Tezos Contract Script Language Specification ============================================ The language is stack based, with high level data types and primitives and scrict static type checking. Its design is insipired by Forth, Scheme, ML and Cat. This specification gives the complete instruction set, type system and semantics of the language. It is meant as a precise reference manual, not an easy introduction. Even though, some examples are provided at the end of the document and can be read first or at the same time as the specification. Table of contents ----------------- * I - Type system * II - Semantics * III - Core instructions * IV - Data types * V - Operations * VI - Domain specific data types * VII - Domain specific operations * VIII - Concrete syntax * IX - Examples * X - Full grammar * XI - Reference implementation I - Type system --------------- The types `T` of values in the stack are written using notations * `bool`, `string`, `void`, `u?int{8|16|32|64}`, `float`, the core primitive types, * `identifier` for a primitive data-type, * `T identifier` for a parametric data-type with one parameter type `T`, * `identifier T_0 ... T_n` for a parametric data-type with several parameters, * `'a` for a type variable, * `_` for an anonymous type variable, * `[ P ]` for a code quotation whose program type is `P`, * `lambda T_arg T_ret` is a shortcut for `[ T_arg :: [] -> T_ret :: []]`. * other specific notations for compound types, described later. Instructions, programs and primitives of the language are also typed, their types `P` are written using the following notation, where `S` the type of a stack. :: S before -> S after A stack type `S` can be written * `[]` for the empty stack, * `T_top : S_rest` for the stack whose first value has type `Ttop` and queue `Srest`, * `'A` for a stack type variable, * `_` for an anonymous stack type variable. II - Semantics -------------- The instructions are specified as follows, giving their mnemonic, type in the previously defined syntax, and small step semantics as a list of rewriting rules of the form > pre state => result state where the preconditions of all rules are to be read in order, the first match selecting the behaviour of the instruction, so that the choice is deterministic. Only the valid pre states are described, any other cannot happen thanks to static typing. The pre and post result states are described as * pairs `code / stack` for stack manipulation primitives, * triples `code / stack / memory` for primitives that also manipulate memory, * `[FAIL]` for a fatal failure state. The notations used are * `;` to represent the concatenation of instructions or sequences, * `[]` for the empty code sequence, * `top : tail` for stack consing, as in types, * `identifier` for variable stack and code elements, * `` for variable memory locations, * `_` for elements whose value does not affect the semantics. The memory is described as a relation between locations and constants of the form `variable = constant, ...`. The constants are of one of the following forms. * integers with their sign and size, e.g. `(Uint8 3)`, * floats in libc-style notation, e.g. `(Float 4.5e2)`, * `Void`, the unique value of type `void` * booleans `True` and `False`, * string literals, as in `(String "contents")`, * structured constants of compound types described later. III - Core instructions ----------------------- ### Control structures * `(I :: [ 'A -> 'B ]) ; (C :: [ 'B -> 'C ])`: Sequence operator. :: 'A -> 'C > I ; C / SA => C / SB iff I / SA => [] / SB * `IF bt bf`: Conditional branching. :: bool : 'A -> 'B iff bt :: [ 'A -> 'B ] bf :: [ 'A -> 'B ] > IF ; C / True : S => bt ; C / S > IF ; C / False : S => bf ; C / S * `LOOP body`: A generic loop. :: bool : 'A -> 'A iff body :: [ 'A -> bool : 'A ] > LOOP body ; C / True : S => body ; LOOP body ; C / S > LOOP body ; C / False : S => C / S * `DIP code`: Runs code protecting the top of the stack. :: 'b : 'A -> 'b : 'C iff code :: [ 'A -> 'C ] > DIP code ; C / x : S => code ; PUSH x ; C / S * `DII+P code`: A sugar syntax for working deeper in the stack. > DII(\rest)P code ; C / S => DIP (DI(\rest)P code) ; C / S * `LAMBDA 'a 'b code`: Push a function onto the stack. :: 'C -> lambda 'a 'b : 'C iff code :: lambda 'a 'b > LAMBDA 'a 'b code ; C / S => C / code : S * `EXEC`: Execute a function from the stack. :: 'a : lambda 'a 'b : 'C -> 'b : 'C > EXEC ; C / a : f : S => f ; C / a : S ### Stack operations * `DROP`: Drop the top element of the stack. :: _ : 'A -> 'A > DROP ; C / _ : S => C / S * `DUP`: Duplicate the top of the stack. :: 'a : 'A -> 'a : 'a : 'A > DUP ; C / x : S => C / x : x : S * `DUP n`: Duplicate the `n`th element of the stack. > DUP (n > 0) ; C / S => DIP { DUP (n - 1) } ; SWAP ; C / S > DUP 0 ; C / S => DUP ; C / S This variant of `DUP` with an optional argument is syntactic sugar for combining `DIP`, `SWAP` and `DUP` in order to access elements in the stack by their depth, `DUP 0` being equivqlent to a simple `DUP`. * `SWAP`: Exchange the top two elements of the stack. :: 'a : 'b : 'A -> 'b : 'a : 'A > SWAP ; C / x : y : S => C / y : x : S * `PUSH x`: Push a value onto the stack. :: 'A -> 'a : 'A iff x :: 'a > PUSH x ; C / S => C / x : S * `DROP`: Drop the top element of the stack. :: _ : 'A -> 'A > DROP ; C / _ : S => C / S * `VOID`: Push a void value onto the stack. :: 'A -> void : 'A > VOID ; C / S => C / () : S ### Generic comparison Comparison only works on a class of types that we call comparable. A `COMPARE` operation is defined in an ad hoc way for each comparable type, but the result of compare is always an `int64`, which can in turn be checked in a generic manner using the following combinators. The result of `COMPARE` is `0` if the compared values are equal, negative if the first is less than the second, and positive