[@@@warning "-45"] open Trace open Ast_simplified module Raw = Parser.Cameligo.AST module SMap = Map.String module Option = Simple_utils.Option (* TODO: move 1-parser/shared/Utils.ml{i} to Simple_utils/ *) open Combinators let nseq_to_list (hd, tl) = hd :: tl let npseq_to_list (hd, tl) = hd :: (List.map snd tl) let npseq_to_nelist (hd, tl) = hd, (List.map snd tl) let pseq_to_list = function | None -> [] | Some lst -> npseq_to_list lst let get_value : 'a Raw.reg -> 'a = fun x -> x.value module Errors = struct let wrong_pattern expected_name actual = let title () = "wrong pattern" in let message () = match actual with | Raw.PVar v -> v.value | Raw.PTuple _ -> "tuple" | Raw.PRecord _ -> "record" | Raw.PList _ -> "list" | Raw.PBytes _ -> "bytes" | _ -> "other" in let data = [ ("expected", fun () -> expected_name); ("location" , fun () -> Format.asprintf "%a" Location.pp_lift @@ Raw.pattern_to_region actual) ] in error ~data title message let unsuppported_let_in_function (patterns : Raw.pattern list) = let title () = "unsupported 'let ... in' function" in let message () = "defining functions via 'let ... in' is not supported yet" in let patterns_loc = List.fold_left (fun a p -> Region.cover a (Raw.pattern_to_region p)) Region.ghost patterns in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ patterns_loc) ] in error ~data title message let unknown_predefined_type name = let title () = "type constants" in let message () = Format.asprintf "unknown predefined type \"%s\"" name.Region.value in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region) ] in error ~data title message let untyped_fun_param var = let title () = "function parameter" in let message () = Format.asprintf "untyped function parameters are not supported yet" in let param_loc = var.Region.region in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc) ] in error ~data title message let unsupported_tuple_pattern p = let title () = "tuple pattern" in let message () = Format.asprintf "tuple patterns are not supported yet" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_cst_constr p = let title () = "constant constructor" in let message () = Format.asprintf "constant constructors are not supported yet" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_non_var_pattern p = let title () = "pattern is not a variable" in let message () = Format.asprintf "non-variable patterns in constructors \ are not supported yet" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let simplifying_expr t = let title () = "simplifying expression" in let message () = "" in let data = [ ("expression" , (** TODO: The labelled arguments should be flowing from the CLI. *) thunk @@ Parser.Cameligo.ParserLog.expr_to_string ~offsets:true ~mode:`Point t) ] in error ~data title message let only_constructors p = let title () = "constructors in patterns" in let message () = Format.asprintf "currently, only constructors are supported in patterns" in let pattern_loc = Raw.pattern_to_region p in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_sugared_lists region = let title () = "lists in patterns" in let message () = Format.asprintf "currently, only empty lists and constructors (::) \ are supported in patterns" in let data = [ ("location", fun () -> Format.asprintf "%a" Location.pp_lift @@ region) ] in error ~data title message let corner_case description = let title () = "corner case" in let message () = description in error title message end open Errors open Operators.Simplify.Cameligo let r_split = Location.r_split let rec