(**************************************************************************) (* *) (* Copyright (c) 2014 - 2017. *) (* Dynamic Ledger Solutions, Inc. *) (* *) (* All rights reserved. No warranty, explicit or implicit, provided. *) (* *) (**************************************************************************) open Lwt.Infix open Logging.Node.Worker let inject_operation validator ?net_id bytes = let t = match Data_encoding.Binary.of_bytes Operation.encoding bytes with | None -> failwith "Can't parse the operation" | Some op -> Validator.inject_operation validator ?net_id op in let hash = Operation_hash.hash_bytes [bytes] in Lwt.return (hash, t) let inject_protocol state ?force:_ proto = let proto_bytes = Data_encoding.Binary.to_bytes Protocol.encoding proto in let hash = Protocol_hash.hash_bytes [proto_bytes] in let validation = Updater.compile hash proto >>= function | false -> failwith "Compilation failed (%a)" Protocol_hash.pp_short hash | true -> State.Protocol.store state proto >>= function | None -> failwith "Previously registred protocol (%a)" Protocol_hash.pp_short hash | Some _ -> return () in Lwt.return (hash, validation) let inject_block validator ?force ?net_id bytes operations = Validator.validate_block validator ?force ?net_id bytes operations >>=? fun (hash, block) -> return (hash, (block >>=? fun _ -> return ())) type t = { state: State.t ; distributed_db: Distributed_db.t ; validator: Validator.t ; mainnet_validator: Net_validator.t ; inject_block: ?force:bool -> ?net_id:Net_id.t -> MBytes.t -> Operation.t list list -> (Block_hash.t * unit tzresult Lwt.t) tzresult Lwt.t ; inject_operation: ?net_id:Net_id.t -> MBytes.t -> (Operation_hash.t * unit tzresult Lwt.t) Lwt.t ; inject_protocol: ?force:bool -> Protocol.t -> (Protocol_hash.t * unit tzresult Lwt.t) Lwt.t ; p2p: Distributed_db.p2p ; (* For P2P RPCs *) shutdown: unit -> unit Lwt.t ; } let init_p2p net_params = match net_params with | None -> lwt_log_notice "P2P layer is disabled" >>= fun () -> Error_monad.return (P2p.faked_network Distributed_db_metadata.cfg) | Some (config, limits) -> lwt_log_notice "bootstraping network..." >>= fun () -> P2p.create ~config ~limits Distributed_db_metadata.cfg Distributed_db_message.cfg >>=? fun p2p -> Lwt.async (fun () -> P2p.maintain p2p) ; Error_monad.return p2p type config = { genesis: State.Net.genesis ; store_root: string ; context_root: string ; patch_context: (Context.t -> Context.t Lwt.t) option ; p2p: (P2p.config * P2p.limits) option ; test_network_max_tll: int option ; bootstrap_threshold: int ; } and timeout = Net_validator.timeout = { block_header: float ; block_operations: float ; protocol: float ; new_head_request: float ; } and prevalidator_limits = Prevalidator.limits = { max_refused_operations: int ; operation_timeout: float } let may_create_net state genesis = State.Net.get state (Net_id.of_block_hash genesis.State.Net.block) >>= function | Ok net -> Lwt.return net | Error _ -> State.Net.create state genesis let create { genesis ; store_root ; context_root ; patch_context ; p2p = net_params ; test_network_max_tll = max_child_ttl ; bootstrap_threshold } timeout prevalidator_limits = init_p2p net_params >>=? fun p2p -> State.read ~store_root ~context_root ?patch_context () >>=? fun state -> let distributed_db = Distributed_db.create state p2p in let validator = Validator.create state distributed_db timeout prevalidator_limits in may_create_net state genesis >>= fun mainnet_state -> Validator.activate validator ~bootstrap_threshold ?max_child_ttl mainnet_state >>= fun mainnet_validator -> let shutdown () = P2p.shutdown p2p >>= fun () -> Validator.shutdown validator >>= fun () -> State.close state >>= fun () -> Lwt.return_unit in return { state ; distributed_db ; validator ; mainnet_validator ; inject_block = inject_block validator ; inject_operation = inject_operation validator ; inject_protocol = inject_protocol state ; p2p ; shutdown ; } let shutdown node = node.shutdown () module RPC = struct type block = Node_rpc_services.Blocks.block type block_info = Node_rpc_services.Blocks.block_info = { hash: Block_hash.t ; net_id: Net_id.t ; level: Int32.t ; proto_level: int ; (* uint8 *) predecessor: Block_hash.t ; timestamp: Time.t ; validation_passes: int ; (* uint8 *) operations_hash: Operation_list_list_hash.t ; fitness: MBytes.t list ; context: Context_hash.t ; data: MBytes.t ; operations: (Operation_hash.t * Operation.t) list list option ; protocol: Protocol_hash.t ; test_network: Test_network_status.t ; } let convert (block: State.Block.t) = let hash = State.Block.hash block in let header = State.Block.header block in State.Block.all_operations block >>= fun operations -> let operations = List.map (List.map (fun op -> (Operation.hash op, op))) operations in State.Block.context block >>= fun context -> Context.get_protocol context >>= fun protocol -> Context.get_test_network context >>= fun test_network -> Lwt.return { hash ; net_id = State.Block.net_id block ; level = header.shell.level ; proto_level = header.shell.proto_level ; predecessor = header.shell.predecessor ; timestamp = header.shell.timestamp ; validation_passes = header.shell.validation_passes ; operations_hash = header.shell.operations_hash ; fitness = header.shell.fitness ; context = header.shell.context ; data = header.proto ; operations = Some operations ; protocol ; test_network ; } let inject_block node = node.inject_block let inject_operation node = node.inject_operation let inject_protocol node = node.inject_protocol let raw_block_info node hash = State.read_block node.state hash >>= function | Some block -> convert block | None -> Lwt.fail Not_found let prevalidation_hash = Block_hash.of_b58check_exn "BLockPrevaLidationPrevaLidationPrevaLidationPrZ4mr6" let get_validator node = function | `Genesis | `Head _ | `Prevalidation -> node.mainnet_validator | `Test_head _ | `Test_prevalidation -> match Net_validator.child node.mainnet_validator with | None -> raise Not_found | Some v -> v let get_validator_per_hash node hash = State.read_block_exn node.state hash >>= fun block -> let net_id = State.Block.net_id block in if Net_id.equal (Net_validator.net_id node.mainnet_validator) net_id then Lwt.return (Some node.mainnet_validator) else match Net_validator.child node.mainnet_validator with | Some test_validator -> if Net_id.equal (Net_validator.net_id test_validator) net_id then Lwt.return_some test_validator else Lwt.return_none | _ -> Lwt.return_none let read_valid_block node h = State.read_block node.state h let read_valid_block_exn node h = State.read_block_exn node.state h let rec predecessor net_db n v = if n <= 0 then Lwt.return v else State.Block.predecessor v >>= function | None -> Lwt.return v | Some v -> predecessor net_db (n-1) v let block_info node (block: block) = match block with | `Genesis -> let net_state = Net_validator.net_state node.mainnet_validator in Chain.genesis net_state >>= convert | ( `Head n | `Test_head n ) as block -> let validator = get_validator node block in let net_db = Net_validator.net_db validator in let net_state = Net_validator.net_state validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= convert | `Hash h -> read_valid_block_exn node h >>= convert | ( `Prevalidation | `Test_prevalidation ) as block -> let validator = get_validator node block in let pv = Net_validator.prevalidator validator in let net_state = Net_validator.net_state validator in Chain.head net_state >>= fun head -> let head_header = State.Block.header head in let head_hash = State.Block.hash head in let head_net_id = State.Block.net_id head in State.Block.context head >>= fun head_context -> Context.get_protocol head_context >>= fun head_protocol -> Prevalidator.context pv >>= function | Error _ -> Lwt.fail Not_found | Ok { context ; fitness } -> Context.get_protocol context >>= fun protocol -> Context.get_test_network context >>= fun test_network -> let proto_level = if Protocol_hash.equal protocol head_protocol then head_header.shell.proto_level else ((head_header.shell.proto_level + 1) mod 256) in let operations = let pv_result, _ = Prevalidator.operations pv in [ pv_result.applied ] in Lwt.return { hash = prevalidation_hash ; level = Int32.succ head_header.shell.level ; proto_level ; predecessor = head_hash ; fitness ; timestamp = Prevalidator.timestamp pv ; protocol ; validation_passes = List.length operations ; operations_hash = Operation_list_list_hash.compute (List.map (fun ops -> Operation_list_hash.compute (List.map fst ops)) operations) ; operations = Some operations ; context = Context_hash.zero ; data = MBytes.of_string "" ; net_id = head_net_id ; test_network ; } let rpc_context block : Updater.rpc_context Lwt.t = let block_hash = State.Block.hash block in let block_header = State.Block.header block in State.Block.context block >|= fun context -> { Updater.block_hash ; block_header ; operation_hashes = (fun () -> State.Block.all_operation_hashes block) ; operations = (fun () -> State.Block.all_operations block) ; context ; } let get_rpc_context node block = match block with | `Genesis -> let net_state = Net_validator.net_state node.mainnet_validator in Chain.genesis net_state >>= fun block -> rpc_context block >>= fun ctxt -> Lwt.return (Some ctxt) | ( `Head n | `Test_head n ) as block -> let validator = get_validator node block in let net_state = Net_validator.net_state validator in let net_db = Net_validator.net_db validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= fun block -> rpc_context block >>= fun ctxt -> Lwt.return (Some ctxt) | `Hash hash-> begin read_valid_block node hash >>= function | None -> Lwt.return_none | Some block -> rpc_context block >>= fun ctxt -> Lwt.return (Some ctxt) end | ( `Prevalidation | `Test_prevalidation ) as block -> let validator = get_validator node block in let pv = Net_validator.prevalidator validator in let net_state = Net_validator.net_state validator in Chain.head net_state >>= fun head -> let head_header = State.Block.header head in let head_hash = State.Block.hash head in State.Block.context head >>= fun head_context -> Context.get_protocol head_context >>= fun head_protocol -> Prevalidator.context pv >>= function | Error _ -> Lwt.fail Not_found | Ok { context ; fitness } -> Context.get_protocol context >>= fun protocol -> let proto_level = if Protocol_hash.equal protocol head_protocol then head_header.shell.proto_level else ((head_header.shell.proto_level + 1) mod 256) in let operation_hashes, operations = let pv_result, _ = Prevalidator.operations pv in [ List.map fst pv_result.applied ], [ List.map snd pv_result.applied ] in let operations_hash = Operation_list_list_hash.compute (List.map Operation_list_hash.compute operation_hashes) in Lwt.return (Some { Updater.block_hash = prevalidation_hash ; block_header = { shell = { level = Int32.succ head_header.shell.level ; proto_level ; predecessor = head_hash ; timestamp = Prevalidator.timestamp pv ; validation_passes = List.length operation_hashes ; operations_hash ; fitness ; context = Context_hash.zero ; } ; proto = MBytes.create 0 ; } ; operation_hashes = (fun () -> Lwt.return operation_hashes) ; operations = (fun () -> Lwt.return operations) ; context ; }) let operation_hashes node block = match block with | `Genesis -> Lwt.return [] | ( `Head n | `Test_head n ) as block -> let validator = get_validator node block in let net_state = Net_validator.net_state validator in let net_db = Net_validator.net_db validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= fun block -> State.Block.all_operation_hashes block | (`Prevalidation | `Test_prevalidation) as block -> let validator = get_validator node block in let pv = Net_validator.prevalidator validator in let { Preapply_result.applied }, _ = Prevalidator.operations pv in Lwt.return [List.map fst applied] | `Hash hash -> read_valid_block node hash >>= function | None -> Lwt.return_nil | Some block -> State.Block.all_operation_hashes block let operations node block = match block with | `Genesis -> Lwt.return [] | ( `Head n | `Test_head n ) as block -> let validator = get_validator node block in let net_state = Net_validator.net_state validator in let net_db = Net_validator.net_db validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= fun block -> State.Block.all_operations block | (`Prevalidation | `Test_prevalidation) as block -> let validator = get_validator node block in let pv = Net_validator.prevalidator validator in let { Preapply_result.applied }, _ = Prevalidator.operations pv in Lwt.return [List.map snd applied] | `Hash hash -> read_valid_block node hash >>= function | None -> Lwt.return_nil | Some block -> State.Block.all_operations block let pending_operations node (block: block) = match block with | ( `Head 0 | `Prevalidation | `Test_head 0 | `Test_prevalidation ) as block -> let validator = get_validator node block in let pv = Net_validator.prevalidator validator in Lwt.return (Prevalidator.operations pv) | ( `Head n | `Test_head n ) as block -> let validator = get_validator node block in let prevalidator = Net_validator.prevalidator validator in let net_state = Net_validator.net_state validator in let net_db = Net_validator.net_db validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= fun b -> Prevalidator.pending ~block:b prevalidator >|= fun ops -> Preapply_result.empty, ops | `Genesis -> let net_state = Net_validator.net_state node.mainnet_validator in let prevalidator = Net_validator.prevalidator node.mainnet_validator in Chain.genesis net_state >>= fun b -> Prevalidator.pending ~block:b prevalidator >|= fun ops -> Preapply_result.empty, ops | `Hash h -> begin get_validator_per_hash node h >>= function | None -> Lwt.return (Preapply_result.empty, Operation_hash.Map.empty) | Some validator -> let net_state = Net_validator.net_state validator in let prevalidator = Net_validator.prevalidator validator in State.Block.read_exn net_state h >>= fun block -> Prevalidator.pending ~block prevalidator >|= fun ops -> Preapply_result.empty, ops end let protocols { state } = State.Protocol.list state >>= fun set -> Lwt.return (Protocol_hash.Set.elements set) let protocol_content node hash = State.Protocol.read node.state hash let preapply node block ~timestamp ~proto_header ~sort_operations:sort ops = begin match block with | `Genesis -> let net_state = Net_validator.net_state node.mainnet_validator in Chain.genesis net_state >>= return | ( `Head 0 | `Prevalidation | `Test_head 0 | `Test_prevalidation ) as block -> let validator = get_validator node block in let net_state = Net_validator.net_state validator in Chain.head net_state >>= return | `Head n | `Test_head n as block -> begin let validator = get_validator node block in let net_state = Net_validator.net_state validator in let net_db = Net_validator.net_db validator in Chain.head net_state >>= fun head -> predecessor net_db n head >>= return end | `Hash hash -> read_valid_block node hash >>= function | None -> Lwt.return (error_exn Not_found) | Some data -> return data end >>=? fun predecessor -> Prevalidation.start_prevalidation ~proto_header ~predecessor ~timestamp () >>=? fun validation_state -> let ops = List.map (List.map (fun x -> Operation.hash x, x)) ops in Lwt_list.fold_left_s (fun (validation_state, rs) ops -> Prevalidation.prevalidate validation_state ~sort ops >>= fun (validation_state, r) -> Lwt.return (validation_state, rs @ [r])) (validation_state, []) ops >>= fun (validation_state, rs) -> let operations_hash = Operation_list_list_hash.compute (List.map (fun r -> Operation_list_hash.compute (List.map fst r.Preapply_result.applied)) rs) in Prevalidation.end_prevalidation validation_state >>=? fun { fitness ; context ; message } -> let pred_shell_header = State.Block.shell_header predecessor in State.Block.protocol_hash predecessor >>= fun pred_protocol -> Context.get_protocol context >>= fun protocol -> let proto_level = if Protocol_hash.equal protocol pred_protocol then pred_shell_header.proto_level else ((pred_shell_header.proto_level + 1) mod 256) in Context.commit ?message ~time:timestamp context >>= fun context -> let shell_header : Block_header.shell_header = { level = Int32.succ pred_shell_header.level ; proto_level ; predecessor = State.Block.hash predecessor ; timestamp ; validation_passes = List.length rs ; operations_hash ; fitness ; context ; } in return (shell_header, rs) let complete node ?block str = match block with | None -> Base58.complete str | Some block -> get_rpc_context node block >>= function | None -> Lwt.fail Not_found | Some { context = ctxt } -> Context.get_protocol ctxt >>= fun protocol_hash -> let (module Proto) = State.Registred_protocol.get_exn protocol_hash in Base58.complete str >>= fun l1 -> Proto.complete_b58prefix ctxt str >>= fun l2 -> Lwt.return (l1 @ l2) let context_dir node block = get_rpc_context node block >>= function | None -> Lwt.return None | Some rpc_context -> Context.get_protocol rpc_context.context >>= fun