open Trace (* This file is used throughout the pipeline. Its idea is to add a unique place that you have to modify when you add a new operator/constant to the language. This file mirrors the LIGO pipeline, starting with Simplify, then Typer and ending with Compiler. Usually, when adding a new operator, you'll have to add a new constructor at all those places. *) module Simplify = struct (* Each front-end has its owns constants. Constants are special names that have their own case in the AST. E_constant for regular constants, and T_constant for type constants. Both types are defined in `Ast_simplified/types.ml`. For instance, "2 + 2" in Pascaligo is translated to `E_constant ("ADD" , [ E_literal (Literal_int 2) ; E_literal (Literal_int 2) ; ])`. They are used to represent what can't expressed in the languages: - Primitives. Like "int", "string", "unit" for types. Or "+" for values. - Tezos specific stuff. Like "operation" for types. Or "source" for values. - What can't be represented in the language yet. Like "list" or "List.fold". Each constant is expressed as a pair: - The left-hand-side is the reserved name in the given front-end. - The right-hand-side is the name that will be used in the AST. *) let type_constants = [ ("unit" , "unit") ; ("string" , "string") ; ("bytes" , "bytes") ; ("nat" , "nat") ; ("int" , "int") ; ("tez" , "tez") ; ("bool" , "bool") ; ("operation" , "operation") ; ("address" , "address") ; ("key" , "key") ; ("key_hash" , "key_hash") ; ("signature" , "signature") ; ("timestamp" , "timestamp") ; ("contract" , "contract") ; ("list" , "list") ; ("option" , "option") ; ("set" , "set") ; ("map" , "map") ; ("big_map" , "big_map") ; ] module Pascaligo = struct let constants = [ ("get_force" , "MAP_GET_FORCE") ; ("transaction" , "CALL") ; ("get_contract" , "CONTRACT") ; ("get_entrypoint" , "CONTRACT_ENTRYPOINT") ; ("size" , "SIZE") ; ("int" , "INT") ; ("abs" , "ABS") ; ("amount" , "AMOUNT") ; ("balance", "BALANCE") ; ("now" , "NOW") ; ("unit" , "UNIT") ; ("source" , "SOURCE") ; ("sender" , "SENDER") ; ("failwith" , "FAILWITH") ; ("bitwise_or" , "OR") ; ("bitwise_and" , "AND") ; ("bitwise_xor" , "XOR") ; ("string_concat" , "CONCAT") ; ("string_slice" , "SLICE") ; ("bytes_concat" , "CONCAT") ; ("bytes_slice" , "SLICE") ; ("bytes_pack" , "PACK") ; ("set_empty" , "SET_EMPTY") ; ("set_mem" , "SET_MEM") ; ("set_add" , "SET_ADD") ; ("set_remove" , "SET_REMOVE") ; ("set_iter" , "SET_ITER") ; ("set_fold" , "SET_FOLD") ; ("list_iter" , "LIST_ITER") ; ("list_fold" , "LIST_FOLD") ; ("list_map" , "LIST_MAP") ; (*ici*) ("map_iter" , "MAP_ITER") ; ("map_map" , "MAP_MAP") ; ("map_fold" , "MAP_FOLD") ; ("map_remove" , "MAP_REMOVE") ; ("map_update" , "MAP_UPDATE") ; ("map_get" , "MAP_GET") ; ("sha_256" , "SHA256") ; ("sha_512" , "SHA512") ; ("blake2b" , "BLAKE2b") ; ("cons" , "CONS") ; ] let type_constants = type_constants end module Camligo = struct let constants = [ ("Bytes.pack" , "PACK") ; ("Crypto.hash" , "HASH") ; ("Operation.transaction" , "CALL") ; ("Operation.get_contract" , "CONTRACT") ; ("sender" , "SENDER") ; ("unit" , "UNIT") ; ("source" , "SOURCE") ; ] let type_constants = type_constants end module Ligodity = struct let constants = [ ("assert" , "ASSERT") ; ("Current.balance", "BALANCE") ; ("balance", "BALANCE") ; ("Current.time", "NOW") ; ("time", "NOW") ; ("Current.amount" , "AMOUNT") ; ("amount", "AMOUNT") ; ("Current.gas", "STEPS_TO_QUOTA") ; ("gas", "STEPS_TO_QUOTA") ; ("Current.sender" , "SENDER") ; ("sender", "SENDER") ; ("Current.source" , "SOURCE") ; ("source", "SOURCE") ; ("Current.failwith", "FAILWITH") ; ("failwith" , "FAILWITH") ; ("Crypto.hash" , "HASH") ; ("Crypto.black2b", "BLAKE2B") ; ("Crypto.sha256", "SHA256") ; ("Crypto.sha512", "SHA512") ; ("Crypto.hash_key", "HASH_KEY") ; ("Crypto.check", "CHECK_SIGNATURE") ; ("Bytes.pack" , "PACK") ; ("Bytes.unpack", "UNPACK") ; ("Bytes.length", "SIZE") ; ("Bytes.size" , "SIZE") ; ("Bytes.concat", "CONCAT") ; ("Bytes.slice", "SLICE") ; ("Bytes.sub", "SLICE") ; ("Set.mem" , "SET_MEM") ; ("Set.empty" , "SET_EMPTY") ; ("Set.literal" , "SET_LITERAL") ; ("Set.add" , "SET_ADD") ; ("Set.remove" , "SET_REMOVE") ; ("Set.fold" , "SET_FOLD") ; ("Set.size", "SIZE") ; ("Map.find_opt" , "MAP_FIND_OPT") ; ("Map.find" , "MAP_FIND") ; ("Map.update" , "MAP_UPDATE") ; ("Map.add" , "MAP_ADD") ; ("Map.remove" , "MAP_REMOVE") ; ("Map.iter" , "MAP_ITER") ; ("Map.map" , "MAP_MAP") ; ("Map.fold" , "MAP_FOLD") ; ("Map.empty" , "MAP_EMPTY") ; ("Map.literal" , "MAP_LITERAL" ) ; ("Map.size" , "SIZE" ) ; ("Big_map.find_opt" , "MAP_FIND_OPT") ; ("Big_map.find" , "MAP_FIND") ; ("Big_map.update" , "MAP_UPDATE") ; ("Big_map.add" , "MAP_ADD") ; ("Big_map.remove" , "MAP_REMOVE") ; ("Big_map.literal" , "BIG_MAP_LITERAL" ) ; ("Big_map.empty" , "BIG_MAP_EMPTY" ) ; ("Bitwise.lor" , "OR") ; ("Bitwise.land" , "AND") ; ("Bitwise.lxor" , "XOR") ; ("String.length", "SIZE") ; ("String.size", "SIZE") ; ("String.slice", "SLICE") ; ("String.sub", "SLICE") ; ("String.concat", "CONCAT") ; ("List.length", "SIZE") ; ("List.size", "SIZE") ; ("List.iter", "LIST_ITER") ; ("List.map" , "LIST_MAP") ; ("List.fold" , "LIST_FOLD") ; ("Loop.fold_while" , "FOLD_WHILE") ; ("continue" , "CONTINUE") ; ("stop" , "STOP") ; ("Operation.transaction" , "CALL") ; ("Operation.get_contract" , "CONTRACT") ; ("Operation.get_entrypoint" , "CONTRACT_ENTRYPOINT") ; ("int" , "INT") ; ("abs" , "ABS") ; ("unit" , "UNIT") ; ("source" , "SOURCE") ; ] let type_constants = type_constants end end module Typer = struct (* Each constant has its own type. LIGO's type-system is currently too weak to express the constant's type. For instance: - "ADD" has a special kind of type of polymorphism. If "ADD" gets two `int`s, it will return an `int`. If it gets two `nat`s, it will return a `nat`. Regular polymorphism wouldn't work because "ADD" only accepts `int`s or `nat`s. - "NONE" (from Some/None) requires an annotation. Instead of a LIGO type, constant types are representend as functions. These functions take as parameters: - The list of types of the arguments of the constants. When typing `2 + 2`, the types might be `[ int ; int ]`. - The expected type of the whole expression. It is optional. When typing `[] : list(operation)`, it will be `Some ( list (operation) )`. When typing `2 + 2` (with no additional context), it will be `None`. The output is the type of the whole expression. An error is returned through the Trace monad if it doesn't type-check (`"toto" + 42`). Various helpers are defined and explaines in `Helpers.Typer`. *) open Helpers.Typer open Ast_typed module Operators_types = struct open Typesystem.Shorthands let tc_subarg a b c = tc [a;b;c] [ (*TODO…*) ] let tc_sizearg a = tc [a] [ [int] ] let tc_packable a = tc [a] [ [int] ; [string] ; [bool] (*TODO…*) ] let tc_timargs a b c = tc [a;b;c] [ [nat;nat;nat] ; [int;int;int] (*TODO…*) ] let tc_divargs a b c = tc [a;b;c] [ (*TODO…*) ] let tc_modargs a b c = tc [a;b;c] [ (*TODO…*) ] let tc_addargs a b c = tc [a;b;c] [ (*TODO…*) ] let t_none = forall "a" @@ fun a -> option a let t_sub = forall3_tc "a" "b" "c" @@ fun a b c -> [tc_subarg a b c] => a --> b --> c (* TYPECLASS *) let t_some = forall "a" @@ fun a -> a --> option a let t_map_remove = forall2 "src" "dst" @@ fun src dst -> src --> map src dst --> map src dst let t_map_add = forall2 "src" "dst" @@ fun src dst -> src --> dst --> map src dst --> map src dst let t_map_update = forall2 "src" "dst" @@ fun src dst -> src --> option dst --> map src dst --> map src dst let t_map_mem = forall2 "src" "dst" @@ fun src dst -> src --> map src dst --> bool let t_map_find = forall2 "src" "dst" @@ fun src dst -> src --> map src dst --> dst let t_map_find_opt = forall2 "src" "dst" @@ fun src dst -> src --> map src dst --> option dst let t_map_fold = forall3 "src" "dst" "acc" @@ fun src dst acc -> ( ( (src * dst) * acc ) --> acc ) --> map src dst --> acc --> acc let t_map_map = forall3 "k" "v" "result" @@ fun k v result -> ((k * v) --> result) --> map k v --> map k result (* TODO: the type of map_map_fold might be wrong, check it. *) let t_map_map_fold = forall4 "k" "v" "acc" "dst" @@ fun k v acc dst -> ( ((k * v) * acc) --> acc * dst ) --> map k v --> (k * v) --> (map k dst * acc) let t_map_iter = forall2 "k" "v" @@ fun k v -> ( (k * v) --> unit ) --> map k v --> unit let t_size = forall_tc "c" @@ fun c -> [tc_sizearg c] => c --> nat (* TYPECLASS *) let t_slice = nat --> nat --> string --> string let t_failwith = string --> unit let t_get_force = forall2 "src" "dst" @@ fun src dst -> src --> map src dst --> dst let t_int = nat --> int let t_bytes_pack = forall_tc "a" @@ fun a -> [tc_packable a] => a --> bytes (* TYPECLASS *) let t_bytes_unpack = forall_tc "a" @@ fun a -> [tc_packable a] => bytes --> a (* TYPECLASS *) let t_hash256 = bytes --> bytes let t_hash512 = bytes --> bytes let t_blake2b = bytes --> bytes let t_hash_key = key --> key_hash let t_check_signature = key --> signature --> bytes --> bool let t_sender = address let t_source = address let t_unit = unit let t_amount = tez let t_address = address let t_now = timestamp let t_transaction = forall "a" @@ fun a -> a --> tez --> contract a --> operation let t_get_contract = forall "a" @@ fun a -> contract a let t_abs = int --> nat let t_cons = forall "a" @@ fun a -> a --> list a --> list a let t_assertion = bool --> unit let t_times = forall3_tc "a" "b" "c" @@ fun a b c -> [tc_timargs a b c] => a --> b --> c (* TYPECLASS *) let t_div = forall3_tc "a" "b" "c" @@ fun a b c -> [tc_divargs a b c] => a --> b --> c (* TYPECLASS *) let t_mod = forall3_tc "a" "b" "c" @@ fun a b c -> [tc_modargs a b c] => a --> b --> c (* TYPECLASS *) let t_add = forall3_tc "a" "b" "c" @@ fun a b c -> [tc_addargs a b c] => a --> b --> c (* TYPECLASS *) let t_set_mem = forall "a" @@ fun a -> a --> set a --> bool let t_set_add = forall "a" @@ fun a -> a --> set a --> set a let t_set_remove = forall "a" @@ fun a -> a --> set a --> set a let t_not = bool --> bool end let none = typer_0 "NONE" @@ fun tv_opt -> match tv_opt with | None -> simple_fail "untyped NONE" | Some t -> ok t let set_empty = typer_0 "SET_EMPTY" @@ fun tv_opt -> match tv_opt with | None -> simple_fail "untyped SET_EMPTY" | Some t -> ok t let sub = typer_2 "SUB" @@ fun a b -> if (eq_2 (a , b) (t_int ())) then ok @@ t_int () else if (eq_2 (a , b) (t_nat ())) then ok @@ t_int () else if (eq_2 (a , b) (t_timestamp ())) then ok @@ t_int () else if (eq_1 a (t_timestamp ()) && eq_1 b (t_int ())) then ok @@ t_timestamp () else if (eq_2 (a , b) (t_mutez ())) then ok @@ t_mutez () else fail (simple_error "Typing substraction, bad parameters.") let some = typer_1 "SOME" @@ fun a -> ok @@ t_option a () let list_cons : typer = typer_2 "CONS" @@ fun hd tl -> let%bind tl' = get_t_list tl in let%bind () = assert_type_value_eq (hd , tl') in ok tl let map_remove : typer = typer_2 "MAP_REMOVE" @@ fun k m -> let%bind (src , _) = bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src , k) in ok m let map_add : typer = typer_3 "MAP_ADD" @@ fun k v m -> let%bind (src, dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src, k) in let%bind () = assert_type_value_eq (dst, v) in ok m let map_update : typer = typer_3 "MAP_UPDATE" @@ fun k v m -> let%bind (src, dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src, k) in let%bind v' = get_t_option v in let%bind () = assert_type_value_eq (dst, v') in ok m let map_mem : typer = typer_2 "MAP_MEM" @@ fun k m -> let%bind (src, _dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src, k) in ok @@ t_bool () let map_find : typer = typer_2 "MAP_FIND" @@ fun k m -> let%bind (src, dst) = trace_strong (simple_error "MAP_FIND: not map or bigmap") @@ bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src, k) in ok @@ dst let map_find_opt : typer = typer_2 "MAP_FIND_OPT" @@ fun k m -> let%bind (src, dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind () = assert_type_value_eq (src, k) in ok @@ t_option dst () let map_iter : typer = typer_2 "MAP_ITER" @@ fun m f -> let%bind (k, v) = get_t_map m in let%bind (arg , res) = get_t_function f in let%bind () = assert_eq_1 arg (t_pair k v ()) in let%bind () = assert_eq_1 res (t_unit ()) in ok @@ t_unit () let map_map : typer = typer_2 "MAP_MAP" @@ fun m f -> let%bind (k, v) = get_t_map m in let%bind (arg , res) = get_t_function f in let%bind () = assert_eq_1 arg (t_pair k v ()) in ok @@ t_map k res () let size = typer_1 "SIZE" @@ fun t -> let%bind () = Assert.assert_true @@ (is_t_map t || is_t_list t || is_t_string t || is_t_bytes t || is_t_set t ) in ok @@ t_nat () let slice = typer_3 "SLICE" @@ fun i j s -> let%bind () = assert_eq_1 i (t_nat ()) in let%bind () = assert_eq_1 j (t_nat ()) in if eq_1 s (t_string ()) then ok @@ t_string () else if eq_1 s (t_bytes ()) then ok @@ t_bytes () else simple_fail "bad slice" let failwith_ = typer_1_opt "FAILWITH" @@ fun t opt -> let%bind () = Assert.assert_true @@ (is_t_string t) in let default = t_unit () in ok @@ Simple_utils.Option.unopt ~default opt let map_get_force = typer_2 "MAP_GET_FORCE" @@ fun i m -> let%bind (src, dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind _ = assert_type_value_eq (src, i) in ok dst let map_get = typer_2 "MAP_GET" @@ fun i m -> let%bind (src, dst) = bind_map_or (get_t_map , get_t_big_map) m in let%bind _ = assert_type_value_eq (src, i) in ok @@ t_option dst () let int : typer = typer_1 "INT" @@ fun t -> let%bind () = assert_t_nat t in ok @@ t_int () let bytes_pack : typer = typer_1 "PACK" @@ fun _t -> ok @@ t_bytes () let bytes_unpack = typer_1_opt "UNPACK" @@ fun input output_opt -> let%bind () = assert_t_bytes input in trace_option (simple_error "untyped UNPACK") @@ output_opt let hash256 = typer_1 "SHA256" @@ fun t -> let%bind () = assert_t_bytes t in ok @@ t_bytes () let hash512 = typer_1 "SHA512" @@ fun t -> let%bind () = assert_t_bytes t in ok @@ t_bytes () let blake2b = typer_1 "BLAKE2b" @@ fun t -> let%bind () = assert_t_bytes t in ok @@ t_bytes () let hash_key = typer_1 "HASH_KEY" @@ fun t -> let%bind () = assert_t_key t in ok @@ t_key_hash () let check_signature = typer_3 "CHECK_SIGNATURE" @@ fun k s b -> let%bind () = assert_t_key k in let%bind () = assert_t_signature