pattern_to_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_var p.value.inside | Raw.PVar v -> ok v | Raw.PWild r -> ok @@ ({ region = r ; value = "_" } : Raw.variable) | _ -> fail @@ wrong_pattern "single var" p let rec pattern_to_typed_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_typed_var p.value.inside | Raw.PTyped tp -> ( let tp = tp.value in let%bind v = pattern_to_var tp.pattern in ok (v , Some tp.type_expr) ) | Raw.PVar v -> ok (v , None) | Raw.PWild r -> ok (({ region = r ; value = "_" } : Raw.variable) , None) | _ -> fail @@ wrong_pattern "single typed variable" p let rec expr_to_typed_expr : Raw.expr -> _ = function EPar e -> expr_to_typed_expr e.value.inside | EAnnot {value={inside=e,_,t; _}; _} -> ok (e, Some t) | e -> ok (e , None) let rec tuple_pattern_to_typed_vars : Raw.pattern -> _ = fun pattern -> match pattern with | Raw.PPar pp -> tuple_pattern_to_typed_vars pp.value.inside | Raw.PTuple pt -> bind_map_list pattern_to_typed_var (npseq_to_list pt.value) | Raw.PVar _ -> bind_list [pattern_to_typed_var pattern] | other -> (fail @@ wrong_pattern "parenthetical, tuple, or variable" other) let rec simpl_type_expression : Raw.type_expr -> type_expression result = fun te -> trace (simple_info "simplifying this type expression...") @@ match te with TPar x -> simpl_type_expression x.value.inside | TVar v -> ( match type_constants v.value with | Ok (s,_) -> ok @@ make_t @@ T_constant s | Error _ -> ok @@ make_t @@ T_variable (Var.of_name v.value) ) | TFun x -> ( let%bind (a , b) = let (a , _ , b) = x.value in let%bind a = simpl_type_expression a in let%bind b = simpl_type_expression b in ok (a , b) in ok @@ make_t @@ T_arrow (a , b) ) | TApp x -> ( let (name, tuple) = x.value in let lst = npseq_to_list tuple.value.inside in let%bind lst' = bind_map_list simpl_type_expression lst in let%bind cst = trace (unknown_predefined_type name) @@ type_operators name.value in t_operator cst lst' ) | TProd p -> ( let%bind tpl = simpl_list_type_expression @@ npseq_to_list p.value in ok tpl ) | TRecord r -> let aux = fun (x, y) -> let%bind y = simpl_type_expression y in ok (x, y) in let apply (x:Raw.field_decl Raw.reg) = (x.value.field_name.value, x.value.field_type) in let%bind lst = bind_list @@ List.map aux @@ List.map apply @@ npseq_to_list r.value.ne_elements in let m = List.fold_left (fun m (x, y) -> LMap.add (Label x) y m) LMap.empty lst in ok @@ make_t @@ T_record m | TSum s -> let aux (v:Raw.variant Raw.reg) = let args = match v.value.arg with None -> [] | Some (_, TProd product) -> npseq_to_list product.value | Some (_, t_expr) -> [t_expr] in let%bind te = simpl_list_type_expression @@ args in ok (v.value.constr.value, te) in let%bind lst = bind_list @@ List.map aux @@ npseq_to_list s.value in let m = List.fold_left (fun m (x, y) -> CMap.add (Constructor x) y m) CMap.empty lst in ok @@ make_t @@ T_sum m and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result = match lst with | [] -> ok @@ t_unit | [hd] -> simpl_type_expression hd | lst -> let%bind lst = bind_map_list simpl_type_expression lst in ok @@ make_t @@ T_tuple lst let rec simpl_expression : Raw.expr -> expr result = fun t -> let return x = ok x in let simpl_projection = fun (p:Raw.projection Region.reg) -> let (p , loc) = r_split p in let var = let name = Var.of_name p.struct_name.value in e_variable name in let path = p.field_path in let path' = let aux (s:Raw.selection) = match s with FieldName property -> Access_record property.value | Component index -> Access_tuple (Z.to_int (snd index.value)) in List.map aux @@ npseq_to_list path in return @@ e_accessor ~loc var path' in trace (simplifying_expr t) @@ match t with Raw.ELetIn e -> let Raw.