otherwise. * `EQ`: Checks that the top if the stack EQuals zero. :: int64 : 'S -> bool : 'S > EQ ; C / Int64 (0) : S => C / True : S > EQ ; C / _ : S => C / False : S * `NEQ`: Checks that the top if the stack does Not EQual zero. :: int64 : 'S -> bool : 'S > NEQ ; C / Int64 (0) : S => C / False : S > NEQ ; C / _ : S => C / True : S * `LT`: Checks that the top if the stack is Less Than zero. :: int64 : 'S -> bool : 'S > LT ; C / Int64 (v) : S => C / True : S iff v < 0 > LT ; C / _ : S => C / False : S * `GT`: Checks that the top if the stack is Greater Than zero. :: int64 : 'S -> bool : 'S > GT ; C / Int64 (v) : S => C / True : S iff v > 0 > GT ; C / _ : S => C / False : S * `LE`: Checks that the top if the stack is Less Than of Equal to zero. :: int64 : 'S -> bool : 'S > LE ; C / Int64 (v) : S => C / True : S iff v <= 0 > LE ; C / _ : S => C / False : S * `GE`: Checks that the top if the stack is Greater Than of Equal to zero. :: int64 : 'S -> bool : 'S > GE ; C / Int64 (v) : S => C / True : S iff v >= 0 > GE ; C / _ : S => C / False : S Syntactic sugar exists for merging `COMPARE` and comparison combinators, and also for branching. * `CMP{EQ|NEQ|LT|GT|LE|GE}` > CMP(\op) ; C / S => COMPARE ; (\op) ; C / S * `IF{EQ|NEQ|LT|GT|LE|GE} bt bf` > IFCMP(\op) ; C / S => (\op) ; IF bt bf ; C / S * `IFCMP{EQ|NEQ|LT|GT|LE|GE} bt bf` > IFCMP(\op) ; C / S => COMPARE ; IF(\op) bt bf ; C / S IV - Data types --------------- * `bool`, `string`, `void`, `u?int{8|16|32|64}`, `float`: The core primitive types. * `list 'a`: A single, immutable, homogeneous linked list, whose elements are of type 'a, and that we note Nil for the empty list or (Cons head tail). * `pair 'a 'b`: A pair of values a and b of types 'a and 'b, that we write (Pair a b). * `option 'a`: Optional value that we note (None) or (Some v). * `or 'a 'b`: A union of two types, a value holding either a value a of type 'a or a value b of type 'b, that we write (Left a) or (Right b). * `ref 'a`: Classical imperative stores, that we note (Ref const). * `set 'a`, `map 'a 'b`: Imperative map and sets, optimized in the db. V - Operations -------------- ### Operations on booleans * `OR` :: bool : bool : 'S -> bool : 'S > OR ; C / x : y : S => C / (x | y) : S * `AND` :: bool : bool : 'S -> bool : 'S > AND ; C / x : y : S => C / (x & y) : S * `XOR` :: bool : bool : 'S -> bool : 'S > XOR ; C / x : y : S => C / (x ^ y) : S * `NOT` :: bool : 'S -> bool : 'S > NOT ; C / x : S => C / ~x : S ### Operations on integers Integers can be of size 1, 2, 4 or 8 bytes, signed or unsigned. Integer Operations are homogeneous, so that performing computations between values of different int types must be done via explicit casts. For specifying arithmetics, we consider that integers are all stored on 64 bits (the largest integer size) so that we can express the operations, in particular casts, using usual bitwise masks. In this context, the type indicator functions are defined as follows (which can be read both as a constraint on the bitpatttern and as a conversion operation). Uint64 (x) = Int64 (x) = x Uint32 (x) = x & 0x00000000FFFFFFFF Int32 (x) = x & 0x00000000FFFFFFFF | (x & 0x80000000 ? 0xFFFFFFFF00000000 : 0) Uint16 (x) = x & 0x000000000000FFFF Int16 (x) = x & 0x000000000000FFFF | (x & 0x8000 ? 0xFFFFFFFFFFFF0000 : 0) Uint8 (x) = x & 0x00000000000000FF Int8 (x) = x & 0x00000000000000FF | (x & 0x80 ? 0xFFFFFFFFFFFFFF00 : 0) We also use the function `bits (t)` that retrieve the meaningful number of bits for a given integer type (e.g. `bits (int8) = 8`). * `NEG` :: t : 'S -> t : 'S where t in int{8|16|32|64} > NEG ; C / t (x) : S => C / t (-x) : S With cycling semantics for overflows (min (t) = -min (t)). * `ABS` :: t : 'S -> t : 'S where t in int{8|16|32|64} > ABS ; C / t (x) : S => C / t (abs (x)) : S With cycling semantics for overflows (abs (min (t)) = min (t)). * `ADD` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > ADD ; C / t (x) : t (y) : S => C / t (x + y) : S With cycling semantics for overflows. * `SUB` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > SUB ; C / t (x) : t (y) : S => C / t (x + y) : S With cycling semantics for overflows. * `MUL` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > MUL ; C / t (x) : t (y) : S => C / t (x + y) : S Unckeched for overflows. * `DIV` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > DIV ; C / t (x) : t (0) : S => C / [FAIL] > DIV ; C / t (x) : t (y) : S => C / t (x / y) : S * `MOD` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > MOD ; C / t (x) : t (0) : S => C / [FAIL] > MOD ; C / t (x) : t (y) : S => C / t (x % y) : S * `CAST t_to` where `t_to in u?int{8|16|32|64}` :: t_from : 'S -> t_to : 'S where t_from in u?int{8|16|32|64} > CAST t_to ; C / t_from (x) : S => C / t_to (x) : S Alternative operators are defined that check for overflows. * `CHECKED_NEG` :: t : 'S -> t : 'S where t in int{8|16|32|64} > CHECKED_NEG ; C / t (x) : S => [FAIL] on overflow > CHECKED_NEG ; C / t (x) : S => C / t (-x) : S * `CHECKED_ABS` :: t : 'S -> t : 'S where t in int{8|16|32|64} > CHECKED_ABS ; C / t (x) : S => [FAIL] on overflow > CHECKED_ABS ; C / t (x) : S => C / t (abs (x)) : S * `CHECKED_ADD` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > CHECKED_ADD ; C / t (x) : t (y) : S => [FAIL] on overflow > CHECKED_ADD ; C / t (x) : t (y) : S => C / t (x + y) : S * `CHECKED_SUB` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > CHECKED_SUB ; C / t (x) : t (y) : S => [FAIL] on overflow > CHECKED_SUB ; C / t (x) : t (y) : S => C / t (x - y) : S * `CHECKED_MUL` :: t : t : 'S -> t : 'S where t in u?int{8|16|32|64} > CHECKED_MUL ; C / t (x) : t (y) : S => [FAIL] on overflow > CHECKED_MUL ; C / t (x) : t (y) : S => C / t (x * y) : S * `CHECKED_CAST t_to` where `t_to in u?int{8|16|32|64}` :: t_from : 'S -> t_to : 'S where t_from in