(* Abstract Syntax Tree (AST) for Ligo *) [@@@warning "-30"] open Utils (* Regions The AST carries all the regions where tokens have been found by the lexer, plus additional regions corresponding to whole subtrees (like entire expressions, patterns etc.). These regions are needed for error reporting and source-to-source transformations. To make these pervasive regions more legible, we define singleton types for the symbols, keywords etc. with suggestive names like "kwd_and" denoting the _region_ of the occurrence of the keyword "and". *) type 'a reg = 'a Region.reg val nseq_to_region : ('a -> Region.t) -> 'a nseq -> Region.t val nsepseq_to_region : ('a -> Region.t) -> ('a,'sep) nsepseq -> Region.t val sepseq_to_region : ('a -> Region.t) -> ('a,'sep) sepseq -> Region.t (* Keywords of Ligo *) type kwd_begin = Region.t type kwd_const = Region.t type kwd_down = Region.t type kwd_fail = Region.t type kwd_if = Region.t type kwd_in = Region.t type kwd_is = Region.t type kwd_for = Region.t type kwd_function = Region.t type kwd_parameter = Region.t type kwd_storage = Region.t type kwd_type = Region.t type kwd_of = Region.t type kwd_operations = Region.t type kwd_var = Region.t type kwd_end = Region.t type kwd_then = Region.t type kwd_else = Region.t type kwd_match = Region.t type kwd_procedure = Region.t type kwd_null = Region.t type kwd_record = Region.t type kwd_step = Region.t type kwd_to = Region.t type kwd_mod = Region.t type kwd_not = Region.t type kwd_while = Region.t type kwd_with = Region.t (* Data constructors *) type c_False = Region.t type c_None = Region.t type c_Some = Region.t type c_True = Region.t type c_Unit = Region.t (* Symbols *) type semi = Region.t type comma = Region.t type lpar = Region.t type rpar = Region.t type lbrace = Region.t type rbrace = Region.t type lbracket = Region.t type rbracket = Region.t type cons = Region.t type vbar = Region.t type arrow = Region.t type ass = Region.t type equal = Region.t type colon = Region.t type bool_or = Region.t type bool_and = Region.t type lt = Region.t type leq = Region.t type gt = Region.t type geq = Region.t type neq = Region.t type plus = Region.t type minus = Region.t type slash = Region.t type times = Region.t type dot = Region.t type wild = Region.t type cat = Region.t (* Virtual tokens *) type eof = Region.t (* Literals *) type 'x variable = string reg type 'x fun_name = string reg type 'x type_name = string reg type 'x field_name = string reg type 'x map_name = string reg type 'x constr = string reg (* Comma-separated non-empty lists *) type 'a csv = ('a, comma) nsepseq (* Bar-separated non-empty lists *) type 'a bsv = ('a, vbar) nsepseq (* Parentheses *) type 'a par = (lpar * 'a * rpar) reg (* Brackets compounds *) type 'a brackets = (lbracket * 'a * rbracket) reg (* Braced compounds *) type 'a braces = (lbrace * 'a * rbrace) reg (* The Abstract Syntax Tree *) type ttrue = TTrue type tfalse = TFalse type ('a, 'type_expr_typecheck) gadt_if = Present : 'a -> ('a, ttrue) gadt_if (* It is possible to further ensure well-typedness at the meta level by using the following constraint: type ttrue = [`True] type tfalse = [`False] type 'x x_sig = 'x constraint 'x = < annot: 'ty; type_expr_typecheck: [< `True | `False] > we could also use a single selector for type_expr, as long as the fields are monotonic: type z = [`Z] type 'i s = [`S of 'i] type 'is type_level_int = [< `S of 'i | `Z] constraint 'i = 'prev type_level_int type parse_phase = z type typecheck_phase = z s type further_phase = z s s type 'x x_sig = 'x constraint 'x = < annot: 'ty; type_expr: 'type_expr > These schemes provide more guidance but the simple one below is sufficient. *) type 'x x_sig = 'x constraint 'x = 'type_annotation * 'type_expr_typecheck type 'x ast = { types : 'x type_decl reg list; constants : 'x const_decl reg list; parameter : 'x parameter_decl reg; storage : 'x storage_decl reg; operations : 'x operations_decl reg; lambdas : 'x lambda_decl list; block : 'x block reg; eof : eof } constraint 'x = 'x x_sig and 'x parameter_decl = { kwd_parameter : kwd_parameter; name : 'x variable; colon : colon; param_type : 'x type_expr; terminator : semi option } constraint 'x = 'x x_sig and 'x storage_decl = { kwd_storage : kwd_storage; store_type : 'x type_expr; terminator : semi option } constraint 'x = 'x x_sig and 'x operations_decl = { kwd_operations : kwd_operations; op_type : 'x type_expr; terminator : semi option } constraint 'x = 'x x_sig (* Type declarations *) and 'x type_decl = { kwd_type : kwd_type; name : 'x type_name; kwd_is : kwd_is; type_expr : 'x type_expr; terminator : semi option } constraint 'x = 'x x_sig and 'x type_expr = Prod of ('x cartesian, ttrue) gadt_if | Sum of (('x variant, vbar) nsepseq reg, ttrue) gadt_if | Record of ('x record_type, ttrue) gadt_if | TypeApp of (('x type_name * 'x type_tuple) reg, ttrue) gadt_if | ParType of ('x type_expr par, ttrue) gadt_if | TAlias of ('x variable, ttrue) gadt_if | Function of (('x type_expr list) * 'x type_expr, 'type_expr_typecheck) gadt_if | Mutable of ('x type_expr, 'type_expr_typecheck) gadt_if | Unit of (unit, 'type_expr_typecheck) gadt_if constraint 'x = ('type_annotation * 'type_expr_typecheck) constraint 'x = 'x x_sig and 'x cartesian = ('x type_expr, times) nsepseq reg constraint 'x = 'x x_sig and 'x variant = ('x constr * kwd_of * 'x cartesian) reg constraint 'x = 'x x_sig and 'x record_type = (kwd_record * 'x field_decls * kwd_end) reg constraint 'x = 'x x_sig and 'x field_decls = ('x field_decl, semi) nsepseq constraint 'x = 'x x_sig and 'x field_decl = ('x variable * colon * 'x type_expr) reg constraint 'x = 'x x_sig and 'x type_tuple = ('x type_name, comma) nsepseq par constraint 'x = 'x x_sig (* Function and procedure declarations *) and 'x lambda_decl = FunDecl of 'x fun_decl reg | ProcDecl of 'x proc_decl reg constraint 'x = 'x x_sig and 'x fun_decl = { kwd_function : kwd_function; name : 'x variable; param : 'x parameters; colon : colon; ret_type : 'x type_expr; kwd_is : kwd_is; local_decls : 'x local_decl list; block : 'x block reg; kwd_with : kwd_with; return : 'x expr; terminator : semi option } constraint 'x = 'x x_sig and 'x proc_decl = { kwd_procedure : kwd_procedure; name : 'x variable; param : 'x parameters; kwd_is : kwd_is; local_decls : 'x local_decl list; block : 'x block reg; terminator : semi option } constraint 'x = 'x x_sig and 'x parameters = ('x param_decl, semi) nsepseq par constraint 'x = 'x x_sig and 'x param_decl = ParamConst of 'x param_const | ParamVar of 'x param_var constraint 'x = 'x x_sig and 'x param_const = (kwd_const * 'x variable * colon * 'x type_expr) reg constraint 'x = 'x x_sig and 'x param_var = (kwd_var * 'x variable * colon * 'x type_expr) reg constraint 'x = 'x x_sig and 'x block = { opening : kwd_begin; instr : 'x instructions; terminator : semi option; close : kwd_end } constraint 'x = 'x x_sig and 'x local_decl = LocalLam of 'x lambda_decl | LocalConst of 'x const_decl reg | LocalVar of 'x var_decl reg constraint 'x = 'x x_sig and 'x const_decl = { kwd_const : kwd_const; name : 'x variable; colon : colon; vtype : 'x type_expr; equal : equal; init : 'x expr; terminator : semi option } constraint 'x = 'x x_sig and 'x var_decl = { kwd_var : kwd_var; name : 'x variable; colon : colon; vtype : 'x type_expr; ass : ass; init : 'x expr; terminator : semi option } constraint 'x = 'x x_sig and 'x instructions = ('x