open Trace open Mini_c open Michelson module Stack = Meta_michelson.Stack module Contract_types = Meta_michelson.Types open Memory_proto_alpha.Script_ir_translator open Operators.Compiler open Proto_alpha_utils let get_predicate : string -> type_value -> expression list -> predicate result = fun s ty lst -> match Map.String.find_opt s Operators.Compiler.predicates with | Some x -> ok x | None -> ( match s with | "MAP_REMOVE" -> let%bind v = match lst with | [ _ ; expr ] -> let%bind (_, v) = Mini_c.Combinators.(get_t_map (Expression.get_type expr)) in ok v | _ -> simple_fail "mini_c . MAP_REMOVE" in let%bind v_ty = Compiler_type.type_ v in ok @@ simple_binary @@ seq [dip (i_none v_ty) ; prim I_UPDATE ] | "LEFT" -> let%bind r = match lst with | [ _ ] -> get_t_right ty | _ -> simple_fail "mini_c . LEFT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ prim ~children:[r_ty] I_LEFT | "RIGHT" -> let%bind l = match lst with | [ _ ] -> get_t_left ty | _ -> simple_fail "mini_c . RIGHT" in let%bind l_ty = Compiler_type.type_ l in ok @@ simple_unary @@ prim ~children:[l_ty] I_RIGHT | "CONTRACT" -> let%bind r = match lst with | [ _ ] -> get_t_contract ty | _ -> simple_fail "mini_c . CONTRACT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ seq [ prim ~children:[r_ty] I_CONTRACT ; i_assert_some_msg (i_push_string "bad address for get_contract") ; ] | x -> simple_fail ("predicate \"" ^ x ^ "\" doesn't exist") ) let rec translate_value (v:value) : michelson result = match v with | D_bool b -> ok @@ prim (if b then D_True else D_False) | D_int n -> ok @@ int (Z.of_int n) | D_nat n -> ok @@ int (Z.of_int n) | D_tez n -> ok @@ int (Z.of_int n) | D_string s -> ok @@ string s | D_bytes s -> ok @@ bytes (Tezos_stdlib.MBytes.of_bytes s) | D_unit -> ok @@ prim D_Unit | D_pair (a, b) -> ( let%bind a = translate_value a in let%bind b = translate_value b in ok @@ prim ~children:[a;b] D_Pair ) | D_left a -> translate_value a >>? fun a -> ok @@ prim ~children:[a] D_Left | D_right b -> translate_value b >>? fun b -> ok @@ prim ~children:[b] D_Right | D_function anon -> translate_function anon | D_none -> ok @@ prim D_None | D_some s -> let%bind s' = translate_value s in ok @@ prim ~children:[s'] D_Some | D_map lst -> let%bind lst' = bind_map_list (bind_map_pair translate_value) lst in let aux (a, b) = prim ~children:[a;b] D_Elt in ok @@ seq @@ List.map aux lst' | D_list lst -> let%bind lst' = bind_map_list translate_value lst in ok @@ seq lst' | D_operation _ -> simple_fail "can't compile an operation" and translate_function (content:anon_function) : michelson result = let%bind body = translate_quote_body content in ok @@ seq [ body ] and translate_expression ?(first=false) (expr:expression) (env:environment) : (michelson * environment) result = let (expr' , ty) = Combinators.Expression.(get_content expr , get_type expr) in let error_message () = Format.asprintf "%a" PP.expression expr in let return ?env' code = let env' = let default = env in Environment.add ("_tmp_expression" , ty) @@ Option.unopt ~default env' in let%bind (Stack.Ex_stack_ty input_stack_ty) = Compiler_type.Ty.environment env in let%bind output_type = Compiler_type.type_ ty in let%bind (Stack.Ex_stack_ty output_stack_ty) = Compiler_type.Ty.environment env' in let error_message () = let%bind schema_michelsons = Compiler_type.environment env in ok @@ Format.asprintf "expression : %a\ncode : %a\nschema type : %a\noutput type : %a" PP.expression expr Michelson.pp code PP_helpers.