(**************************************************************************) (* *) (* Copyright (c) 2014 - 2017. *) (* Dynamic Ledger Solutions, Inc. *) (* *) (* All rights reserved. No warranty, explicit or implicit, provided. *) (* *) (**************************************************************************) let () = let expected_primitive = "blake2b" and primitive = Sodium.Generichash.primitive in if primitive <> expected_primitive then begin Printf.eprintf "FATAL ERROR: \ invalid value for Sodium.Generichash.primitive: %S (expected %S)@." primitive expected_primitive ; exit 1 end (*-- Type specific Hash builder ---------------------------------------------*) module Make_minimal (K : S.Name) = struct type t = Sodium.Generichash.hash include K let size = match K.size with | None -> 32 | Some x -> x let of_string s = if String.length s <> size then None else Some (Sodium.Generichash.Bytes.to_hash (Bytes.of_string s)) let of_string_exn s = match of_string s with | None -> let msg = Printf.sprintf "%s.of_string: wrong string size (%d)" K.name (String.length s) in raise (Invalid_argument msg) | Some h -> h let to_string s = Bytes.to_string (Sodium.Generichash.Bytes.of_hash s) let of_hex s = of_string (Hex_encode.hex_decode s) let of_hex_exn s = of_string_exn (Hex_encode.hex_decode s) let to_hex s = Hex_encode.hex_encode (to_string s) let compare = Sodium.Generichash.compare let equal x y = compare x y = 0 let of_bytes b = if MBytes.length b <> size then None else Some (Sodium.Generichash.Bigbytes.to_hash b) let of_bytes_exn b = match of_bytes b with | None -> let msg = Printf.sprintf "%s.of_bytes: wrong string size (%d)" K.name (MBytes.length b) in raise (Invalid_argument msg) | Some h -> h let to_bytes = Sodium.Generichash.Bigbytes.of_hash let read src off = of_bytes_exn @@ MBytes.sub src off size let write dst off h = MBytes.blit (to_bytes h) 0 dst off size let hash_bytes l = let open Sodium.Generichash in let state = init ~size () in List.iter (Bigbytes.update state) l ; final state let hash_string l = let open Sodium.Generichash in let state = init ~size () in List.iter (fun s -> Bytes.update state (BytesLabels.unsafe_of_string s)) l ; final state let path_length = 6 let to_path key l = let key = to_hex key in String.sub key 0 2 :: String.sub key 2 2 :: String.sub key 4 2 :: String.sub key 6 2 :: String.sub key 8 2 :: String.sub key 10 (size * 2 - 10) :: l let of_path path = let path = String.concat "" path in of_hex path let of_path_exn path = let path = String.concat "" path in of_hex_exn path let prefix_path p = let p = Hex_encode.hex_encode p in let len = String.length p in let p1 = if len >= 2 then String.sub p 0 2 else "" and p2 = if len >= 4 then String.sub p 2 2 else "" and p3 = if len >= 6 then String.sub p 4 2 else "" and p4 = if len >= 8 then String.sub p 6 2 else "" and p5 = if len >= 10 then String.sub p 8 2 else "" and p6 = if len > 10 then String.sub p 10 (len - 10) else "" in [ p1 ; p2 ; p3 ; p4 ; p5 ; p6 ] module Table = struct include Hashtbl.Make(struct type nonrec t = t let hash s = Int64.to_int (EndianString.BigEndian.get_int64 (Bytes.unsafe_to_string (Sodium.Generichash.Bytes.of_hash s)) 0) let equal = equal end) end end module Make (R : sig val register_encoding: prefix: string -> length:int -> to_raw: ('a -> string) -> of_raw: (string -> 'a option) -> wrap: ('a -> Base58.data) -> 'a Base58.encoding end) (K : S.PrefixedName) = struct include Make_minimal(K) (* Serializers *) type Base58.data += Hash of t let b58check_encoding = R.register_encoding ~prefix: K.b58check_prefix ~length:size ~wrap: (fun s -> Hash s) ~of_raw:(fun h -> of_string h) ~to_raw:to_string let of_b58check_opt s = Base58.simple_decode b58check_encoding s let of_b58check_exn s = match Base58.simple_decode b58check_encoding s with | Some x -> x | None -> Format.kasprintf Pervasives.failwith "Unexpected hash (%s)" K.name let of_b58check s = match Base58.simple_decode b58check_encoding s with | Some x -> Ok x | None -> generic_error "Unexpected hash (%s)" K.name let to_b58check s = Base58.simple_encode b58check_encoding s let to_short_b58check s = String.sub (to_b58check s) 0 (10 + 2 * String.length K.b58check_prefix) let rpc_arg = RPC_arg.make ~name:(Format.asprintf "hash.