instruction, semi) nsepseq reg constraint 'x = 'x x_sig and 'x instruction = Single of 'x single_instr | Block of 'x block reg constraint 'x = 'x x_sig and 'x single_instr = Cond of 'x conditional reg | Match of 'x match_instr reg | Ass of 'x ass_instr | Loop of 'x loop | ProcCall of 'x fun_call | Null of kwd_null | Fail of (kwd_fail * 'x expr) reg constraint 'x = 'x x_sig and 'x conditional = { kwd_if : kwd_if; test : 'x expr; kwd_then : kwd_then; ifso : 'x instruction; kwd_else : kwd_else; ifnot : 'x instruction } constraint 'x = 'x x_sig and 'x match_instr = { kwd_match : kwd_match; expr : 'x expr; kwd_with : kwd_with; lead_vbar : vbar option; cases : 'x cases; kwd_end : kwd_end } constraint 'x = 'x x_sig and 'x cases = ('x case, vbar) nsepseq reg constraint 'x = 'x x_sig and 'x case = ('x pattern * arrow * 'x instruction) reg constraint 'x = 'x x_sig and 'x ass_instr = ('x variable * ass * 'x expr) reg constraint 'x = 'x x_sig and 'x loop = While of 'x while_loop | For of 'x for_loop constraint 'x = 'x x_sig and 'x while_loop = (kwd_while * 'x expr * 'x block reg) reg constraint 'x = 'x x_sig and 'x for_loop = ForInt of 'x for_int reg | ForCollect of 'x for_collect reg constraint 'x = 'x x_sig and 'x for_int = { kwd_for : kwd_for; ass : 'x ass_instr; down : kwd_down option; kwd_to : kwd_to; bound : 'x expr; step : (kwd_step * 'x expr) option; block : 'x block reg } constraint 'x = 'x x_sig and 'x for_collect = { kwd_for : kwd_for; var : 'x variable; bind_to : (arrow * 'x variable) option; kwd_in : kwd_in; expr : 'x expr; block : 'x block reg } constraint 'x = 'x x_sig (* Expressions *) and 'x expr = Or of ('x expr * bool_or * 'x expr) reg | And of ('x expr * bool_and * 'x expr) reg | Lt of ('x expr * lt * 'x expr) reg | Leq of ('x expr * leq * 'x expr) reg | Gt of ('x expr * gt * 'x expr) reg | Geq of ('x expr * geq * 'x expr) reg | Equal of ('x expr * equal * 'x expr) reg | Neq of ('x expr * neq * 'x expr) reg | Cat of ('x expr * cat * 'x expr) reg | Cons of ('x expr * cons * 'x expr) reg | Add of ('x expr * plus * 'x expr) reg | Sub of ('x expr * minus * 'x expr) reg | Mult of ('x expr * times * 'x expr) reg | Div of ('x expr * slash * 'x expr) reg | Mod of ('x expr * kwd_mod * 'x expr) reg | Neg of (minus * 'x expr) reg | Not of (kwd_not * 'x expr) reg | Int of (Lexer.lexeme * Z.t) reg | Var of Lexer.lexeme reg | String of Lexer.lexeme reg | Bytes of (Lexer.lexeme * MBytes.t) reg | False of c_False | True of c_True | Unit of c_Unit | Tuple of 'x tuple | List of ('x expr, comma) nsepseq brackets | EmptyList of 'x empty_list | Set of ('x expr, comma) nsepseq braces | EmptySet of 'x empty_set | NoneExpr of 'x none_expr | FunCall of 'x fun_call | ConstrApp of 'x constr_app | SomeApp of (c_Some * 'x arguments) reg | MapLookUp of 'x map_lookup reg | ParExpr of 'x expr par constraint 'x = 'x x_sig and 'x tuple = ('x expr, comma) nsepseq par constraint 'x = 'x x_sig and 'x empty_list = (lbracket * rbracket * colon * 'x type_expr) par constraint 'x = 'x x_sig and 'x empty_set = (lbrace * rbrace * colon * 'x type_expr) par constraint 'x = 'x x_sig and 'x none_expr = (c_None * colon * 'x type_expr) par constraint 'x = 'x x_sig and 'x fun_call = ('x fun_name * 'x arguments) reg constraint 'x = 'x x_sig and 'x arguments = 'x tuple constraint 'x = 'x x_sig and 'x constr_app = ('x constr * 'x arguments) reg constraint 'x = 'x x_sig and 'x map_lookup = { map_name : 'x variable; selector : dot; index : 'x expr brackets } constraint 'x = 'x x_sig (* Patterns *) and 'x pattern = ('x core_pattern, cons) nsepseq reg constraint 'x = 'x x_sig and 'x core_pattern = PVar of Lexer.lexeme reg | PWild of wild | PInt of (Lexer.lexeme * Z.t) reg | PBytes of (Lexer.lexeme * MBytes.t) reg | PString of Lexer.lexeme reg | PUnit of c_Unit | PFalse of c_False | PTrue of c_True | PNone of c_None | PSome of (c_Some * 'x core_pattern par) reg | PList of 'x list_pattern | PTuple of ('x core_pattern, comma) nsepseq par constraint 'x = 'x x_sig and 'x list_pattern = Sugar of ('x core_pattern, comma) sepseq brackets | Raw of ('x core_pattern * cons * 'x pattern) par constraint 'x = 'x x_sig (* Variations on the AST *) type parse_phase = (unit * tfalse) type typecheck_phase = (parse_phase type_expr * ttrue) type t = parse_phase ast (* Projecting regions *) val type_expr_to_region : parse_phase type_expr -> Region.t val expr_to_region : 'x expr -> Region.t val instr_to_region : 'x instruction -> Region.t val core_pattern_to_region : 'x core_pattern -> Region.t val local_decl_to_region : 'x local_decl -> Region.t type 'x visitor = { ass_instr : 'x ass_instr -> unit; bind_to : (Region.t * 'x variable) option -> unit; block : 'x block reg -> unit; bytes : (string * MBytes.t) reg -> unit; cartesian : 'x cartesian -> unit; case : 'x case -> unit; cases : 'x cases -> unit; conditional : 'x conditional -> unit; const_decl : 'x const_decl reg -> unit; constr : 'x constr -> unit; constr_app : 'x constr_app -> unit; core_pattern : 'x core_pattern -> unit; down : Region.t option -> unit; empty_list : 'x empty_list -> unit; empty_set : 'x empty_set -> unit; expr : 'x expr -> unit; fail : (kwd_fail * 'x expr) -> unit; field_decl : 'x field_decl -> unit; field_decls : 'x field_decls -> unit; for_collect : 'x for_collect reg -> unit; for_int : 'x for_int reg -> unit; for_loop : 'x for_loop -> unit; fun_call : 'x fun_call -> unit; fun_decl : 'x fun_decl reg -> unit; instruction : 'x instruction -> unit; instructions : 'x instructions -> unit; int : (string * Z.t) reg -> unit; lambda_decl : 'x lambda_decl -> unit; list : ('x expr, Region.t) nsepseq brackets -> unit; list_pattern : 'x list_pattern -> unit; loop : 'x loop -> unit; map_lookup : 'x map_lookup reg -> unit; match_instr : 'x match_instr -> unit; none_expr : 'x none_expr -> unit; nsepseq : 'x.string -> ('x -> unit) -> ('x, Region.t) nsepseq -> unit; operations_decl : 'x operations_decl reg -> unit; par_expr : 'x expr par -> unit; par_type : 'x type_expr par -> unit; param_decl : 'x param_decl -> unit; parameter_decl : 'x parameter_decl reg -> unit; parameters : 'x parameters -> unit; param_const : 'x param_const -> unit; param_var : 'x param_var -> unit; pattern : 'x pattern -> unit; patterns : 'x core_pattern par -> unit; proc_decl : 'x proc_decl reg -> unit; psome : (Region.t * 'x core_pattern par) reg -> unit; ptuple : ('x core_pattern, Region.t) nsepseq par -> unit; raw : ('x core_pattern * Region.t * 'x pattern) par -> unit; record_type : 'x record_type -> unit; sepseq : 'x.string -> ('x -> unit) -> ('x, Region.t) sepseq -> unit; set : ('x expr, Region.t) nsepseq braces -> unit; single_instr : 'x single_instr -> unit; some_app : (Region.t * 'x arguments) reg -> unit; step : (Region.t * 'x expr) option -> unit; storage_decl : 'x storage_decl reg -> unit; string : string reg -> unit; sugar : ('x core_pattern, Region.t) sepseq brackets -> unit; sum_type : ('x variant, Region.t) nsepseq reg -> unit; terminator : semi option -> unit; token : Region.t -> string -> unit; tuple : 'x arguments -> unit; type_app : ('x type_name * 'x type_tuple) reg -> unit; type_decl : 'x type_decl reg -> unit; type_expr : 'x type_expr -> unit; type_tuple : 'x type_tuple -> unit; local_decl : 'x local_decl -> unit; local_decls : 'x local_decl list -> unit; var : 'x variable -> unit; var_decl : 'x var_decl reg -> unit; variant : 'x variant -> unit; while_loop : 'x while_loop -> unit }