u?int{8|16|32|64} > CHECKED_CAST t_to ; C / t_from (x) : S => C / t_to (x) : S iff t_from (x) = t_to (x) > CHECKED_CAST t_to ; C / t_from (x) : S => [FAIL] Bitwise logical operators are also available on unsigned integers. * `OR` :: t : t : 'S -> t : 'S where t in uint{8|16|32|64} > OR ; C / t (x) : t (y) : S => C / t (x | y) : S * `AND` :: t : t : 'S -> t : 'S where t in uint{8|16|32|64} > AND ; C / t (x) : t (y) : S => C / t (x & y) : S * `XOR` :: t : t : 'S -> t : 'S where t in uint{8|16|32|64} > XOR ; C / t (x) : t (y) : S => C / t (x ^ y) : S * `NOT` :: t : 'S -> t : 'S where t in uint{8|16|32|64} > NOT ; C / t (x) : S => C / t (~x) : S * `LSL` :: t : uint8 (s) : 'S -> t : 'S where t in uint{8|16|32|64} > LSL ; C / t (x) : uint8 (s) : S => C / t (x << s) : S iff s <= bits (t) > LSL ; C / t (x) : uint8 (s) : S => [FAIL] * `LSR` :: t : uint8 (s) : 'S -> t : 'S where t in uint{8|16|32|64} > LSR ; C / t (x) : uint8 (s) : S => C / t (x >>> s) : S iff s <= bits (t) > LSR ; C / t (x) : uint8 (s) : S => [FAIL] * `COMPARE`: Integer comparison (signed or unsigned according to the type) :: t : t : 'S -> int64 : 'S where t in uint{8|16|32|64} ### Operations on Floats The float type uses double precision IEEE754 semantics, including NaN and infinite values. * `ADD` :: float : float : 'S -> float : 'S > ADD ; C / x : y : S => C / (x + y) : S * `SUB` :: float : float : 'S -> float : 'S > SUB ; C / x : y : S => C / (x - y) : S * `MUL` :: float : float : 'S -> float : 'S > MUL ; C / x : y : S => C / (x * y) : S * `DIV` :: float : float : 'S -> float : 'S > DIV ; C / x : y : S => C / (x / y) : S * `MOD` :: float : float : 'S -> float : 'S > MOD ; C / x : y : S => C / (fmod (x, y)) : S * `ABS` :: float : 'S -> float : 'S > ABS ; C / x : S => C / (abs (x)) : S * `NEG` :: float : 'S -> float : 'S > NEG ; C / x : S => C / (-x) : S * `FLOOR` :: float : 'S -> float : 'S > FLOOR ; C / x : S => C / (floor (x)) : S * `CEIL` :: float : 'S -> float : 'S > CEIL ; C / x : S => C / (ceil (x)) : S * `INF` :: 'S -> float : 'S > INF ; C / S => C / +Inf : S * `NAN` :: 'S -> float : 'S > NAN ; C / S => C / NaN : S * `ISNAN` :: float : 'S -> bool : 'S > ISNAN ; C / NaN : S => C / true : S > ISNAN ; C / _ : S => C / false : S * `NANAN` :: float : 'S -> 'S > NANAN ; C / NaN : S => [FAIL] > NANAN ; C / _ : S => C / S * `CAST float`: Conversion from integers. :: t_from : 'S -> float : 'S where t_from in u?int{8|16|32|64} > CAST float ; C / x : S => C / float (x) : S * `CAST t_to` where `t_to in u?int{8|16|32|64}`: Conversion to integers. :: float : 'S -> t_to : 'S > CAST t_to ; C / NaN : S => C / t_to (0) : S > CAST t_to ; C / +/-Inf : S => C / t_to (0) : S > CAST t_to ; C / x : S => C / t_to (floor (x)) : S * `CHECKED_CAST float`: Conversion from integers with overflow checking. :: t_from : 'S -> float : 'S where t_from in u?int{8|16|32|64} > CHECKED_CAST float ; C / x : S => [FAIL] on overflow > CHECKED_CAST float ; C / x : S => C / float (x) : S * `CHECKED_CAST t_to` where `t_to in u?int{8|16|32|64}`: Conversion to integers with overflow checking. :: float : 'S -> t_to : 'S > CHECKED_CAST t_to ; C / x : S => [FAIL] on overflow or NaN > CHECKED_CAST t_to ; C / x : S => C / t_to (floor (x)) : S * `COMPARE`: IEEE754 comparison :: float : float : 'S -> int64 : 'S ### Operations on strings Strings are mostly used for naming things without having to rely on external ID databases. So what can be done is basically use string constants as is, concatenate them and use them as keys. * `CONCAT`: String concatenation. :: string : string : 'S -> string : 'S * `COMPARE`: Lexicographic comparison. :: string : string : 'S -> int64 : 'S ### Operations on pairs * `PAIR`: Build a pair from the stack's top two elements. :: 'a : 'b : 'S -> pair 'a 'b : 'S > PAIR ; C / a : b : S => C / (Pair a b) : S * `P(A*AI)+R`: A syntactic sugar for building nested pairs in bulk. > PA{N}AI(\rest)R ; C / S => DIP (PA{n-1}AIR) ; P(\rest)R ; C / S > PAIR ; C / S => PAIR ; C / S > PR ; C / S => C / S * `CAR`: Access the left part of a pair. :: pair 'a _ : 'S -> 'a : 'S > Car ; C / (Pair a _) : S => C / a : S * `CDR`: Access the left part of a pair. :: pair _ 'b : 'S -> 'b : 'S > Car ; C / (Pair _ b) : S => C / b : S * `C[AD]+R`: A sugary syntax for accessing fields in nested pairs. > CA(\rest)R ; C / S => CAR ; C(\rest)R ; C / S > CD(\rest)R ; C / S => CDR ; C(\rest)R ; C / S > CR ; C / S => C / S ### Operations on refs * `REF`: Build a ref from its initial contents. :: 'a : 'S -> ref 'a : 'S > REF ; C / a : S / M => C / l : S / l = (Ref a), M * `DEREF`: Access the contents of a ref. :: ref 'a : 'S -> 'a : 'S > DEREF ; C / l : S / l = (Ref a), M => C / a : S / l = (Ref a), M * `SET` Update the contents of a ref. :: 'a : ref 'a : 'S -> 'S > SET ; C / v :: l : S / l = (Ref _), M => C / S / l = (Ref v), M * `INCR step`: Increments a counter. :: ref 'a : 'S -> 'S iff step :: 'a, operator ADD defined on 'a > INCR step ; C / l : S / M => DUP ; DEREF ; PUSH step ; ADD ; Set ; C / S / M * `DECR step`: Decrements a counter. :: ref 'a : 'S -> 'S iff step :: 'a, operator SUB defined on 'a > DECR step ; C / l : S / M => DUP ; DEREF ; PUSH step ; SUB ; Set ; C / S / M ### Operations on sets * `EMPTY_SET 'elt`: Build a new, empty imperative set for elements of a given type. :: 'S -> set 'elt : 'S The `'elt` type must be comparable (the `COMPARE` primitive must be defined over it). * `MEM`: Check for the presence of an element in a set. :: 'key : set 'elt : 'S -> bool : 'S * `UPDATE`: Inserts or removes an element in a set, replacing a previous value. :: 'elt : bool : set 'elt : 'S -> 'S * `ITER`: Apply an imperative function over all the elements of a set. :: lambda 'elt void : set 'elt : 'S -> 'S * `REDUCE`: Apply a function on a set passing the result of each application to the next one and return the last. :: lambda (pair 'elt * 'b) 'b : set 'elt : 'b : 'S -> 'b : 'S ### Operations on maps * `EMPTY_MAP 'key 'val`: Build a new, empty imperative map. The `'key` type must be comparable (the `COMPARE` primitive must be defined over it). :: 'S -> map 'key 'val : 'S * `GET`: Access an element in a map, returns an optional value to be checked with `IF_SOME`. :: 'key : map 'key 'val : 'S -> option 'val : 'S * `MEM`: Check for the presence of an element in a map. :: 'key : map 'key 'val : 'S -> bool : 'S * `UPDATE`: Assign or remove an element in a map. :: 'key : option 'val : map 'key 'val : 'S -> 'S * `ITER`: Apply an imperative function over all the bindings of a map. :: lambda (pair 'key 'val) void : map 'key 'val : 'S -> 'S * `MAP`: Apply a function on a map and return the map of results under the same bindings. :: lambda (pair 'key 'val) 'b : map 'key 'val : 'S -> map 'key 'b : 'S * `REDUCE`: Apply a function on a map passing the result of each application to the next one and return the last. :: lambda (pair (pair 'key 'val) 'b) 'b : map 'key 'val : 'b : 'S -> 'b : 'S ### Operations on optional values * `SOME`: Pack a present optional value. :: 'a : 'S -> 'a? : 'S > SOME ; C / v :: S => C / (Some v) :: S * `NONE 'a`: The absent optional value. :: 'S -> 'a? : 'S > NONE ; C / v :: S => C / None :: S * `IF_SOME bt bf`: Inspect an optional value. :: 'a? : 'S -> 'b : 'S iff bt :: [ 'a : 'S -> 'b : 'S] bf :: [ 'S -> 'b : 'S] > IF_SOME ; C / (Some a) : S => bt ; C / a : S > IF_SOME ; C / (None) : S => bf ; C / S ### Operations on unions * `LEFT 'b`: Pack a value in a union (left case). :: 'a : 'S -> or 'a 'b : 'S > LEFT ; C / v :: S => C / (Left v) :: S * `RIGHT 'a`: Pack a value in a union (right case). :: 'b : 'S -> or 'a 'b : 'S > RIGHT ; C / v :: S => C / (Right v) :: S * `IF_LEFT bt bf`: Inspect an optional value. :: or 'a 'b : 'S -> 'c : 'S iff bt :: [ 'a : 'S -> 'c : 'S] bf :: [ 'b : 'S -> 'c : 'S] > IF_LEFT ; C / (Left a) : S => bt ; C / a : S > IF_LEFT ; C / (Right b) : S => bf ; C / b : S ### Operations on lists * `CONS`: Prepend an element to a list. :: 'a : list 'a : 'S -> list 'a : 'S > CONS ; C / a : l : S => C / (Cons a l) : S * `NIL 'a`: The empty list. :: 'S -> list 'a : 'S > NIL ; C / S => C / Nil : S * `IF_CONS bt bf`: Inspect an optional value. :: list 'a : 'S -> 'b : 'S iff bt :: [ 'a : list 'a : 'S -> 'b : 'S] bf :: [ 'S -> 'b : 'S] > IF_CONS ; C / (Cons a rest) : S => bt ; C / a : rest : S > IF_CONS ; C / Nil : S => bf ; C / S * `ITER`: Apply a function on a list from left to right. :: lambda 'a void : list 'a : 'S -> 'S * `MAP`: Apply a function on a list from left to right and return the list of results in the same order. :: lambda 'a 'b : list 'a : 'S -> list 'b : 'S * `REDUCE`: Apply a function on a list from left to right passing the result of each application to the next one and return the last. :: lambda (pair 'a 'b) 'b : list 'a : 'b : 'S -> 'b : 'S VI - Domain specific data types ------------------------------- * `timestamp`: Dates in the real world. * `tez`: A specific type for manipulating tokens. * `contract 'param 'result`: A contract, with the type of its code. * `key`: A public cryptography key. * `signature`: A cryptographic signature. VII - Domain specific operations -------------------------------- ### Operations on timestamps Timestamp immediates can be obtained by the `NOW` operation, or retrieved from script parameters or globals. The only valid operations are the addition of a (positive) number of seconds and the comparison. * `ADD` Increment / decrement a timestamp of the given number of seconds. :: timestamp : float : 'S -> timestamp : 'S > ADD ; C / t : period : S => [FAIL] iff period < 0 > ADD ; C / t : period : S => C / (t + period seconds) : S * `ADD` Increment / decrement a timestamp of the given number of seconds. :: timestamp : uint{8|16|32|64} : 'S -> timestamp : 'S > ADD ; C / t : seconds : S => [FAIL] on overflow > ADD ; C / t : seconds : S => C / (t + seconds) : S * `COMPARE`: Timestamp comparison. :: timestamp : timestamp : 'S -> int64 : 'S ### Operations on Tez Operations on tez are limited to prevent overflow and mixing them with other numerical types by mistake. They are also mandatorily checked for under/overflows. * `ADD`: :: tez : tez : 'S -> tez : 'S > Add ; C / x : y : S => [FAIL] on overflow > Add ; C / x : y : S => C / (x + y) : S * `SUB`: :: tez : tez : 'S -> tez : 'S > Sub ; C / x : y : S => [FAIL] iff x < y > Sub ; C / x : y : S => C / (x - y) : S * `MUL` :: tez : u?int{8|16|32|64} : 'S -> tez : 'S > Mul ; C / x : y : S => [FAIL] on overflow > Mul ; C / x : y : S => C / (x * y) : S * `COMPARE`: :: tez : tez : 'S -> int64 : 'S ### Operations on contracts * `MANAGER`: Access the manager of a contract. :: contract 'p 'r : 'S -> key : 'S * `CREATE_CONTRACT`: Forge a new contract. :: key : key? : bool : bool : tez : lambda (pair (pair tez 'p) 'g) (pair 'r 'g) : 'g : 'S -> contract 'p 'r : 'S As with non code-emitted originations the contract code takes as argument the transfered amount plus an ad-hoc argument and returns an ad-hoc value. The code also takes the global data and returns it to be stored and retrieved on the next transaction. These data are initialized by another parameter. The calling convention for the code is as follows: (Pair (Pair amount arg) globals)) -> (Pair ret globals), as extrapolable from the instruction type. The first parameters are the manager, optional delegate, then spendable and delegatable flags and finally the initial amount taken from the currently executed contract. The contract is returned as a first class value to be called immediately or stored. * `CREATE_ACCOUNT`: Forge an account (a contract without code). :: key : key? : bool : tez : 'S -> contract void void : 'S Take as argument the manager, optional delegate, the delegatable flag