(**************************************************************************) (* *) (* Copyright (c) 2014 - 2018. *) (* Dynamic Ledger Solutions, Inc. *) (* *) (* All rights reserved. No warranty, explicit or implicit, provided. *) (* *) (**************************************************************************) open Error_monad (*-- Type specific Hash builder ---------------------------------------------*) module type Name = sig val name : string val title : string val size : int option end module type PrefixedName = sig include Name val b58check_prefix : string end module Make_minimal (K : Name) = struct open Blake2 type t = Blake2b.hash include K let size = match K.size with | None -> 32 | Some x -> x let of_string_opt s = if String.length s <> size then None else Some (Blake2b.Hash (MBytes.of_string s)) let of_string s = match of_string_opt s with | None -> generic_error "%s.of_string: wrong string size (%d)" K.name (String.length s) | Some h -> Ok h let of_string_exn s = match of_string_opt s with | None -> Format.kasprintf invalid_arg "%s.of_string: wrong string size (%d)" K.name (String.length s) | Some h -> h let to_string (Blake2b.Hash h) = MBytes.to_string h let of_hex s = of_string (Hex.to_string s) let of_hex_opt s = of_string_opt (Hex.to_string s) let of_hex_exn s = of_string_exn (Hex.to_string s) let to_hex s = Hex.of_string (to_string s) let pp ppf h = let `Hex h = to_hex h in Format.pp_print_string ppf h let pp_short ppf h = let `Hex h = to_hex h in Format.pp_print_string ppf (String.sub h 0 8) let of_bytes_opt b = if MBytes.length b <> size then None else Some (Blake2b.Hash b) let of_bytes_exn b = match of_bytes_opt b with | None -> let msg = Printf.sprintf "%s.of_bytes: wrong string size (%d)" K.name (MBytes.length b) in raise (Invalid_argument msg) | Some h -> h let of_bytes s = match of_bytes_opt s with | Some x -> Ok x | None -> generic_error "Failed to deserialize a hash (%s)" K.name let to_bytes (Blake2b.Hash h) = h (* let read src off = of_bytes_exn @@ MBytes.sub src off size *) (* let write dst off h = MBytes.blit (to_bytes h) 0 dst off size *) let hash_bytes ?key l = let state = Blake2b.init ?key size in List.iter (fun b -> Blake2b.update state b) l ; Blake2b.final state let hash_string ?key l = let key = Option.map ~f:Bigstring.of_string key in let state = Blake2b.init ?key size in List.iter (fun s -> Blake2b.update state (MBytes.of_string s)) l ; Blake2b.final state let path_length = 6 let to_path key l = let `Hex key = to_hex key in String.sub key 0 2 :: String.sub key 2 2 :: String.sub key 4 2 :: String.sub key 6 2 :: String.sub key 8 2 :: String.sub key 10 (size * 2 - 10) :: l let of_path path = let path = String.concat "" path in of_hex_opt (`Hex path) let of_path_exn path = let path = String.concat "" path in of_hex_exn (`Hex path) let prefix_path p = let `Hex p = Hex.of_string p in let len = String.length p in let p1 = if len >= 2 then String.sub p 0 2 else "" and p2 = if len >= 4 then String.sub p 2 2 else "" and p3 = if len >= 6 then String.sub p 4 2 else "" and p4 = if len >= 8 then String.sub p 6 2 else "" and p5 = if len >= 10 then String.sub p 8 2 else "" and p6 = if len > 10 then String.sub p 10 (min (len - 10) (size * 2 - 10)) else "" in [ p1 ; p2 ; p3 ; p4 ; p5 ; p6 ] let zero = of_hex_exn (`Hex (String.make (size * 2) '0')) include Compare.Make(struct type nonrec t = t let compare (Blake2b.Hash h1) (Blake2b.Hash h2) = MBytes.compare h1 h2 end) end module Make (R : sig val register_encoding: prefix: string -> length:int -> to_raw: ('a -> string) -> of_raw: (string -> 'a option) -> wrap: ('a -> Base58.data) -> 'a Base58.encoding end) (K : PrefixedName) = struct include Make_minimal(K) (* Serializers *) let raw_encoding = let open Data_encoding in conv to_bytes of_bytes_exn (Fixed.bytes size) let hash = if Compare.Int.