s in let%bind () = assert_t_bytes b in ok @@ t_bool () let sender = constant "SENDER" @@ t_address () let source = constant "SOURCE" @@ t_address () let unit = constant "UNIT" @@ t_unit () let amount = constant "AMOUNT" @@ t_mutez () let balance = constant "BALANCE" @@ t_mutez () let address = constant "ADDRESS" @@ t_address () let now = constant "NOW" @@ t_timestamp () let transaction = typer_3 "CALL" @@ fun param amount contract -> let%bind () = assert_t_mutez amount in let%bind contract_param = get_t_contract contract in let%bind () = assert_type_value_eq (param , contract_param) in ok @@ t_operation () let originate = typer_6 "ORIGINATE" @@ fun manager delegate_opt spendable delegatable init_balance code -> let%bind () = assert_eq_1 manager (t_key_hash ()) in let%bind () = assert_eq_1 delegate_opt (t_option (t_key_hash ()) ()) in let%bind () = assert_eq_1 spendable (t_bool ()) in let%bind () = assert_eq_1 delegatable (t_bool ()) in let%bind () = assert_t_mutez init_balance in let%bind (arg , res) = get_t_function code in let%bind (_param , storage) = get_t_pair arg in let%bind (storage' , op_lst) = get_t_pair res in let%bind () = assert_eq_1 storage storage' in let%bind () = assert_eq_1 op_lst (t_list (t_operation ()) ()) in ok @@ (t_pair (t_operation ()) (t_address ()) ()) let get_contract = typer_1_opt "CONTRACT" @@ fun addr_tv tv_opt -> if not (type_value_eq (addr_tv, t_address ())) then fail @@ simple_error (Format.asprintf "get_contract expects an address, got %a" PP.type_value addr_tv) else let%bind tv = trace_option (simple_error "get_contract needs a type annotation") tv_opt in let%bind tv' = trace_strong (simple_error "get_contract has a not-contract annotation") @@ get_t_contract tv in ok @@ t_contract tv' () let get_entrypoint = typer_2_opt "CONTRACT_ENTRYPOINT" @@ fun entry_tv addr_tv tv_opt -> if not (type_value_eq (entry_tv, t_string ())) then fail @@ simple_error (Format.asprintf "get_entrypoint expects a string entrypoint label for first argument, got %a" PP.type_value entry_tv) else if not (type_value_eq (addr_tv, t_address ())) then fail @@ simple_error (Format.asprintf "get_entrypoint expects an address for second argument, got %a" PP.type_value addr_tv) else let%bind tv = trace_option (simple_error "get_entrypoint needs a type annotation") tv_opt in let%bind tv' = trace_strong (simple_error "get_entrypoint has a not-contract annotation") @@ get_t_contract tv in ok @@ t_contract tv' () let set_delegate = typer_1 "SET_DELEGATE" @@ fun delegate_opt -> let%bind () = assert_eq_1 delegate_opt (t_option (t_key_hash ()) ()) in ok @@ t_operation () let abs = typer_1 "ABS" @@ fun t -> let%bind () = assert_t_int t in ok @@ t_nat () let neg = typer_1 "NEG" @@ fun t -> let%bind () = Assert.assert_true (eq_1 t (t_nat ()) || eq_1 t (t_int ())) in ok @@ t_int () let assertion = typer_1 "ASSERT" @@ fun a -> if eq_1 a (t_bool ()) then ok @@ t_unit () else simple_fail "Asserting a non-bool" let times = typer_2 "TIMES" @@ fun a b -> if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else if eq_2 (a , b) (t_int ()) then ok @@ t_int () else if (eq_1 a (t_nat ()) && eq_1 b (t_mutez ())) || (eq_1 b (t_nat ()) && eq_1 a (t_mutez ())) then ok @@ t_mutez () else simple_fail "Multiplying with wrong types" let div = typer_2 "DIV" @@ fun a b -> if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else if eq_2 (a , b) (t_int ()) then ok @@ t_int () else if eq_1 a (t_mutez ()) && eq_1 b (t_nat ()) then ok @@ t_mutez () else if eq_1 a (t_mutez ()) && eq_1 b (t_mutez ()) then ok @@ t_nat () else simple_fail "Dividing with wrong types" let mod_ = typer_2 "MOD" @@ fun a b -> if (eq_1 a (t_nat ()) || eq_1 a (t_int ())) && (eq_1 b (t_nat ()) || eq_1 b (t_int ())) then ok @@ t_nat () else if eq_1 a (t_mutez ()) && eq_1 b (t_mutez ()) then ok @@ t_mutez () else simple_fail "Computing modulo with wrong types" let add = typer_2 "ADD" @@ fun a b -> if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else if eq_2 (a , b) (t_int ()) then ok @@ t_int () else if eq_2 (a , b) (t_mutez ()) then ok @@ t_mutez () else if (eq_1 a (t_nat ()) && eq_1 b (t_int ())) || (eq_1 b (t_nat ()) && eq_1 a (t_int ())) then ok @@ t_int () else if (eq_1 a (t_timestamp ()) && eq_1 b (t_int ())) || (eq_1 b (t_timestamp ()) && eq_1 a (t_int ())) then ok @@ t_timestamp () else simple_fail "Adding with wrong types. Expected nat, int or tez." let set_mem = typer_2 "SET_MEM" @@ fun elt set -> let%bind key = get_t_set set in if eq_1 elt key then ok @@ t_bool () else simple_fail "Set_mem: elt and set don't match" let set_add = typer_2 "SET_ADD" @@ fun elt set -> let%bind key = get_t_set set in if eq_1 elt key then ok set else simple_fail "Set_add: elt and set don't match" let set_remove = typer_2 "SET_REMOVE" @@ fun elt set -> let%bind key = get_t_set set in if eq_1 elt key then ok set else simple_fail "Set_remove: elt and set don't match" let set_iter = typer_2 "SET_ITER" @@ fun set body -> let%bind (arg , res) = get_t_function body in let%bind () = Assert.assert_true (eq_1 res (t_unit ())) in let%bind key = get_t_set set in if eq_1 key arg then ok (t_unit ()) else simple_fail "bad set iter" let list_iter = typer_2 "LIST_ITER" @@ fun lst body -> let%bind (arg , res) = get_t_function body in let%bind () = Assert.assert_true (eq_1 res (t_unit ())) in let%bind key = get_t_list lst in if eq_1 key arg then ok (t_unit ()) else simple_fail "bad list iter" let list_map = typer_2 "LIST_MAP" @@ fun lst body -> let%bind (arg , res) = get_t_function body in let%bind key = get_t_list lst in if eq_1 key arg then ok (t_list res ()) else simple_fail "bad list map" let list_fold = typer_3 "LIST_FOLD" @@ fun lst init body -> let%bind (arg , res) = get_t_function body in let%bind (prec , cur) = get_t_pair arg in let%bind key = get_t_list lst in let msg = Format.asprintf "%a vs %a" Ast_typed.PP.type_value key Ast_typed.PP.type_value arg in trace (simple_error ("bad list fold:" ^ msg)) @@ let%bind () = assert_eq_1 ~msg:"key cur" key cur in let%bind () = assert_eq_1 ~msg:"prec res" prec res in let%bind () = assert_eq_1 ~msg:"res init" res init in ok res let set_fold = typer_3 "SET_FOLD" @@ fun lst init body -> let%bind (arg , res) = get_t_function body in let%bind (prec , cur) = get_t_pair arg in let%bind key = get_t_set lst in let msg = Format.asprintf "%a vs %a" Ast_typed.PP.type_value key Ast_typed.PP.type_value arg in trace (simple_error ("bad set fold:" ^ msg)) @@ let%bind () = assert_eq_1 ~msg:"key cur" key cur in let%bind () = assert_eq_1 ~msg:"prec res" prec res in let%bind () = assert_eq_1 ~msg:"res init" res init in ok res let map_fold = typer_3 "MAP_FOLD" @@ fun map init body -> let%bind (arg , res) = get_t_function body in let%bind (prec , cur) = get_t_pair arg in let%bind (key , value) = get_t_map map in let msg = Format.asprintf "%a vs %a" Ast_typed.PP.type_value key Ast_typed.PP.type_value arg in trace (simple_error ("bad list fold:" ^ msg)) @@ let%bind () = assert_eq_1 ~msg:"key cur" (t_pair key value ()) cur in let%bind () = assert_eq_1 ~msg:"prec res" prec res in let%bind () = assert_eq_1 ~msg:"res