and finally the initial amount taken from the currently executed contract. * `TRANSFER_TOKENS`: Forge and evaluate a transaction. :: 'p : tez : contract 'p 'r : 'g : [] -> 'r : 'g : [] The parameter and return value must be consistent with the ones expected by the contract, void for an account. To preserve the global consistency of the system, the current contract's storage must be updated before passing the control to another script. For this, the script must put the partially updated storage on the stack ('g is the type of the contract's storage). If a recursive call to the current contract happened, the updated storage is put on the stack next to the return value. Nothing else can remain on the stack during a nested call. If some local values have to be kept for after the nested call, they have to be stored explicitly in a transient part of the storage. A trivial example of that is to reserve a boolean in the storage, initialized to false, reset to false at the end of each contract execution, and set to true during a nested call. This thus gives an easy way for a contract to prevent recursive call (the contract just fails if the boolean is true). * `BALANCE`: Push the current amount of tez of the current contract. :: 'S -> tez :: 'S * `SOURCE 'p 'r`: Push the source contract of the current transaction. :: 'S -> contract 'p 'r :: 'S * `SELF`: Push the current contract. :: 'S -> contract 'p 'r :: 'S where contract 'p 'r is the type of the current contract * `AMOUNT`: Push the amount of the current transaction. :: 'S -> tez :: 'S ### Special operations * `STEPS_TO_QUOTA`: Push the remaining steps before the contract execution must terminate. :: 'S -> uint32 :: 'S * `NOW`: Push the timestamp of the block whose validation triggered this execution (does not change during the execution of the contract). :: 'S -> timestamp :: 'S * `FAIL`: Explicitly abort the current transaction (and all of its parents). :: _ -> _ > FAIL ; _ / _ => [FAIL] ### Cryptographic primitives * `H`: Compute a cryptographic hash of the value contents using the Sha256 cryptographic algorithm. :: 'a : 'S -> string : 'S * `CHECK_SIGNATURE` Check that a sequence of bytes has been signed with a given key. :: key : pair signature string : 'S -> bool : 'S * `COMPARE` :: key : key : 'S -> int64 : 'S VIII - Concrete syntax ---------------------- The structure of the concrete language is extremely simple. An expression in the language can only be one of the three following constructs. 1. A constant. 2. The application of a primitive to a sequence of expressions. 3. A sequence of expressions. As in Python or Haskell, the concrete syntax of the language is indentation sensitive. The elements of a syntactical block, such as all the elements of a sequence, or all the parameters of a primitive, must be written with the exact same left margin in the program source code. This is unlike in C-like languages, where blocks are delimited with braces and the margin is ignored by the compiled. The exact parsing policy is described just after. ### Constants There are three kinds of constants: 1. Integers in decimal (no prefix), hexadecimal (0x prefix), octal (0o prefix) or binary (0b prefix). 2. Floating point IEEE754 doubles in libc-style notation, with a mandatory period character. (`3` is an `int` but `3.` is a `float`). 3. Strings with usual escapes `\n`, `\t`, `\b`, `\r`, `\\`, `\"`. Strings are encoding agnostic sequences of bytes. Non printable characters can be escaped by 3 digits decimal codes `\ddd` or 2 digit hexadecimal codes `\xHH`. All domain specific constants are strings: - `tez` amounts are written using the same notation as JSON schemas and the command line client: thousands are optionally separated by comas, and centiles, if present, must be prefixed by a period. - in regexp form: `([0-9]{1,3}(,[0-9]{3})+)|[0-9]+(\.[0.9]{2})?` - `"1234567"` means 123456700 tez centiles - `"1,234,567"` means 123456700 tez centiles - `"1234567.89"` means 123456789 tez centiles - `"1,234,567.00"` means 123456789 tez centiles - `"1234,567"` is invalid - `"1,234,567."` is invalid - `"1,234,567.0"` is invalid - `timestamp`s are written using `RFC 339` notation. - `contract`s are the raw strings returned by JSON RPCs or the command line interface and cannot be forged by hand so their format is of no interest here. - `key`s are `Sha256` hashes of `ed25519` public keys encoded in `base48` format with the following custom alphabet: `"eXMNE9qvHPQDdcFx5J86rT7VRm2atAypGhgLfbS3CKjnksB4"`. - `signature`s are `ed25519` signatures as a series of hex-encoded bytes. ### Primitive applications The simplest form requires to break the line after the primitive name and after every argument. Argument must be indented by at least one more space than the primitive, and all arguments must sit on the exact same column. PRIM arg1 arg2 ... If an argument of a primitive application is a primitive application itself, its arguments must be pushed even further on the right, to lift any ambiguity, as in the following example. PRIM1 PRIM2 arg1_prim2 arg2_prim2 arg2_prim1 It is possible to put successive arguments on a single line using a semicolon as a separator: PRIM arg1; arg2 arg3; arg4 It is also possible to add arguments on the same line as the primitive as a lighter way to write simple expressions. An other representation of the first example is: PRIM arg1 arg2 ... It is possible to mix both notations as in: PRIM arg1 arg2 arg3 arg4 Or even: PRIM arg1 arg2 arg3; arg4 Both equivalent to: PRIM arg1 arg2 arg3 arg4 Trayling semicolons are ignored: PRIM arg1; arg2 Calling a primitive with a compound argument on a single line is allowed by wrapping with parentheses. Another notation for the second example is: PRIM1 (PRIM2 arg1_prim2 arg2_prim2) arg2_prim1 ### Sequences Successive instructions can be grouped as