%s" K.name) ~descr:(Format.asprintf "A b58check-encoded hash (%s)" K.name) ~destruct: (fun s -> match of_b58check_opt s with | None -> Error (Format.asprintf "failed to decode b58check-encoded hash (%s): %S" K.name s) | Some v -> Ok v) ~construct:to_b58check () let encoding = let open Data_encoding in splitted ~binary: (conv to_bytes of_bytes_exn (Fixed.bytes size)) ~json: (describe ~title: (K.title ^ " (Base58Check-encoded Blake2B hash)") @@ conv to_b58check (Data_encoding.Json.wrap_error of_b58check_exn) string) let param ?(name=K.name) ?(desc=K.title) t = Cli_entries.param ~name ~desc (Cli_entries.parameter (fun _ str -> Lwt.return (of_b58check str))) t let pp ppf t = Format.pp_print_string ppf (to_b58check t) let pp_short ppf t = Format.pp_print_string ppf (to_short_b58check t) module Set = struct include Set.Make(struct type nonrec t = t let compare = compare end) exception Found of elt let random_elt s = let n = Random.int (cardinal s) in try ignore (fold (fun x i -> if i = n then raise (Found x) ; i+1) s 0 : int) ; assert false with Found x -> x let encoding = Data_encoding.conv elements (fun l -> List.fold_left (fun m x -> add x m) empty l) Data_encoding.(list encoding) end let random_set_elt = Set.random_elt module Map = struct include Map.Make(struct type nonrec t = t let compare = compare end) let encoding arg_encoding = Data_encoding.conv bindings (fun l -> List.fold_left (fun m (k,v) -> add k v m) empty l) Data_encoding.(list (tup2 encoding arg_encoding)) end let zero = match of_hex (String.make (size * 2) '0') with | Some c -> c | None -> assert false end module Generic_Merkle_tree (H : sig type t type elt val encoding : t Data_encoding.t val empty : t val leaf : elt -> t val node : t -> t -> t end) = struct let rec step a n = let m = (n+1) / 2 in for i = 0 to m - 1 do a.(i) <- H.node a.(2*i) a.(2*i+1) done ; a.(m) <- H.node a.(n) a.(n) ; if m = 1 then a.(0) else if m mod 2 = 0 then step a m else begin a.(m+1) <- a.(m) ; step a (m+1) end let empty = H.empty let compute xs = match xs with | [] -> H.empty | [x] -> H.leaf x | _ :: _ :: _ -> let last = TzList.last_exn xs in let n = List.length xs in let a = Array.make (n+1) (H.leaf last) in List.iteri (fun i x -> a.(i) <- H.leaf x) xs ; step a n type path = | Left of path * H.t | Right of H.t * path | Op let rec step_path a n p j = let m = (n+1) / 2 in let p = if j mod 2 = 0 then Left (p, a.(j+1)) else Right (a.(j-1), p) in for i = 0 to m - 1 do a.(i) <- H.node a.(2*i) a.(2*i+1) done ; a.(m) <- H.node a.(n) a.(n) ; if m = 1 then p else if m mod 2 = 0 then step_path a m p (j/2) else begin a.(m+1) <- a.(m) ; step_path a (m+1) p (j/2) end let compute_path xs i = match xs with | [] -> invalid_arg "compute_path" | [_] -> Op | _ :: _ :: _ -> let last = TzList.last_exn xs in let n = List.length xs in if i < 0 || n <= i then invalid_arg "compute_path" ; let a = Array.make (n+1) (H.leaf last) in List.iteri (fun i x -> a.(i) <- H.leaf x) xs ; step_path a n Op i let rec check_path p h = match p with | Op -> H.leaf h, 1, 0 | Left (p, r) -> let l, s, pos = check_path p h in H.node l r, s * 2, pos | Right (l, p) -> let r, s, pos = check_path p h in H.node l r, s * 2, pos + s let check_path p h = let h, _, pos = check_path p h in h, pos let path_encoding = let open Data_encoding in mu "path" (fun path_encoding -> union [ case (Tag 240) (obj2 (req "path" path_encoding) (req "right" H.encoding)) (function Left (p, r) -> Some (p, r) | _ -> None) (fun (p, r) -> Left (p, r)) ; case (Tag 15) (obj2 (req "left" H.encoding) (req "path" path_encoding)) (function Right (r, p) -> Some (r, p) | _ -> None) (fun (r, p) -> Right (r, p)) ; case (Tag 0) unit (function Op -> Some () | _ -> None) (fun () -> Op) ]) end module Make_merkle_tree (R : sig val register_encoding: prefix: string -> length:int -> to_raw: ('a -> string) -> of_raw: (string -> 'a option) -> wrap: ('a -> Base58.data) -> 'a Base58.encoding end) (K : S.PrefixedName) (Contents: sig type t val to_bytes: t -> MBytes.t end) = struct include Make (R) (K) type elt = Contents.t let empty = hash_bytes [] include Generic_Merkle_tree(struct type nonrec t = t type nonrec elt = elt let encoding = encoding let empty = empty let leaf x = hash_bytes [Contents.to_bytes x] let node x y = hash_bytes [to_bytes x; to_bytes y] end) end include Make_minimal (struct let name = "Generic_hash" let title = "" let size = None end)