protocol_hash -> let (module Proto) = State.Registred_protocol.get_exn protocol_hash in let dir = RPC_directory.map (fun () -> rpc_context) Proto.rpc_services in Lwt.return (Some (RPC_directory.map (fun _ -> ()) dir)) let heads node = let net_state = Net_validator.net_state node.mainnet_validator in Chain.known_heads net_state >>= fun heads -> begin match Net_validator.child node.mainnet_validator with | None -> Lwt.return_nil | Some test_validator -> let net_state = Net_validator.net_state test_validator in Chain.known_heads net_state end >>= fun test_heads -> Lwt_list.fold_left_s (fun map block -> convert block >|= fun bi -> Block_hash.Map.add (State.Block.hash block) bi map) Block_hash.Map.empty (test_heads @ heads) let predecessors node len head = let rec loop acc len block = if len = 0 then Lwt.return (List.rev acc) else State.Block.predecessor block >>= function | None -> Lwt.return (List.rev acc) | Some block -> loop (State.Block.hash block :: acc) (len-1) block in try State.read_block_exn node.state head >>= fun block -> loop [] len block with Not_found -> Lwt.return_nil let predecessors_bi ignored len head = try let rec loop acc len block = convert block >>= fun bi -> State.Block.predecessor block >>= function | None -> Lwt.return (List.rev (bi :: acc)) | Some pred -> if len = 0 || Block_hash.Set.mem (State.Block.hash block) ignored then Lwt.return (List.rev acc) else loop (bi :: acc) (len-1) pred in loop [] len head with Not_found -> Lwt.return_nil let list node len heads = Lwt_list.fold_left_s (fun (ignored, acc) head -> State.read_block_exn node.state head >>= fun block -> predecessors_bi ignored len block >>= fun predecessors -> let ignored = List.fold_right (fun x s -> Block_hash.Set.add x.hash s) predecessors ignored in Lwt.return (ignored, predecessors :: acc) ) (Block_hash.Set.empty, []) heads >>= fun (_, blocks) -> Lwt.return (List.rev blocks) let list_invalid node = State.Block.list_invalid (Net_validator.net_state node.mainnet_validator) let unmark_invalid node block = State.Block.unmark_invalid (Net_validator.net_state node.mainnet_validator) block let block_header_watcher node = Distributed_db.watch_block_header node.distributed_db let block_watcher node = let stream, shutdown = Validator.watcher node.validator in Lwt_stream.map_s (fun block -> convert block) stream, shutdown let operation_watcher node = Distributed_db.watch_operation node.distributed_db let protocol_watcher node = Distributed_db.Protocol.watch node.distributed_db let bootstrapped node = let block_stream, stopper = Net_validator.new_head_watcher node.mainnet_validator in let first_run = ref true in let next () = if !first_run then begin first_run := false ; let net_state = Net_validator.net_state node.mainnet_validator in Chain.head net_state >>= fun head -> let head_hash = State.Block.hash head in let head_header = State.Block.header head in Lwt.return (Some (head_hash, head_header.shell.timestamp)) end else begin Lwt.pick [ ( Lwt_stream.get block_stream >|= Option.map ~f:(fun b -> (State.Block.hash b, (State.Block.header b).shell.timestamp)) ) ; (Net_validator.bootstrapped node.mainnet_validator >|= fun () -> None) ; ] end in let shutdown () = Lwt_watcher.shutdown stopper in RPC_answer.{ next ; shutdown } module Network = struct let stat (node : t) = P2p.RPC.stat node.p2p let watch (node : t) = P2p.RPC.watch node.p2p let connect (node : t) = P2p.RPC.connect node.p2p module Connection = struct let info (node : t) = P2p.RPC.Connection.info node.p2p let kick (node : t) = P2p.RPC.Connection.kick node.p2p let list (node : t) = P2p.RPC.Connection.list node.p2p let count (node : t) = P2p.RPC.Connection.count node.p2p end module Point = struct let info (node : t) = P2p.RPC.Point.info node.p2p let list ?restrict (node : t) = P2p.RPC.Point.list ?restrict node.p2p let events ?max ?rev (node : t) = P2p.RPC.Point.events node.p2p ?max ?rev let watch (node : t) = P2p.RPC.Point.watch node.p2p end module Peer_id = struct let info (node : t) = P2p.RPC.Peer_id.info node.p2p let list ?restrict (node : t) = P2p.RPC.Peer_id.list ?restrict node.p2p let events ?max ?rev (node : t) = P2p.RPC.Peer_id.events node.p2p ?max ?rev let watch (node : t) = P2p.RPC.Peer_id.watch node.p2p end end end