{binding; body; _} = e.value in let Raw.{binders; lhs_type; let_rhs; _} = binding in begin match binders with (* let p = rhs in body *) | (p, []) -> let%bind variables = tuple_pattern_to_typed_vars p in let%bind ty_opt = bind_map_option (fun (_,te) -> simpl_type_expression te) lhs_type in let%bind rhs = simpl_expression let_rhs in let rhs_b = Var.fresh ~name: "rhs" () in let rhs',rhs_b_expr = match ty_opt with None -> rhs, e_variable rhs_b | Some ty -> (e_annotation rhs ty), e_annotation (e_variable rhs_b) ty in let%bind body = simpl_expression body in let prepare_variable (ty_var: Raw.variable * Raw.type_expr option) = let variable, ty_opt = ty_var in let var_expr = Var.of_name variable.value in let%bind ty_expr_opt = match ty_opt with | Some ty -> bind_map_option simpl_type_expression (Some ty) | None -> ok None in ok (var_expr, ty_expr_opt) in let%bind prep_vars = bind_list (List.map prepare_variable variables) in let%bind () = if (List.length prep_vars) = 0 then fail @@ corner_case "let ... in without variables passed parsing stage" else ok () in let rhs_b_expr = (* We only want to evaluate the rhs first if multi-bind *) if List.length prep_vars = 1 then rhs' else rhs_b_expr in let rec chain_let_in variables body : expression = match variables with | hd :: [] -> if (List.length prep_vars = 1) then e_let_in hd rhs_b_expr body else e_let_in hd (e_accessor rhs_b_expr [Access_tuple ((List.length prep_vars) - 1)]) body | hd :: tl -> e_let_in hd (e_accessor rhs_b_expr [Access_tuple ((List.length prep_vars) - (List.length tl) - 1)]) (chain_let_in tl body) | [] -> body (* Precluded by corner case assertion above *) in if List.length prep_vars = 1 then ok (chain_let_in prep_vars body) (* Bind the right hand side so we only evaluate it once *) else ok (e_let_in (rhs_b, ty_opt) rhs' (chain_let_in prep_vars body)) (* let f p1 ps... = rhs in body *) | (f, p1 :: ps) -> fail @@ unsuppported_let_in_function (f :: p1 :: ps) end | Raw.EAnnot a -> let Raw.{inside=expr, _, type_expr; _}, loc = r_split a in let%bind expr' = simpl_expression expr in let%bind type_expr' = simpl_type_expression type_expr in return @@ e_annotation ~loc expr' type_expr' | EVar c -> let (c',loc) = r_split c in (match constants c' with | Error _ -> return @@ e_variable ~loc (Var.of_name c.value) | Ok (s,_) -> return @@ e_constant s []) | ECall x -> ( let ((e1 , e2) , loc) = r_split x in let%bind args = bind_map_list simpl_expression (nseq_to_list e2) in let rec chain_application (f: expression) (args: expression list) = match args with | hd :: tl -> chain_application (e_application ~loc f hd) tl | [] -> f in match e1 with | EVar f -> ( let (f , f_loc) = r_split f in match constants f with | Error _ -> return @@ chain_application (e_variable ~loc:f_loc (Var.of_name f)) args | Ok (s, _) -> return @@ e_constant ~loc s args ) | e1 -> let%bind e1' = simpl_expression e1 in return @@ chain_application e1' args ) | EPar x -> simpl_expression x.value.inside | EUnit reg -> let (_ , loc) = r_split reg in return @@ e_literal ~loc Literal_unit | EBytes x -> let (x , loc) = r_split x in return @@ e_literal ~loc (Literal_bytes (Bytes.of_string @@ fst x)) | ETuple tpl -> simpl_tuple_expression @@ (npseq_to_list tpl.value) | ERecord r -> let (r , loc) = r_split r in let%bind fields = bind_list @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ npseq_to_list r.ne_elements in let map = SMap.of_list fields in return @@ e_record ~loc