(list_sep Michelson.pp (const ".")) schema_michelsons Michelson.pp output_type in let%bind _ = Trace.trace_tzresult_lwt_r (fun () -> let%bind error_message = error_message () in ok @@ (fun () -> error (thunk "error parsing expression code") (fun () -> error_message) ())) @@ Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok (code , env') in trace (error (thunk "compiling expression") error_message) @@ match expr' with | E_capture_environment c -> let%bind code = Compiler_environment.pack_select env c in return @@ code | E_literal v -> let%bind v = translate_value v in let%bind t = Compiler_type.type_ ty in return @@ i_push t v | E_application(f, arg) -> ( match Combinators.Expression.get_type f with | T_function _ -> ( trace (simple_error "Compiling quote application") @@ let%bind (f , env') = translate_expression ~first f env in let%bind (arg , _) = translate_expression arg env' in return @@ seq [ i_comment "quote application" ; i_comment "get f" ; f ; i_comment "get arg" ; arg ; prim I_EXEC ; ] ) | T_deep_closure (small_env, input_ty , _) -> ( trace (simple_error "Compiling deep closure application") @@ let%bind (arg' , env') = translate_expression arg env in let%bind (f' , env'') = translate_expression f env' in let%bind f_ty = Compiler_type.type_ f.type_value in let%bind append_closure = Compiler_environment.add_packed_anon small_env input_ty in let error = let error_title () = "michelson type-checking closure application" in let error_content () = Format.asprintf "\nEnv. %a\nEnv'. %a\nEnv''. %a\nclosure. %a ; %a ; %a\narg. %a\n" PP.environment env PP.environment env' PP.environment env'' PP.expression_with_type f Michelson.pp f_ty Michelson.pp f' PP.expression_with_type arg in error error_title error_content in trace error @@ return @@ seq [ i_comment "closure application" ; i_comment "arg" ; arg' ; i_comment "f'" ; f' ; i_unpair ; i_comment "append" ; dip @@ seq [i_swap ; append_closure] ; i_comment "exec" ; i_swap ; i_exec ; ] ) | _ -> simple_fail "E_applicationing something not appliable" ) | E_variable x -> let%bind code = Compiler_environment.get env x in return code | E_constant(str, lst) -> let module L = Logger.Stateful() in let%bind lst' = let aux env expr = let%bind (code , env') = translate_expression expr env in L.log @@ Format.asprintf "\n%a -> %a in %a\n" PP.expression expr Michelson.pp code PP.environment env ; ok (env' , code) in bind_fold_map_right_list aux env lst in let%bind predicate = get_predicate str ty lst in let pre_code = seq @@ List.rev lst' in let%bind code = match (predicate, List.length lst) with | Constant c, 0 -> ok @@ seq [ pre_code ; c ; ] | Unary f, 1 -> ok @@ seq [ pre_code ; f ; ] | Binary f, 2 -> ok @@ seq [ pre_code ; f ; ] | Ternary f, 3 -> ok @@ seq [ pre_code ; f ; ] | _ -> simple_fail "bad arity" in let error = let title () = "error compiling constant" in let content () = L.get () in error title content in trace error @@ return code | E_empty_map sd -> let%bind (src, dst) = bind_map_pair Compiler_type.type_ sd in return @@ i_empty_map src dst | E_empty_list t -> let%bind t' = Compiler_type.type_ t in return @@ i_nil t' | E_make_none o -> let%bind o' = Compiler_type.type_ o in return @@ i_none o' | E_Cond (c, a, b) -> ( let%bind (c' , env') = translate_expression c env in let%bind (a' , _) = translate_expression a env' in let%bind (b' , _) = translate_expression b env' in let%bind code = ok (seq [ c' ; i_if a' b' ; ]) in return code ) | E_if_none (c, n, (_ , s)) -> ( let%bind (c' , _env') = translate_expression c env in let%bind (n' , _) = translate_expression n n.environment in let%bind (s' , _) = translate_expression s s.environment in let%bind restrict_s = Compiler_environment.select_env s.environment env in let%bind code = ok (seq [ c' ; i_if_none n' (seq [ s' ; restrict_s ; ]) ; ]) in return code ) | E_if_left (c, (_ , l), (_ , r)) -> ( let%bind (c' , _env') = translate_expression c env in let%bind (l' , _) = translate_expression l l.environment in let%bind (r' , _) = translate_expression r r.environment in let%bind restrict_l = Compiler_environment.select_env l.environment env in let%bind restrict_r = Compiler_environment.select_env r.environment env in let%bind code = ok (seq [ c' ; i_if_left (seq [ l' ; i_comment "restrict left" ; dip restrict_l ; ]) (seq [ r' ; i_comment "restrict right" ; dip restrict_r ; ]) ; ]) in return code ) | E_let_in (v, expr , body) -> ( let%bind (expr' , _) = translate_expression expr env in let env' = Environment.add