--- id: math-numbers-tez title: Math, Numbers & Tez --- LIGO offers three built-in numerical types: `int`, `nat` and `tez`. ## Addition Addition in LIGO is accomplished by means of the `+` infix operator. Some type constraints apply, for example you cannot add a value of type `tez` to a value of type `nat`. In the following example you can find a series of arithmetic operations, including various numerical types. However, some bits remain in comments as they would otherwise not compile, for example, adding a value of type `int` to a value of type `tez` is invalid. Note that adding an integer to a natural number produces an integer. ```pascaligo group=a // int + int yields int const a : int = 5 + 10 // nat + int yields int const b : int = 5n + 10 // tez + tez yields tez const c : tez = 5mutez + 10mutez //tez + int or tez + nat is invalid // const d : tez = 5mutez + 10n // two nats yield a nat const e : nat = 5n + 10n // nat + int yields an int: invalid // const f : nat = 5n + 10; const g : int = 1_000_000 ``` > Pro tip: you can use underscores for readability when defining large > numbers: > >```pascaligo > const sum : tez = 100_000mutez >``` ```cameligo group=a // int + int yields int let a : int = 5 + 10 // nat + int yields int let b : int = 5n + 10 // tez + tez yields tez let c : tez = 5mutez + 10mutez // tez + int or tez + nat is invalid // const d : tez = 5mutez + 10n // two nats yield a nat let e : nat = 5n + 10n // nat + int yields an int: invalid // const f : nat = 5n + 10 let g : int = 1_000_000 ``` > Pro tip: you can use underscores for readability when defining large > numbers: > >```cameligo >let sum : tez = 100_000mutez >``` ```reasonligo group=a // int + int yields int let a : int = 5 + 10; // nat + int yields int let b : int = 5n + 10; // tez + tez yields tez let c : tez = 5mutez + 10mutez; // tez + int or tez + nat is invalid: // let d : tez = 5mutez + 10n; // two nats yield a nat let e : nat = 5n + 10n; // nat + int yields an int: invalid //let f : nat = 5n + 10; let g : int = 1_000_000; ``` > Pro tip: you can use underscores for readability when defining large > numbers: >```reasonligo >let sum : tex = 100_000mutez; >``` ## Subtraction Subtraction looks as follows. > ⚠️ Even when subtracting two `nats`, the result is an `int` ```pascaligo group=b const a : int = 5 - 10 // Subtraction of two nats yields an int const b : int = 5n - 2n // Therefore the following is invalid // const c : nat = 5n - 2n const d : tez = 5mutez - 1mutez ``` ```cameligo group=b let a : int = 5 - 10 // Subtraction of two nats yields an int let b : int = 5n - 2n // Therefore the following is invalid // const c : nat = 5n - 2n let d : tez = 5mutez - 1mutez ``` ```reasonligo group=b let a : int = 5 - 10; // Subtraction of two nats yields an int let b : int = 5n - 2n; // Therefore the following is invalid // let c : nat = 5n - 2n; let d : tez = 5mutez - 1mutez; ``` ## Multiplication You can multiply values of the same type, such as: ```pascaligo group=c const a : int = 5 * 5 const b : nat = 5n * 5n // You can also multiply `nat` and `tez` in any order const c : tez = 5n * 5mutez; ``` ```cameligo group=c let a : int = 5 * 5 let b : nat = 5n * 5n // You can also multiply `nat` and `tez` in any order let c : tez = 5n * 5mutez ``` ```reasonligo group=c let a : int = 5 * 5; let b : nat = 5n * 5n; // You can also multiply `nat` and `tez` in any order let c : tez = 5n * 5mutez; ``` ## Division In LIGO you can divide `int`, `nat`, and `tez`. Here is how: > ⚠️ Division of two `tez` values results into a `nat` ```pascaligo group=d const a : int = 10 / 3 const b : nat = 10n / 3n const c : nat = 10mutez / 3mutez ``` ```cameligo group=d let a : int = 10 / 3 let b : nat = 10n / 3n let c : nat = 10mutez / 3mutez ``` ```reasonligo group=d let a : int = 10 / 3; let b : nat = 10n / 3n; let c : nat = 10mutez / 3mutez; ``` ## From `int` to `nat` and back You can *cast* an `int` to a `nat` and vice versa. Here is how: ```pascaligo group=e const a : int = int (1n) const b : nat = abs (1) ``` ```cameligo group=e let a : int = int (1n) let b : nat = abs (1) ``` ```reasonligo group=e let a : int = int (1n); let b : nat = abs (1); ``` ## Check if a value is a `nat` You can check if a value is a `nat` by using a syntax specific built-in function, which accepts an `int` and returns an optional `nat`: if `Some(nat)` then the provided integer was indeed a natural number, and not otherwise. ```pascaligo group=e const is_a_nat : option (nat) = is_nat (1) ``` ```cameligo group=e let is_a_nat : nat option = Michelson.is_nat (1) ``` ```reasonligo group=e let is_a_nat : option (nat) = Michelson.is_nat (1); ```