init" res init in ok res (** FOLD_WHILE is a fold operation that takes an initial value of a certain type and then iterates on it until a condition is reached. The auxillary function that does the fold returns either boolean true or boolean false to indicate whether the fold should continue or not. Necessarily then the initial value must match the input parameter of the auxillary function, and the auxillary should return type (bool * input) *) let fold_while = typer_2 "FOLD_WHILE" @@ fun init body -> let%bind (arg, result) = get_t_function body in let%bind () = assert_eq_1 arg init in let%bind () = assert_eq_1 (t_pair (t_bool ()) init ()) result in ok init (* Continue and Stop are just syntactic sugar for building a pair (bool * a') *) let continue = typer_1 "CONTINUE" @@ fun arg -> ok @@ t_pair (t_bool ()) arg () let stop = typer_1 "STOP" @@ fun arg -> ok (t_pair (t_bool ()) arg ()) let not_ = typer_1 "NOT" @@ fun elt -> if eq_1 elt (t_bool ()) then ok @@ t_bool () else if eq_1 elt (t_nat ()) || eq_1 elt (t_int ()) then ok @@ t_int () else simple_fail "bad parameter to not" let or_ = typer_2 "OR" @@ fun a b -> if eq_2 (a , b) (t_bool ()) then ok @@ t_bool () else if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else simple_fail "bad or" let xor = typer_2 "XOR" @@ fun a b -> if eq_2 (a , b) (t_bool ()) then ok @@ t_bool () else if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else simple_fail "bad xor" let and_ = typer_2 "AND" @@ fun a b -> if eq_2 (a , b) (t_bool ()) then ok @@ t_bool () else if eq_2 (a , b) (t_nat ()) || (eq_1 b (t_nat ()) && eq_1 a (t_int ())) then ok @@ t_nat () else simple_fail "bad end" let lsl_ = typer_2 "LSL" @@ fun a b -> if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else simple_fail "bad lsl" let lsr_ = typer_2 "LSR" @@ fun a b -> if eq_2 (a , b) (t_nat ()) then ok @@ t_nat () else simple_fail "bad lsr" let concat = typer_2 "CONCAT" @@ fun a b -> if eq_2 (a , b) (t_string ()) then ok @@ t_string () else if eq_2 (a , b) (t_bytes ()) then ok @@ t_bytes () else simple_fail "bad concat" let cons = typer_2 "CONS" @@ fun hd tl -> let%bind elt = get_t_list tl in let%bind () = assert_eq_1 hd elt in ok tl let constant_typers = Map.String.of_list [ add ; times ; div ; mod_ ; sub ; none ; some ; concat ; slice ; comparator "EQ" ; comparator "NEQ" ; comparator "LT" ; comparator "GT" ; comparator "LE" ; comparator "GE" ; or_ ; and_ ; xor ; not_ ; map_remove ; map_add ; map_update ; map_mem ; map_find ; map_find_opt ; map_map ; map_fold ; fold_while ; continue ; stop ; map_iter ; map_get_force ; map_get ; set_empty ; set_mem ; set_add ; set_remove ; set_iter ; set_fold ; list_iter ; list_map ; list_fold ; int ; size ; failwith_ ; bytes_pack ; bytes_unpack ; hash256 ; hash512 ; blake2b ; hash_key ; check_signature ; sender ; source ; unit ; balance ; amount ; transaction ; get_contract ; get_entrypoint ; neg ; abs ; cons ; now ; slice ; address ; assertion ; list_cons ; ] end module Compiler = struct (* Most constants pass through the Transpiler unchanged. So they need to be compiled down to Michelson. This is the last step. When compiling the constant, we need to provide its arity (through the type predicate, defined in `Helpers.Compiler`, and its michelson code. In the case of an n-ary constant, we assume that the stack has the form: `x1 :: x2 :: x3 ... :: xn :: _`. This step requires knowledge of Michelson. Knowledge of `Tezos_utils.Michelson` will help too, so that no Michelson has to actually be written by hand. *) include Helpers.Compiler