
  ifso       : if_clause;
  terminator : semi option;
  kwd_else   : kwd_else;
  ifnot      : if_clause
}

and if_clause =
  ClauseInstr of instruction
| ClauseBlock of clause_block

and clause_block =
  LongBlock  of block reg
| ShortBlock of (statements * semi option) braces reg

and set_membership = {
  set          : expr;
  kwd_contains : kwd_contains;
  element      : expr
}

and 'a case = {
  kwd_case  : kwd_case;
  expr      : expr;
  opening   : opening;
  lead_vbar : vbar option;
  cases     : ('a case_clause reg, vbar) nsepseq reg;
  closing   : closing
}

and 'a case_clause = {
  pattern : pattern;
  arrow   : arrow;
  rhs     : 'a
}

and assignment = {
  lhs    : lhs;
  assign : assign;
  rhs    : rhs;
}

and lhs =
  Path    of path
| MapPath of map_lookup reg

and rhs = expr

and loop =
  While of while_loop reg
| For   of for_loop

and while_loop = {
  kwd_while : kwd_while;
  cond      : expr;
  block     : block reg
}

and for_loop =
  ForInt     of for_int reg
| ForCollect of for_collect reg

and for_int = {
  kwd_for : kwd_for;
  assign  : var_assign reg;
  kwd_to  : kwd_to;
  bound   : expr;
  block   : block reg
}

and var_assign = {
  name   : variable;
  assign : assign;
  expr   : expr
}

and for_collect = {
  kwd_for    : kwd_for;
  var        : variable;
  bind_to    : (arrow * variable) option;
  colon      : colon;
  elt_type   : type_expr;
  kwd_in     : kwd_in;
  collection : collection;
  expr       : expr;
  block      : block reg
}

and collection =
  Map  of kwd_map
| Set  of kwd_set
| List of kwd_list

(* Expressions *)

and expr =
  ECase   of expr case reg
| ECond   of cond_expr reg
| EAnnot  of annot_expr reg
| ELogic  of logic_expr
| EArith  of arith_expr
| EString of string_expr
| EList   of list_expr
| ESet    of set_expr
| EConstr of constr_expr
| ERecord of record_expr
| EProj   of projection reg
| EMap    of map_expr
| EVar    of Lexer.lexeme reg
| ECall   of fun_call
| EBytes  of (Lexer.lexeme * Hex.t) reg
| EUnit   of c_Unit
| ETuple  of tuple_expr
| EPar    of expr par reg

and annot_expr = (expr * type_expr)

and set_expr =
  SetInj of expr injection reg
| SetMem of set_membership reg

and 'a injection = {
  opening    : opening;
  elements   : ('a, semi) sepseq;
  terminator : semi option;
  closing    : closing
}

and 'a ne_injection = {
  opening     : opening;
  ne_elements : ('a, semi) nsepseq;
  terminator  : semi option;
  closing     : closing
}

and opening =
  Kwd        of keyword
| KwdBracket of keyword * lbracket

and closing =
  End       of kwd_end
| RBracket  of rbracket

and map_expr =
  MapLookUp of map_lookup reg
| MapInj    of binding reg injection reg

and map_lookup = {
  path  : path;
  index : expr brackets reg
}

and path =
  Name of variable
| Path of projection reg

and logic_expr =
  BoolExpr of bool_expr
| CompExpr of comp_expr

and bool_expr =
  Or    of kwd_or  bin_op reg
| And   of kwd_and bin_op reg
| Not   of kwd_not  un_op reg
| False of c_False
| True  of c_True

and 'a bin_op = {
  op   : 'a;
  arg1 : expr;
  arg2 : expr
}

and 'a un_op = {
  op  : 'a;
  arg : expr
}

and comp_expr =
  Lt    of lt    bin_op reg
| Leq   of leq   bin_op reg
| Gt    of gt    bin_op reg
| Geq   of geq   bin_op reg
| Equal of equal bin_op reg
| Neq   of neq   bin_op reg

and arith_expr =
  Add  of plus    bin_op reg
| Sub  of minus   bin_op reg
| Mult of times   bin_op reg
| Div  of slash   bin_op reg
| Mod  of kwd_mod bin_op reg
| Neg  of minus    un_op reg
| Int  of (Lexer.lexeme * Z.t) reg
| Nat  of (Lexer.lexeme * Z.t) reg
| Mtz  of (Lexer.lexeme * Z.t) reg

and string_expr =
  Cat    of cat bin_op reg
| String of Lexer.lexeme reg

and list_expr =
  Cons of cons bin_op reg
| List of expr injection reg
| Nil  of nil

and nil = kwd_nil

and constr_expr =
  SomeApp   of (c_Some * arguments) reg
| NoneExpr  of none_expr
| ConstrApp of (constr * arguments option) reg

and record_expr = field_assign reg injection reg

and field_assign = {
  field_name : field_name;
  equal      : equal;
  field_expr : expr
}

and projection = {
  struct_name : variable;
  selector    : dot;
  field_path  : (selection, dot) nsepseq
}

and selection =
  FieldName of field_name
| Component of (Lexer.lexeme * Z.t) reg

and tuple_expr = (expr, comma) nsepseq par reg

and none_expr = c_None

and fun_call = (fun_name * arguments) reg

and arguments = tuple_expr

(* Patterns *)

and pattern =
  PCons   of (pattern, cons) nsepseq reg
| PConstr of (constr * tuple_pattern option) reg
| PVar    of Lexer.lexeme reg
| PWild   of wild
| PInt    of (Lexer.lexeme * Z.t) reg
| PNat    of (Lexer.lexeme * Z.t) reg
| PBytes  of (Lexer.lexeme * Hex.t) reg
| PString of Lexer.lexeme reg
| PUnit   of c_Unit
| PFalse  of c_False
| PTrue   of c_True
| PNone   of c_None
| PSome   of (c_Some * pattern par reg) reg
| PList   of list_pattern
| PTuple  of tuple_pattern

and tuple_pattern = (pattern, comma) nsepseq par reg

and list_pattern =
  Sugar of pattern injection reg
| PNil  of kwd_nil
| Raw   of (pattern * cons * pattern) par reg

(* Projecting regions *)

val type_expr_to_region  : type_expr -> Region.t
val expr_to_region       : expr -> Region.t
val instr_to_region      : instruction -> Region.t
val pattern_to_region    : pattern -> Region.t
val local_decl_to_region : local_decl -> Region.t
val path_to_region       : path -> Region.t
val lhs_to_region        : lhs -> Region.t
val rhs_to_region        : rhs -> Region.t
val if_clause_to_region  : if_clause -> Region.t
val selection_to_region  : selection -> Region.t