(size >= 8) then fun h -> Int64.to_int (MBytes.get_int64 (to_bytes h) 0) else if Compare.Int.(size >= 4) then fun h -> Int32.to_int (MBytes.get_int32 (to_bytes h) 0) else fun h -> let r = ref 0 in let h = to_bytes h in for i = 0 to size - 1 do r := MBytes.get_uint8 h i + 8 * !r done ; !r type Base58.data += Data of t let b58check_encoding = R.register_encoding ~prefix: K.b58check_prefix ~length: size ~wrap: (fun s -> Data s) ~of_raw: of_string_opt ~to_raw: to_string include Helpers.Make(struct type nonrec t = t let title = title let name = name let b58check_encoding = b58check_encoding let raw_encoding = raw_encoding let compare = compare let equal = equal let hash = hash end) end module Generic_Merkle_tree (H : sig type t type elt val empty : t val leaf : elt -> t val node : t -> t -> t end) = struct let rec step a n = let m = (n+1) / 2 in for i = 0 to m - 1 do a.(i) <- H.node a.(2*i) a.(2*i+1) done ; a.(m) <- H.node a.(n) a.(n) ; if m = 1 then a.(0) else if m mod 2 = 0 then step a m else begin a.(m+1) <- a.(m) ; step a (m+1) end let empty = H.empty let compute xs = match xs with | [] -> H.empty | [x] -> H.leaf x | _ :: _ :: _ -> let last = TzList.last_exn xs in let n = List.length xs in let a = Array.make (n+1) (H.leaf last) in List.iteri (fun i x -> a.(i) <- H.leaf x) xs ; step a n type path = | Left of path * H.t | Right of H.t * path | Op let rec step_path a n p j = let m = (n+1) / 2 in let p = if j mod 2 = 0 then Left (p, a.(j+1)) else Right (a.(j-1), p) in for i = 0 to m - 1 do a.(i) <- H.node a.(2*i) a.(2*i+1) done ; a.(m) <- H.node a.(n) a.(n) ; if m = 1 then p else if m mod 2 = 0 then step_path a m p (j/2) else begin a.(m+1) <- a.(m) ; step_path a (m+1) p (j/2) end let compute_path xs i = match xs with | [] -> invalid_arg "compute_path" | [_] -> Op | _ :: _ :: _ -> let last = TzList.last_exn xs in let n = List.length xs in if i < 0 || n <= i then invalid_arg "compute_path" ; let a = Array.make (n+1) (H.leaf last) in List.iteri (fun i x -> a.(i) <- H.leaf x) xs ; step_path a n Op i let rec check_path p h = match p with | Op -> H.leaf h, 1, 0 | Left (p, r) -> let l, s, pos = check_path p h in H.node l r, s * 2, pos | Right (l, p) -> let r, s, pos = check_path p h in H.node l r, s * 2, pos + s let check_path p h = let h, _, pos = check_path p h in h, pos end let rec log2 x = if x <= 1 then 0 else 1 + log2 ((x+1) / 2) module Make_merkle_tree (R : sig val register_encoding: prefix: string -> length:int -> to_raw: ('a -> string) -> of_raw: (string -> 'a option) -> wrap: ('a -> Base58.data) -> 'a Base58.encoding end) (K : PrefixedName) (Contents: sig type t val to_bytes: t -> MBytes.t end) = struct include Make (R) (K) type elt = Contents.t let elt_bytes = Contents.to_bytes let empty = hash_bytes [] include Generic_Merkle_tree(struct type nonrec t = t type nonrec elt = elt let empty = empty let leaf x = hash_bytes [Contents.to_bytes x] let node x y = hash_bytes [to_bytes x; to_bytes y] end) let path_encoding = let open Data_encoding in mu "path" (fun path_encoding -> union [ case (Tag 240) ~title:"Left" (obj2 (req "path" path_encoding) (req "right" encoding)) (function Left (p, r) -> Some (p, r) | _ -> None) (fun (p, r) -> Left (p, r)) ; case (Tag 15) ~title:"Right" (obj2 (req "left" encoding) (req "path" path_encoding)) (function Right (r, p) -> Some (r, p) | _ -> None) (fun (r, p) -> Right (r, p)) ; case (Tag 0) ~title:"Op" unit (function Op -> Some () | _ -> None) (fun () -> Op) ]) let bounded_path_encoding ?max_length () = match max_length with | None -> path_encoding | Some max_length -> let max_depth = log2 max_length in Data_encoding.check_size (max_depth * (size + 1) + 1) path_encoding end include Make_minimal (struct let name = "Generic_hash" let title = "" let size = None end) let pp ppf h = let `Hex h = to_hex h in Format.pp_print_string ppf h let pp_short ppf h = let `Hex h = to_hex h in Format.pp_print_string ppf (String.sub h 0 8)