v env in let%bind (body' , _) = translate_expression body env' in let%bind restrict = Compiler_environment.select_env env' env in let%bind code = ok (seq [ expr' ; body' ; i_comment "restrict let" ; dip restrict ; ]) in return code ) and translate_statement ((s', w_env) as s:statement) : michelson result = let error_message () = Format.asprintf "%a" PP.statement s in let return code = let%bind (Stack.Ex_stack_ty input_stack_ty) = Compiler_type.Ty.environment w_env.pre_environment in let%bind (Stack.Ex_stack_ty output_stack_ty) = Compiler_type.Ty.environment w_env.post_environment in let error_message () = let%bind pre_env_michelson = Compiler_type.environment w_env.pre_environment in let%bind post_env_michelson = Compiler_type.environment w_env.post_environment in ok @@ Format.asprintf "statement : %a\ncode : %a\npre type : %a\npost type : %a\n" PP.statement s Michelson.pp code PP_helpers.(list_sep Michelson.pp (const " ; ")) pre_env_michelson PP_helpers.(list_sep Michelson.pp (const " ; ")) post_env_michelson in let%bind _ = Trace.trace_tzresult_lwt_r (fun () -> let%bind error_message = error_message () in ok (fun () -> error (thunk "error parsing statement code") (fun () -> error_message) ())) @@ Proto_alpha_utils.Memory_proto_alpha.parse_michelson_fail code input_stack_ty output_stack_ty in ok code in trace (fun () -> error (thunk "compiling statement") error_message ()) @@ match s' with | S_environment_add _ -> simple_fail "add not ready yet" | S_environment_select sub_env -> let%bind code = Compiler_environment.select_env w_env.pre_environment sub_env in return code | S_environment_load (expr , env) -> let%bind (expr' , _) = translate_expression expr w_env.pre_environment in let%bind clear = Compiler_environment.select w_env.pre_environment [] in let%bind unpack = Compiler_environment.unpack env in return @@ seq [ expr' ; dip clear ; unpack ; ] | S_declaration (s, expr) -> let tv = Combinators.Expression.get_type expr in let%bind (expr , _) = translate_expression expr w_env.pre_environment in let%bind add = Compiler_environment.add w_env.pre_environment (s, tv) in return @@ seq [ i_comment "declaration" ; seq [ i_comment "expr" ; expr ; ] ; seq [ i_comment "env <- env . expr" ; add ; ]; ] | S_assignment (s, expr) -> let%bind (expr , _) = translate_expression expr w_env.pre_environment in let%bind set = Compiler_environment.set w_env.pre_environment s in return @@ seq [ i_comment "assignment" ; seq [ i_comment "expr" ; expr ; ] ; seq [ i_comment "env <- env . expr" ; set ; ]; ] | S_cond (expr, a, b) -> let%bind (expr , _) = translate_expression expr w_env.pre_environment in let%bind a' = translate_regular_block a in let%bind b' = translate_regular_block b in return @@ seq [ expr ; prim ~children:[seq [a'];seq [b']] I_IF ; ] | S_do expr -> ( match Combinators.Expression.get_content expr with | E_constant ("FAILWITH" , [ fw ] ) -> ( let%bind (fw' , _) = translate_expression fw w_env.pre_environment in return @@ seq [ fw' ; i_failwith ; ] ) | _ -> ( let%bind (expr' , _) = translate_expression expr w_env.pre_environment in return @@ seq [ expr' ; i_drop ; ] ) ) | S_if_none (expr, none, ((name, tv), some)) -> let%bind (expr , _) = translate_expression expr w_env.pre_environment in let%bind none' = translate_regular_block none in let%bind some' = translate_regular_block some in let%bind add = let env' = w_env.pre_environment in Compiler_environment.add env' (name, tv) in let%bind restrict_s = Compiler_environment.select_env (snd some).post_environment w_env.pre_environment in return @@ seq [ expr ; prim ~children:[ seq [none'] ; seq [add ; some' ; restrict_s] ; ] I_IF_NONE ] | S_while (expr, block) -> let%bind (expr , _) = translate_expression expr w_env.pre_environment in let%bind block' = translate_regular_block block in let%bind restrict_block = let env_while = (snd block).pre_environment in Compiler_environment.select_env (snd block).post_environment env_while in return @@ seq [ expr ; prim ~children:[seq [ block' ; restrict_block ; expr]] I_LOOP ; ] | S_patch (name, lrs, expr) -> let%bind (expr' , env') = translate_expression expr w_env.pre_environment in let%bind get_code = Compiler_environment.get env' name in let modify_code = let aux acc step = match step with | `Left -> seq [dip i_unpair ; acc ; i_pair] | `Right -> seq [dip i_unpiar ; acc ; i_piar] in let init = dip i_drop in List.fold_right' aux init lrs in let%bind set_code = Compiler_environment.set w_env.pre_environment name in let error = let title () = "michelson type-checking patch" in let content () = let aux ppf = function | `Left -> Format.fprintf ppf "left" | `Right -> Format.fprintf ppf "right" in Format.asprintf "Sub path: %a\n" PP_helpers.(list_sep aux (const " , ")) lrs in error title content in trace error @@ return @@ seq [ expr' ; get_code ; i_swap ; modify_code ; set_code ; ] and translate_regular_block ((b, env):block) : michelson result = let aux prev statement = let%bind (lst : michelson list) = prev in let%bind instruction = translate_statement statement in ok (instruction :: lst) in let%bind codes = let error_message () = let%bind schema_michelsons = Compiler_type.environment env.pre_environment in ok @@ Format.asprintf "\nblock : %a\nschema : %a\n" PP.block (b, env) PP_helpers.(list_sep Michelson.pp (const " ; ")) schema_michelsons in trace_r (fun () -> let%bind error_message = error_message () in ok (fun () -> error (thunk "compiling regular block") (fun () -> error_message) ())) @@ List.fold_left aux (ok []) b in let code = seq (List.rev codes) in ok code and translate_quote_body ({body;result} as f:anon_function) : michelson result = let%bind body' = translate_regular_block body in let%bind (expr , _) = translate_expression result (snd body).post_environment in let%bind restrict = Compiler_environment.clear (snd body).post_environment in let code = seq [ i_comment "function body" ; body' ; i_comment "function result" ; expr ; dip restrict ; ] in let%bind _assert_type = let%bind (Ex_ty input_ty) = Compiler_type.Ty.type_ f.input in let%bind (Ex_ty output_ty) = Compiler_type.Ty.type_ f.output in let input_stack_ty = Stack.(input_ty @: nil) in let output_stack_ty = Stack.(output_ty @: nil) in let error_message () = Format.asprintf "\ncode : %a\ninput : %a\noutput : %a\nenv : %a\n" Michelson.pp code PP.type_ f.input PP.type_ f.output PP.environment (snd body).post_environment in let%bind _ = Trace.trace_tzresult_lwt ( error (thunk "error parsing quote code") error_message ) @@ Proto_alpha_utils.Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok () in ok code type compiled_program = { input : ex_ty ; output : ex_ty ; body : michelson ; } let get_main : program -> string -> anon_function result = fun p entry -> let is_main (((name , expr), _):toplevel_statement) = match Combinators.Expression.(get_content expr , get_type expr)with | (E_literal (D_function content) , T_function _) when name = entry -> Some content | _ -> None in let%bind main = trace_option (simple_error "no functional entry") @@ List.find_map is_main p in ok main let translate_program (p:program) (entry:string) : compiled_program result = let%bind main = get_main p entry in let {input;output} : anon_function = main in let%bind body = translate_quote_body main in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) let translate_entry (p:anon_function) : compiled_program result = let {input;output} : anon_function = p in let%bind body = trace (simple_error "compile entry body") @@ translate_quote_body p in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) let translate_contract : anon_function -> michelson result = fun f -> let%bind compiled_program = translate_entry f in let%bind (param_ty , storage_ty) = Combinators.get_t_pair f.input in let%bind param_michelson = Compiler_type.type_ param_ty in let%bind storage_michelson = Compiler_type.type_ storage_ty in let contract = Michelson.contract param_michelson storage_michelson compiled_program.body in ok contract