(**************************************************************************) (* *) (* Copyright (c) 2014 - 2016. *) (* Dynamic Ledger Solutions, Inc. *) (* *) (* All rights reserved. No warranty, explicit or implicit, provided. *) (* *) (**************************************************************************) (** The types for arbitraty precision integers in Michelson. The type variable ['t] is always [n] or [z], [n num] and [z num] are incompatible. This is internally a [Z.t]. This module mostly adds signedness preservation guarantees. *) type 't num (** Flag for natural numbers. *) and n = Natural_tag (** Flag for relative numbers. *) and z = Integer_tag (** Natural zero. *) val zero_n : n num (** Relative zero. *) val zero : z num (** Compare two numbers as if they were *) val compare : 'a num -> 'a num -> int (** Conversion to an OCaml [string] in decimal notation. *) val to_string : _ num -> string (** Conversion from an OCaml [string]. Returns [None] in case of an invalid notation. Supports [+] and [-] sign modifiers, and [0x], [0o] and [0b] base modifiers. *) val of_string : string -> z num option (** Conversion to an OCaml [int64], returns [None] on overflow. *) val to_int64 : _ num -> int64 option (** Conversion from an OCaml [int]. *) val of_int64 : int64 -> z num (** Conversion to an OCaml [int], returns [None] on overflow. *) val to_int : _ num -> int option (** Conversion from an OCaml [int64]. *) val of_int : int -> z num (** Conversion from a Zarith integer ([Z.t]). *) val of_zint : Z.t -> z num (** Conversion to a Zarith integer ([Z.t]). *) val to_zint : 'a num -> Z.t (** Addition between naturals. *) val add_n : n num -> n num -> n num (** Multiplication between naturals. *) val mul_n : n num -> n num -> n num (** Euclidean division between naturals. [ediv_n n d] returns [None] if divisor is zero, or [Some (q, r)] where [n = d * q + r] and [[0 <= r < d]] otherwise. *) val ediv_n: n num -> n num -> (n num * n num) option (** Sign agnostic addition. Use {!add_n} when working with naturals to preserve the sign. *) val add : _ num -> _ num -> z num (** Sign agnostic subtraction. Use {!sub_n} when working with naturals to preserve the sign. *) val sub : _ num -> _ num -> z num (** Sign agnostic multiplication. Use {!mul_n} when working with naturals to preserve the sign. *) val mul : _ num -> _ num -> z num (** Sign agnostic euclidean division. [ediv n d] returns [None] if divisor is zero, or [Some (q, r)] where [n = d * q + r] and [[0 <= r < |d|]] otherwise. Use {!ediv_n} when working with naturals to preserve the sign. *) val ediv: _ num -> _ num -> (z num * n num) option (** Compute the absolute value of a relative, turning it into a natural. *) val abs : z num -> n num (** Negates a number. *) val neg : _ num -> z num (** Turns a natural into a relative, not changing its value. *) val int : n num -> z num (** Reverses each bit in the representation of the number. Also applies to the sign. *) val lognot : _ num -> z num (** Shifts the natural to the left of a number of bits between 0 and 256. Returns [None] if the amount is too high. *) val shift_left_n : n num -> n num -> n num option (** Shifts the natural to the right of a number of bits between 0 and 256. Returns [None] if the amount is too high. *) val shift_right_n : n num -> n num -> n num option (** Shifts the number to the left of a number of bits between 0 and 256. Returns [None] if the amount is too high. *) val shift_left : 'a num -> n num -> 'a num option (** Shifts the number to the right of a number of bits between 0 and 256. Returns [None] if the amount is too high. *) val shift_right : 'a num -> n num -> 'a num option (** Applies a boolean or operation to each bit. *) val logor : n num -> n num -> n num (** Applies a boolean and operation to each bit. *) val logand : n num -> n num -> n num (** Applies a boolean xor operation to each bit. *) val logxor : n num -> n num -> n num