a single one by grouping them inside braces, separated by semicolons. To prevent errors, control flow primitives that take instructions as parameters require sequences in the concrete syntax. IF { instr1_true ; instr2_true ; ... } { instr1_false ; instr2_false ; ... } IF { instr1_true ; instr2_true ; ... } { instr1_false ; instr2_false ; ... } A sequence block can be split on several lines. In this situation, the whole block, including the closing brace, must be indented with respect to the first instruction. LAMBDA t_arg t_ret { instr1 ; instr2 instr3 ; instr4 } ### Lexical conventions Instructions are represented by uppercase identifiers, type constructor are lowercase identifiers and constant constructors are Capitalised. * Types, in lowercase, in prefixed notation as in this specification: string pair string (pair int8 tez) lambda int8 int16 Of course, types can be split over multiple lines using the common indented notation. map string uint32 * Constants are built using constructors (starting with a capital) followed by the actual value. Int8 1 Float 3.5e12 Compound constants such as lists, in order not to repeat the same constant constructor for each element, take the type(s) of inner values as first argument(s), and then the values without their constructors. List int8 1 2 3 4 5 Pair int8 int16 1 2 For constructors whose type cannot be completely deduced fron a single value, the free type variables must be specified. For this, some constant constructors take extra types arguments as follows. List int8 None tez Left (Int8 3) int16 Right int16 (Int8 3) When the type is already completely specified, by a parent constructor or as in the instruction PUSH, these annotations must be omitted. Pair int8 (list int16) 1 (List 2 3) Pair (option (pair void int8)) void None Void Pair (or int8 string) (or int8 string) Left 3 Right "text" * Instructions, in uppercase: ADD ### Comments A hash sign (`#`) anywhere outside of a string literal will make the rest of the line (and itself) completely ignored, as in the following example. PUSH (Int8 1) # pushes 1 PUSH (Int8 2) # pushes 2 ADD # computes 2 + 1 IX - Examples ------------- Contracts in the system are stored as a piece of code and a global data storage. The type of the global data of the storage is fixed for each contract at origination time. This is ensured statically by checking on origination that the code preserves the type of the global data. For this, the code of the contract is checked to be of the following type lambda (pair (pair tez 'arg) 'global) -> (pair 'ret 'global) where 'global is the type of the original global store given on origination. The contract also takes a parameter and an amount, and returns a value, hence the complete calling convention above. The global values can be updated either by rewriting the object, or by putting mutable values in it and performing side effects on them, allowing both imperative and functional style. ### Empty contract Because of the calling convention, the empty sequence is not a valid contract of type `(contract void void)`. The code for building a contract of such a type must take a `void` argument, an amount in `tez`, and transform a void global storage, and must thus be of type `(lambda (pair (pair tez void) void) (pair void void))`. Such a minimal contract is thus `{ CDR ; VOID ; PAIR }`. ### Reservoir contract We want to create a contract that stores tez until a timestamp `T` or a maximum amount `N` is reached. Whenever `N` is reached before `T`, all tokens are reversed to an account `B` (and the contract is automatically deleted). Any call to the contract's code performed after `T` will otherwise transfer the tokens to another account `A`. We want to build this contract in a reusable manner, so we do not hard-code the parameters. Instead, we assume that the global data of the contract are `(Pair (Pair T N) (Pair A B))`. Hence, the global data of the contract has the following type 'g = pair pair timestamp tez pair (contract void void) (contract void void) Following the contract calling convention, the code is a lambda of type lambda pair (pair tez void) 'g pair void 'g writen as lambda pair (pair tez void) pair pair timestamp tez pair (contract void void) (contract void void) pair void pair pair timestamp tez pair (contract void void) (contract void void) its code is DUP ; CDAAR # T NOW COMPARE ; LE IF { DUP ; CDADR # N BALANCE COMPARE ; LE IF { } # nothing to do { DUP ; CDDDR # B BALANCE ; PUSH Void ; TRANSFER_TOKENS ; DROP } } { DUP ; CDDAR ; # A BALANCE ; PUSH Void ; TRANSFER_TOKENS ; DROP } CDR ; PUSH Void ; PAIR ### Reservoir contract (variant with broker and status) We basically want the same contract as the previous one, but instead of destroying it, we want to keep it alive, storing a flag `S` so that we can afterwards if the tokens have been transfered to `A` or `B`. We also want the broker `A` to get some fee `P` in any case. We thus add variables `P` and `S` to the global data of the contract, which becomes `(Pair (S, Pair (T, Pair (Pair P N) (Pair A B))))`. `P` is the fee for broker `A`, `S` is the state, as a string `"open"`, `"timeout"` or `"success"`. At the beginning of the transaction: S is accessible via a CDAR T via a CDDAR P via a CDDDAAR N via a CDDDADR A via a CDDDDAR B via a CDDDDDR For the contract to stay alive, we test that all least `(Tez "1.00")` is still available after each transaction. This value is given as an example and must be updated according to the actual Tezos minmal value for contract balance. DUP ; CDAR # S PUSH (String "open") ; COMPARE ; NEQ ; IF { FAIL ; CDR } # on "success", "timeout" or a bad init value { DUP ; CDDAR ; # T NOW ; COMPARE ; LT ; IF { # Before timeout # We compute ((1 + P) + N) tez for keeping the contract alive PUSH (Tez "1.00") ; DIP { DUP ; CDDDAAR } ; ADD ; # P DIP { DUP ; CDDDADR } ; ADD ; # N # We compare to the cumulated amount BALANCE ; COMPARE; LT ; IF { # Not enough cash, we accept the transaction # and leave the global CDR } { # We transfer the fee to the broker DUP ; CDDDAAR ; # P DIP { DUP ; CDDDDAR } # A PUSH Void ; TRANSFER_TOKENS ; DROP ; # We transfer the rest to the destination DUP ; CDDDADR ; # N DIP { DUP ; CDDDDDR } # B PUSH Void ; TRANSFER_TOKENS ; DROP ; # We update the global CDR ; CDR ; PUSH (String "success") ; PAIR } } { # After timeout # We try to transfer P tez to A PUSH (Tez "1.00") ; BALANCE ; SUB ; # available DIP { DUP ; CDDDAAR } ;# P COMPARE ; LT ; # available < P IF { PUSH (Tez "1.00") ; BALANCE ; SUB ; # available DIP { DUP ; CDDDDAR } # A PUSH Void ; TRANSFER_TOKENS ; DROP } { DUP ; CDDDAAR ; # P DIP { DUP ; CDDDDAR } # A PUSH Void ; TRANSFER_TOKENS ; DROP } # We transfer the rest to B PUSH (Tez "1.00") ; BALANCE ; SUB ; # available DIP { DUP ; CDDDDDR } # B PUSH Void ; TRANSFER_TOKENS ; DROP ; # We update the global CDR ; CDR ; PUSH (String "timeout") ; PAIR } } # return Void PUSH Void ; PAIR ### Forward contract We want to write a forward contract on dried peas. The contract takes as global data the tons of peas `Q`, the expected delivery date `T`, the contract agreement date `Z`, a strike `K`, a collateral `C` per ton of dried peas, and the accounts of the buyer `B`, the seller `S` and the warehouse `W`. These parameters as grouped in the global storage as follows: Pair (pair uint32 (pair timestamp timestamp)) pair pair tez tez pair (pair account account) account Pair (Pair Q (Pair T Z)) Pair (Pair K C) (Pair (Pair B S) W) The 24 hours after timestamp `Z` are for the buyer and seller to store their collateral `(Q * C)`. For this, the contract takes a string as parameter, matching `"buyer"` or `"seller"` indicating the party for which the tokens are transfered. At the end of this day, each of them can send a transaction to send its tokens back. For this, we need to store who already paid and how much, as a `(pair tez tez)` where the left component is the buyer and the right one the seller. After the first day, nothing cam happen until `T`. During the 24 hours after `T`, the buyer must pay `(Q * K)` to the contract, minus the amount already sent. After this day, if the buyer didn't pay enough then any transaction will send all the tokens to the seller. Otherwise, the seller must deliver at least `Q` tons of dried peas to the warehouse, in the next 24 hours. When the amount is equal to or exceeds `Q`, all the tokens are transfered to the seller and the contract is destroyed. For storing the quantity of peas already delivered, we add a counter of type `uint32` in the global storage. For knowing this quantity, we accept messages from W with a partial amount of delivered peas as argument. After this day, any transaction will send all the tokens to the buyer (not enough peas have been delivered in time). Hence, the global storage is a pair, with the counters on the left, and the constant parameters on the right, initially as follows. Pair pair unit32 (pair tez tez) pair pair uint32 (pair timestamp timestamp) pair pair tez tez pair (pair account account) account Pair 0 (Pair 0_00 0_00) Pair Pair (Pair Q (Pair T Z)) Pair (Pair K C) (Pair (Pair B S) W) The parameter of the transaction will be either a transfer from the buyer or the seller or a delivery notification from the warehouse of type `(or string uint32)`. At the beginning of the transaction: Q is accessible via a CDDAAR T via a CDDADAR Z via a CDDADDR K via a CDDDAAR C via a CDDDADR B via a CDDDDAAR S via a CDDDDADR W via a CDDDDDR the delivery counter via a CDAAR the amount versed by the buyer via a CDADAR the amount versed by the seller via a CDADDR the argument via a CADR The contract returns a void value, and we assume that it is created with the minimum amount, set to `(Tez "1.00")`. The code of the contract is thus as follows. DUP ; CDDADDR ; # Z PUSH (Uint64 86400) ; SWAP ; ADD ; # one day in second NOW ; COMPARE ; LT ; IF { # Before Z + 24 DUP ; CADR ; # we must receive (Left "buyer") or (Left "seller") IF_LEFT { DUP ; PUSH (String "buyer") ; COMPARE ; EQ ; IF { DROP ; DUP ; CDADAR ; # amount already versed by the buyer DIP { DUP ; CAAR } ; ADD ; # transaction # then we rebuild the globals DIP { DUP ; CDADDR } ; PAIR ; # seller amount PUSH (Uint32 0) ; PAIR ; # delivery counter at 0 DIP { CDDR } ; PAIR ; # parameters # and return Void PUSH Void ; PAIR } { PUSH (String "seller") ; COMPARE ; EQ ; IF { DUP ; CDADDR ; # amount already versed by the seller DIP { DUP ; CAAR } ; ADD ; # transaction # then we rebuild the globals DIP { DUP ; CDADAR } ; SWAP ; PAIR ; # buyer amount PUSH (Uint32 0) ; PAIR ; # delivery counter at 0 DIP { CDDR } ; PAIR ; # parameters # and return Void PUSH Void ; PAIR } { FAIL ; CDR ; PUSH Void ; PAIR }}} # (Left _) { FAIL ; DROP ; CDR ; PUSH Void ; PAIR }} # (Right _) { # After Z + 24 # test if the required amount is reached DUP ; CDDAAR ; # Q DIP { DUP ; CDDDADR } ; MUL ; # C PUSH (Uint8 2) ; MUL ; PUSH (Tez "1.00") ; ADD ; BALANCE ; COMPARE ; LT ; # balance < 2 * (Q * C) + 1 IF { # refund the parties DUP ; CDADAR ; # amount versed by the buyer DIP { DUP ; CDDDDAAR } # B PUSH Void ; TRANSFER_TOKENS ; DROP DUP ; CDADDR ; # amount versed by the seller DIP { DUP ; CDDDDADR } # S PUSH Void ; TRANSFER_TOKENS ; DROP BALANCE ; # bonus to the warehouse to destroy the account DIP { DUP ; CDDDDDR } # W PUSH Void ; TRANSFER_TOKENS ; DROP # return void, don't change the global # since the contract will be destroyed CDR ; PUSH Void ; PAIR } { # otherwise continue DUP ; CDDADAR # T NOW ; COMPARE ; LT IF { FAIL ; CDR ; PUSH Void ; PAIR } # Between Z + 24 and T { # after T DUP ; CDDADAR # T PUSH (Uint64 86400) ; ADD # one day in second NOW ; COMPARE ; LT IF { # Between