map | EProj p -> simpl_projection p | EConstr (ESomeApp a) -> let (_, args), loc = r_split a in let%bind arg = simpl_expression args in return @@ e_constant ~loc C_SOME [arg] | EConstr (ENone reg) -> let loc = Location.lift reg in return @@ e_none ~loc () | EConstr (EConstrApp c) -> let (c_name, args), loc = r_split c in let c_name, _c_loc = r_split c_name in let args = match args with None -> [] | Some arg -> [arg] in let%bind arg = simpl_tuple_expression @@ args in return @@ e_constructor ~loc c_name arg | EArith (Add c) -> simpl_binop "ADD" c | EArith (Sub c) -> simpl_binop "SUB" c | EArith (Mult c) -> simpl_binop "TIMES" c | EArith (Div c) -> simpl_binop "DIV" c | EArith (Mod c) -> simpl_binop "MOD" c | EArith (Int n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_int n) ) | EArith (Nat n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_nat n) ) | EArith (Mutez n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_mutez n) ) | EArith (Neg e) -> simpl_unop "NEG" e | EString (String s) -> ( let (s , loc) = r_split s in let s' = let s = s in String.(sub s 1 ((length s) - 2)) in return @@ e_literal ~loc (Literal_string s') ) | EString (Cat c) -> let (c, loc) = r_split c in let%bind string_left = simpl_expression c.arg1 in let%bind string_right = simpl_expression c.arg2 in return @@ e_string_cat ~loc string_left string_right | ELogic l -> simpl_logic_expression l | EList l -> simpl_list_expression l | ECase c -> ( let (c , loc) = r_split c in let%bind e = simpl_expression c.expr in let%bind lst = let aux (x : Raw.expr Raw.case_clause) = let%bind expr = simpl_expression x.rhs in ok (x.pattern, expr) in bind_list @@ List.map aux @@ List.map get_value @@ npseq_to_list c.cases.value in let default_action () = let%bind cases = simpl_cases lst in return @@ e_matching ~loc e cases in (* Hack to take care of patterns introduced by `parser/cameligo/Parser.mly` in "norm_fun_expr". TODO: Still needed? *) match lst with | [ (pattern , rhs) ] -> ( match pattern with | Raw.PPar p -> ( let p' = p.value.inside in match p' with | Raw.PTyped x -> ( let x' = x.value in match x'.pattern with | Raw.PVar y -> let var_name = Var.of_name y.value in let%bind type_expr = simpl_type_expression x'.type_expr in return @@ e_let_in (var_name , Some type_expr) e rhs | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | EFun lamb -> simpl_fun lamb | ESeq s -> ( let (s , loc) = r_split s in let items : Raw.expr list = pseq_to_list s.elements in (match items with [] -> return @@ e_skip ~loc () | expr::more -> let expr' = simpl_expression expr in let apply (e1: Raw.expr) (e2: expression Trace.result) = let%bind a = simpl_expression e1 in let%bind e2' = e2 in return @@ e_sequence a e2' in List.fold_right apply more expr') ) | ECond c -> ( let (c , loc) = r_split c in let%bind expr = simpl_expression c.test in let%bind match_true = simpl_expression c.ifso in let%bind match_false = simpl_expression c.ifnot in return @@ e_matching ~loc expr (Match_bool {match_true; match_false}) ) and simpl_fun lamb' : expr result = let return x = ok x in let (lamb , loc) = r_split lamb' in let%bind params' = let params = nseq_to_list lamb.binders in let params = (* Handle case where we have tuple destructure in params *) (* So basically the transformation we're doing is: let sum (result, i: int * int) : int = result + i TO: let sum (#P: int * int) : int = let result, i = #P in result + i In this first section we replace `result, i` with `#P`. *) match lamb.binders with (* TODO: currently works only if there is one param *) | (Raw.PPar