open Tezos_utils.Michelson let operators = Map.String.of_list [ ("ADD" , simple_binary @@ prim I_ADD) ; ("SUB" , simple_binary @@ prim I_SUB) ; ("TIMES" , simple_binary @@ prim I_MUL) ; ("DIV" , simple_binary @@ seq [prim I_EDIV ; i_assert_some_msg (i_push_string "DIV by 0") ; i_car]) ; ("MOD" , simple_binary @@ seq [prim I_EDIV ; i_assert_some_msg (i_push_string "MOD by 0") ; i_cdr]) ; ("NEG" , simple_unary @@ prim I_NEG) ; ("OR" , simple_binary @@ prim I_OR) ; ("AND" , simple_binary @@ prim I_AND) ; ("XOR" , simple_binary @@ prim I_XOR) ; ("NOT" , simple_unary @@ prim I_NOT) ; ("PAIR" , simple_binary @@ prim I_PAIR) ; ("CAR" , simple_unary @@ prim I_CAR) ; ("CDR" , simple_unary @@ prim I_CDR) ; ("EQ" , simple_binary @@ seq [prim I_COMPARE ; prim I_EQ]) ; ("NEQ" , simple_binary @@ seq [prim I_COMPARE ; prim I_NEQ]) ; ("LT" , simple_binary @@ seq [prim I_COMPARE ; prim I_LT]) ; ("LE" , simple_binary @@ seq [prim I_COMPARE ; prim I_LE]) ; ("GT" , simple_binary @@ seq [prim I_COMPARE ; prim I_GT]) ; ("GE" , simple_binary @@ seq [prim I_COMPARE ; prim I_GE]) ; ("UPDATE" , simple_ternary @@ prim I_UPDATE) ; ("SOME" , simple_unary @@ prim I_SOME) ; ("MAP_GET_FORCE" , simple_binary @@ seq [prim I_GET ; i_assert_some_msg (i_push_string "GET_FORCE")]) ; ("MAP_FIND" , simple_binary @@ seq [prim I_GET ; i_assert_some_msg (i_push_string "MAP FIND")]) ; ("MAP_GET" , simple_binary @@ prim I_GET) ; ("MAP_FIND_OPT" , simple_binary @@ prim I_GET) ; ("MAP_ADD" , simple_ternary @@ seq [dip (i_some) ; prim I_UPDATE]) ; ("MAP_UPDATE" , simple_ternary @@ prim I_UPDATE) ; ("FOLD_WHILE" , simple_binary @@ seq [(i_push (prim T_bool) (prim D_True)) ; prim ~children:[seq [dip i_dup; i_exec; i_unpair]] I_LOOP ; i_swap ; i_drop]) ; ("CONTINUE" , simple_unary @@ seq [(i_push (prim T_bool) (prim D_True)) ; i_pair]) ; ("STOP" , simple_unary @@ seq [(i_push (prim T_bool) (prim D_False)) ; i_pair]) ; ("SIZE" , simple_unary @@ prim I_SIZE) ; ("FAILWITH" , simple_unary @@ prim I_FAILWITH) ; ("ASSERT_INFERRED" , simple_binary @@ i_if (seq [i_failwith]) (seq [i_drop ; i_push_unit])) ; ("ASSERT" , simple_unary @@ i_if (seq [i_push_unit]) (seq [i_push_unit ; i_failwith])) ; ("INT" , simple_unary @@ prim I_INT) ; ("ABS" , simple_unary @@ prim I_ABS) ; ("CONS" , simple_binary @@ prim I_CONS) ; ("UNIT" , simple_constant @@ prim I_UNIT) ; ("BALANCE" , simple_constant @@ prim I_BALANCE) ; ("AMOUNT" , simple_constant @@ prim I_AMOUNT) ; ("ADDRESS" , simple_constant @@ prim I_ADDRESS) ; ("NOW" , simple_constant @@ prim I_NOW) ; ("CALL" , simple_ternary @@ prim I_TRANSFER_TOKENS) ; ("SOURCE" , simple_constant @@ prim I_SOURCE) ; ("SENDER" , simple_constant @@ prim I_SENDER) ; ("SET_MEM" , simple_binary @@ prim I_MEM) ; ("SET_ADD" , simple_binary @@ seq [dip (i_push (prim T_bool) (prim D_True)) ; prim I_UPDATE]) ; ("SET_REMOVE" , simple_binary @@ seq [dip (i_push (prim T_bool) (prim D_False)) ; prim I_UPDATE]) ; ("SLICE" , simple_ternary @@ seq [prim I_SLICE ; i_assert_some_msg (i_push_string "SLICE")]) ; ("SHA256" , simple_unary @@ prim I_SHA256) ; ("SHA512" , simple_unary @@ prim I_SHA512) ; ("BLAKE2B" , simple_unary @@ prim I_BLAKE2B) ; ("CHECK_SIGNATURE" , simple_ternary @@ prim I_CHECK_SIGNATURE) ; ("HASH_KEY" , simple_unary @@ prim I_HASH_KEY) ; ("PACK" , simple_unary @@ prim I_PACK) ; ("CONCAT" , simple_binary @@ prim I_CONCAT) ; ("CONS" , simple_binary @@ prim I_CONS) ; ] (* Some complex operators will need to be added in compiler/compiler_program. All operators whose compilations involve a type are found there. *) end