T and T + 24 # we only accept transactions from the buyer DUP ; CADR ; # we must receive (Left "buyer") IF_LEFT { PUSH (String "buyer") ; COMPARE ; EQ ; IF { DUP ; CDADAR ; # amount already versed by the buyer DIP { DUP ; CAAR } ; ADD ; # transaction # The amount must not exceed Q * K DUP ; DIIP { DUP ; CDDAAR ; # Q DIP { DUP ; CDDDAAR } ; MUL ; } ; # K DIP { COMPARE ; GT ; # new amount > Q * K IF { FAIL } { } } ; # abort or continue # then we rebuild the globals DIP { DUP ; CDADDR } ; PAIR ; # seller amount PUSH (Uint32 0) ; PAIR ; # delivery counter at 0 DIP { CDDR } ; PAIR ; # parameters # and return Void PUSH Void ; PAIR } { FAIL ; CDR ; PUSH Void ; PAIR }} # (Left _) { FAIL ; DROP ; CDR ; PUSH Void ; PAIR }} # (Right _) { # After T + 24 # test if the required payment is reached DUP ; CDDAAR ; # Q DIP { DUP ; CDDDAAR } ; MUL ; # K DIP { DUP ; CDADAR } ; # amount already versed by the buyer COMPARE ; NEQ ; IF { # not reached, pay the seller and destroy the contract BALANCE ; DIP { DUP ; CDDDDADR } # S PUSH Void ; TRANSFER_TOKENS ; DROP ; # and return Void CDR ; PUSH Void ; PAIR } { # otherwise continue DUP ; CDDADAR # T PUSH (Uint64 86400) ; ADD ; PUSH (Uint64 86400) ; ADD ; # two days in second NOW ; COMPARE ; LT IF { # Between T + 24 and T + 48 # We accept only delivery notifications, from W DUP ; CDDDDDR ; MANAGER ; # W SOURCE void void ; MANAGER ; COMPARE ; NEQ ; IF { FAIL } {} # fail if not the warehouse DUP ; CADR ; # we must receive (Right amount) IF_LEFT { FAIL ; DROP ; CDR ; PUSH Void ; PAIR } # (Left _) { # We increment the counter DIP { DUP ; CDAAR } ; ADD ; # And rebuild the globals in advance DIP { DUP ; CDADR } ; PAIR ; DIP CDDR ; PAIR ; PUSH Void ; PAIR ; # We test if enough have been delivered DUP ; CDAAR ; DIP { DUP ; CDDAAR } ; COMPARE ; LT ; # counter < Q IF { } # wait for more { # Transfer all the money to the seller BALANCE ; # and destroy the contract DIP { DUP ; CDDDDADR } # S PUSH Void ; TRANSFER_TOKENS ; DROP }}} { # after T + 48, transfer everything to the buyer BALANCE ; # and destroy the contract DIP { DUP ; CDDDDAAR } # B PUSH Void ; TRANSFER_TOKENS ; DROP ; # and return void CDR ; PUSH Void ; PAIR }}}}}} X - Full grammar ---------------- ::= | | | Int8 | Int16 | Int32 | Int64 | Uint8 | Uint16 | Uint32 | Uint64 | Void | True | False | Timestamp | Signature | Tez | Key | Left | Right | Or | Ref | Ref | Some | Some | None | Option | Pair | Pair | List ... | Set ... | Map (Item ) ... | Contract | Lambda { ... } ::= | | | | | | | | | Void | True | False | Pair | Left | Right | Ref | Some | None | List ... | Set ... | Map (Item ) ... ::= | { ... } | DROP | DUP | SWAP | PUSH | SOME | NONE | IF_NONE { ... } { ... } | PAIR | CAR | CDR | LEFT | RIGHT | IF_LEFT { ... } { ... } | NIL | CONS | IF_CONS { ... } { ... } | EMPTY_SET | EMPTY_MAP | ITER | MAP | REDUCE | MEM | GET | UPDATE | REF | DEREF | SET | IF { ... } { ... } | LOOP { ... } | LAMBDA { ... } | EXEC | DIP { ... } | FAIL | NOP | CONCAT | ADD | SUB | MUL | DIV | ABS | NEG | MOD | LSL | LSR | OR | AND | XOR | NOT | COMPARE | EQ | NEQ | LT | GT | LE | GE | CAST | CHECKED_ABS | CHECKED_NEG | CHECKED_ADD | CHECKED_SUB | CHECKED_MUL | CHECKED_CAST | FLOOR | CEIL | INF | NAN | ISNAN | NANAN | MANAGER | TRANSFER_TOKENS | CREATE_ACCOUNT | CREATE_CONTRACT | NOW | AMOUNT | BALANCE | CHECK_SIGNATURE | H | STEPS_TO_QUOTA | SOURCE ::= | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | void | string | float | tez | bool | key | timestamp | signature | ref | option | list | set | contract | pair | union | lambda | map ::= | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | string | float | tez | bool | key | timestamp XI - Reference implementation ----------------------------- The language is implemented in OCaml as follows: * The lower internal representation is written as a GADT whose type parameters encode exactly the typing rules given in this specification. In other words, if a program written in this representation is accepted by OCaml's typechecker, it is mandatorily type-safe. This of course also valid for programs not handwritten but generated by OCaml code, so we are sure that any manipulated code is type-safe. In the end, what remains to be checked is the encoding of the typing rules as OCaml types, which boils down to half a line of code for each instruction. Everything else is left to the venerable and well trusted OCaml. * The interpreter is basically the direct transcription of the rewriting rules presented above. It takes an instruction, a stack and transforms it. OCaml's typechecker ensures that the transformation respects the pre and post stack types declared by the GADT case for each instruction. The only things that remain to we reviewed are value dependent choices, such as that we did not swap true and false when interpreting the If instruction. * The input, untyped internal representation is an OCaml ADT with the only 5 grammar constructions: `String`, `Float`, `Int`, `Seq` and `Prim`. It is the target language for the parser, since not all parsable programs are well typed, and thus could simply not be constructed using the GADT. * The typechecker is a simple function that recognizes the abstract grammar described in section X by pattern matching, producing the well-typed, corresponding GADT expressions. It is mostly a checker, not a full inferer, and thus takes some annotations (basically the inpout and output of the program, of lambdas and of uninitialized imperative structures). It works by performing a symbolic evaluation of the program, transforming a symbolic stack. It only needs one pass over the whole program. Here again, OCaml does most of the checking, the structure of the function is very simple, what we have to check is that we transform a `Prim ("If", ...)` into an `If`, a `Prim ("Dup", ...)` into a `Dup`, etc.