pp, []) -> let pt = pp.value.inside in (match pt with | Raw.PTyped pt -> begin match pt.value.pattern with | Raw.PVar _ -> params | Raw.PTuple _ -> [Raw.PTyped {region=Region.ghost; value= { pt.value with pattern= Raw.PVar {region=Region.ghost; value="#P"}}}] | _ -> params end | _ -> params) | _ -> params in let%bind p_params = bind_map_list pattern_to_typed_var params in let aux ((var : Raw.variable) , ty_opt) = match var.value , ty_opt with | "storage" , None -> ok (var , t_variable "storage") | _ , None -> fail @@ untyped_fun_param var | _ , Some ty -> ( let%bind ty' = simpl_type_expression ty in ok (var , ty') ) in bind_map_list aux p_params in let%bind body = if (List.length params' > 1) then ok lamb.body else let original_params = nseq_to_list lamb.binders in let%bind destruct = match original_params with | hd :: _ -> ok @@ hd | [] -> fail @@ corner_case "Somehow have no parameters in function during tuple param destructure" in match destruct with (* Handle tuple parameter destructuring *) (* In this section we create a let ... in that binds the original parameters *) | Raw.PPar pp -> (match pp.value.inside with | Raw.PTyped pt -> let vars = pt.value in (match vars.pattern with | PTuple vars -> let let_in_binding: Raw.let_binding = {binders = (PTuple vars, []) ; lhs_type=None; eq=Region.ghost; let_rhs=(Raw.EVar {region=Region.ghost; value="#P"}); } in let let_in: Raw.let_in = {kwd_let= Region.ghost; binding= let_in_binding; kwd_in= Region.ghost; body= lamb.body; } in ok (Raw.ELetIn { region=Region.ghost; value=let_in }) | Raw.PVar _ -> ok lamb.body | _ -> ok lamb.body) | _ -> ok lamb.body) | _ -> ok lamb.body in let%bind (body , body_type) = expr_to_typed_expr body in let%bind output_type = bind_map_option simpl_type_expression body_type in let%bind body = simpl_expression body in let rec layer_arguments (arguments: (Raw.variable * type_expression) list) = match arguments with | hd :: tl -> let (binder , input_type) = (Var.of_name (fst hd).value , snd hd) in e_lambda ~loc (binder) (Some input_type) output_type (layer_arguments tl) | [] -> body in return @@ layer_arguments params' and simpl_logic_expression ?te_annot (t:Raw.logic_expr) : expr result = let return x = ok @@ make_option_typed x te_annot in match t with | BoolExpr (False reg) -> ( let loc = Location.lift reg in return @@ e_literal ~loc (Literal_bool false) ) | BoolExpr (True reg) -> ( let loc = Location.lift reg in return @@ e_literal ~loc (Literal_bool true) ) | BoolExpr (Or b) -> simpl_binop "OR" b | BoolExpr (And b) -> simpl_binop "AND" b | BoolExpr (Not b) -> simpl_unop "NOT" b | CompExpr (Lt c) -> simpl_binop "LT" c | CompExpr (Gt c) -> simpl_binop "GT" c | CompExpr (Leq c) -> simpl_binop "LE" c | CompExpr (Geq c) -> simpl_binop "GE" c | CompExpr (Equal c) -> simpl_binop "EQ" c | CompExpr (Neq c) -> simpl_binop "NEQ" c and simpl_list_expression (t:Raw.list_expr) : expression result = let return x = ok @@ x in match t with ECons c -> simpl_binop "CONS" c | EListComp lst -> ( let (lst , loc) = r_split lst in let%bind lst' = bind_map_list simpl_expression @@ pseq_to_list lst.elements in return @@ e_list ~loc lst' ) and simpl_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result = let return x = ok @@ x in let (args , loc) = r_split t in let%bind a = simpl_expression args.arg1 in let%bind b = simpl_expression args.arg2 in let%bind name = constants name in return @@ e_constant ~loc name [ a ; b ] and simpl_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result = let return x = ok @@ x in let (t , loc) = r_split t in let%bind a = simpl_expression t.arg in let%bind name = constants name in return @@ e_constant ~loc name [ a ] and simpl_tuple_expression ?loc (lst:Raw.expr list) : expression result = let return x = ok @@ x in match lst with | [] -> return @@ e_literal ?loc Literal_unit | [hd] -> simpl_expression hd | lst -> let%bind lst = bind_list @@ List.map simpl_expression lst in return @@ e_tuple ?loc lst and simpl_declaration : Raw.declaration -> declaration Location.wrap list result = fun t -> let open! Raw in let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in match t with | TypeDecl x -> let {name;type_expr} : Raw.type_decl = x.value in let%bind type_expression = simpl_type_expression type_expr in ok @@ [loc x @@ Declaration_type (Var.of_name name.value , type_expression)] | Let x -> ( let binding, _ = r_split x in let binding = snd binding in let {binders; lhs_type; let_rhs} = binding in let%bind (hd, _) = let (hd, tl) = binders in ok (hd, tl) in match hd with | PTuple pt -> let process_variable (var_pair: pattern * Raw.expr) : Ast_simplified.declaration Location.wrap result = (let (par_var, rhs_expr) = var_pair in let%bind (v, v_type) = pattern_to_typed_var par_var in let%bind v_type_expression = match v_type with | Some v_type -> ok (to_option (simpl_type_expression v_type)) | None -> ok None in let%bind simpl_rhs_expr = simpl_expression rhs_expr in ok @@ loc x @@ Declaration_constant (Var.of_name v.value, v_type_expression, simpl_rhs_expr) ) in let%bind variables = ok @@ npseq_to_list pt.value in let%bind expr_bind_lst = match let_rhs with | ETuple et -> ok @@ npseq_to_list et.value | EVar v -> (* Handle variable bound to tuple *) let name = v.value in let rec gen_access_tuple ?(i: int = 0) ?(accesses: Raw.expr list = []) (name: string) : Raw.expr list = let build_access_expr : Raw.expr = EProj {region = v.region; value = { struct_name = v; selector = Region.ghost ; field_path = ( (Component {region = Region.ghost; value = name, Z.of_int i;} : Raw.selection) , []); } } in if i = (List.length variables) then accesses else let accesses = build_access_expr :: accesses in gen_access_tuple name ~i: (i + 1) ~accesses in ok (gen_access_tuple name) (* TODO: Improve this error message *) | other -> fail @@ simplifying_expr other in let%bind decls = (* TODO: Rewrite the gen_access_tuple so there's no List.rev *) bind_map_list process_variable (List.combine variables (List.rev expr_bind_lst)) in ok @@ decls | PPar {region = _ ; value = { lpar = _ ; inside = pt; rpar = _; } } -> (* Extract parenthetical multi-bind *) let wild = fst @@ fst @@ r_split x in simpl_declaration (Let { region = x.region; value = (wild, {binders = (pt, []); lhs_type = lhs_type; eq = Region.ghost ; let_rhs = let_rhs})} : Raw.declaration) | _ -> let%bind (var, args) = let%bind (hd, tl) = let hd, tl = binders in ok (hd, tl) in let%bind var = pattern_to_var hd in ok (var , tl) in match args with | [] -> let%bind lhs_type' = bind_map_option (fun (_,te) -> simpl_type_expression te) lhs_type in let%bind rhs' = simpl_expression let_rhs in ok @@ [loc x @@ (Declaration_constant (Var.of_name var.value , lhs_type' , rhs'))] | param1::others -> let fun_ = { kwd_fun = Region.ghost; binders = param1, others; lhs_type; arrow = Region.ghost; body = let_rhs} in let rhs = Raw.EFun {region=Region.ghost ; value=fun_} in let%bind rhs' = simpl_expression rhs in ok @@ [loc x @@ (Declaration_constant (Var.of_name var.value , None , rhs'))] ) and simpl_cases : type a . (Raw.pattern * a) list -> (a, unit) matching result = fun t -> let open Raw in let rec get_var (t:Raw.pattern) = match t with | PVar v -> ok v.value | PPar p -> get_var p.value.inside | _ -> fail @@ unsupported_non_var_pattern t in let rec get_tuple (t:Raw.pattern) = match t with | PTuple v -> npseq_to_list v.value | PPar p -> get_tuple p.value.inside | x -> [ x ] in let get_single (t:Raw.pattern) = let t' = get_tuple t in let%bind () = trace_strong (unsupported_tuple_pattern t) @@ Assert.assert_list_size t' 1 in ok (List.hd t') in let rec get_constr (t:Raw.pattern) = match t with PPar p -> get_constr p.value.inside | PConstr v -> let const, pat_opt = match v with PConstrApp {value; _} -> (match value with | constr, None -> constr, Some (PVar {value = "unit"; region = Region.ghost}) | _ -> value) | PSomeApp {value=region,pat; _} -> {value="Some"; region}, Some pat | PNone region -> {value="None"; region}, None in let%bind pat = trace_option (unsupported_cst_constr t) @@ pat_opt in let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (const.value, var) | _ -> fail @@ only_constructors t in let rec get_constr_opt (t:Raw.pattern) = match t with PPar p -> get_constr_opt p.value.inside | PConstr v -> let const, pat_opt = match v with PConstrApp {value; _} -> value | PSomeApp {value=region,pat; _} -> {value="Some"; region}, Some pat | PNone region -> {value="None"; region}, None in let%bind var_opt = match pat_opt with | None -> ok None | Some pat -> let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (Some var) in ok (const.value , var_opt) | _ -> fail @@ only_constructors t in let%bind patterns = let aux (x , y) = let xs = get_tuple x in trace_strong (unsupported_tuple_pattern x) @@ Assert.assert_list_size xs 1 >>? fun () -> ok (List.hd xs , y) in bind_map_list aux t in match patterns with | [(PFalse _, f) ; (PTrue _, t)] | [(PTrue _, t) ; (PFalse _, f)] -> ok @@ Match_bool {match_true = t ; match_false = f} | [(PList (PCons c), cons); (PList (PListComp sugar_nil), nil)] | [(PList (PListComp sugar_nil), nil); (PList (PCons c), cons)] -> let%bind () = trace_strong (unsupported_sugared_lists sugar_nil.region) @@ Assert.assert_list_empty @@ pseq_to_list @@ sugar_nil.value.elements in let%bind (a, b) = let a, _, b = c.value in let%bind a = get_var a in let%bind b = get_var b in ok (a, b) in ok @@ Match_list {match_cons=(Var.of_name a, Var.of_name b, cons, ()); match_nil=nil} | lst -> let error x = let title () = "Pattern" in (** TODO: The labelled arguments should be flowing from the CLI. *) let content () = Printf.sprintf "Pattern : %s" (Parser.Cameligo.ParserLog.pattern_to_string ~offsets:true ~mode:`Point x) in error title content in let as_variant () = trace (simple_info "currently, only booleans, lists, options, and constructors \ are supported in patterns") @@ let%bind constrs = let aux (x, y) = let%bind x' = trace (error x) @@ get_constr x in ok (x', y) in bind_map_list aux lst in ok @@ ez_match_variant constrs in let as_option () = let aux (x, y) = let%bind x' = trace (error x) @@ get_constr_opt x in ok (x', y) in let%bind constrs = bind_map_list aux lst in match constrs with | [ (("Some", Some some_var), some_expr); (("None" , None) , none_expr) ] | [ (("None", None), none_expr); (("Some", Some some_var), some_expr) ] -> ok @@ Match_option { match_some = (Var.of_name some_var, some_expr, ()); match_none = none_expr } | _ -> simple_fail "bad option pattern" in bind_or (as_option () , as_variant ()) let simpl_program : Raw.ast -> program result = fun t -> let%bind decls = bind_list (List.map simpl_declaration @@ nseq_to_list t.decl) in ok @@ List.concat @@ decls