[@@@warning "-45"] open Trace open Ast_simplified module Raw = Parser.Ligodity.AST module SMap = Map.String module Option = Simple_utils.Option open Combinators let nseq_to_list (hd, tl) = hd :: tl let npseq_to_list (hd, tl) = hd :: (List.map snd tl) let npseq_to_nelist (hd, tl) = hd, (List.map snd tl) let pseq_to_list = function | None -> [] | Some lst -> npseq_to_list lst let get_value : 'a Raw.reg -> 'a = fun x -> x.value open Operators.Simplify.Ligodity let rec simpl_type_expression : Raw.type_expr -> type_expression result = function | TPar x -> simpl_type_expression x.value.inside | TAlias v -> ( match List.assoc_opt v.value type_constants with | Some s -> ok @@ T_constant (s , []) | None -> ok @@ T_variable v.value ) | TFun x -> ( let%bind (a , b) = let (a , _ , b) = x.value in bind_map_pair simpl_type_expression (a , b) in ok @@ T_function (a , b) ) | TApp x -> let (name, tuple) = x.value in let lst = npseq_to_list tuple.value.inside in let%bind cst = trace_option (simple_error "unrecognized type constants") @@ List.assoc_opt name.value type_constants in let%bind lst' = bind_list @@ List.map simpl_type_expression lst in ok @@ T_constant (cst , lst') | TProd p -> let%bind tpl = simpl_list_type_expression @@ npseq_to_list p.value in ok tpl | TRecord r -> let aux = fun (x, y) -> let%bind y = simpl_type_expression y in ok (x, y) in let%bind lst = bind_list @@ List.map aux @@ List.map (fun (x:Raw.field_decl Raw.reg) -> (x.value.field_name.value, x.value.field_type)) @@ pseq_to_list r.value.elements in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_record m | TSum s -> let aux (v:Raw.variant Raw.reg) = let args = match v.value.args with None -> [] | Some (_, cartesian) -> npseq_to_list cartesian.value in let%bind te = simpl_list_type_expression @@ args in ok (v.value.constr.value, te) in let%bind lst = bind_list @@ List.map aux @@ npseq_to_list s.value in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_sum m and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result = match lst with | [] -> assert false | [hd] -> simpl_type_expression hd | lst -> let%bind lst = bind_list @@ List.map simpl_type_expression lst in ok @@ T_tuple lst let rec simpl_expression : ?te_annot:type_expression -> Raw.expr -> expr result = fun ?te_annot t -> let return x = ok @@ make_option_typed x te_annot in let simpl_projection = fun (p:Raw.projection) -> let var = let name = p.struct_name.value in e_variable name in let path = p.field_path in let path' = let aux (s:Raw.selection) = match s with | FieldName property -> Access_record property.value | Component index -> let index = index.value.inside in Access_tuple (Z.to_int (snd index.value)) in List.map aux @@ npseq_to_list path in return @@ E_accessor (var, path') in let mk_let_in binder rhs result = E_let_in {binder; rhs; result} in trace ( let title () = "simplifying expression" in let message () = "" in let data = [ ("expression" , thunk @@ Format.asprintf "%a" (PP_helpers.printer Raw.print_expr) t) ] in error ~data title message ) @@ match t with | Raw.ELetIn e -> ( let Raw.{binding; body; _} = e.value in let Raw.{variable; lhs_type; let_rhs; _} = binding in let%bind type_annotation = bind_map_option (fun (_,type_expr) -> simpl_type_expression type_expr) lhs_type in let%bind rhs = simpl_expression ?te_annot:type_annotation let_rhs in let%bind body = simpl_expression body in return @@ mk_let_in (variable.value , None) rhs body ) | Raw.EAnnot a -> ( let (expr , type_expr) = a.value in match te_annot with | None -> ( let%bind te_annot = simpl_type_expression type_expr in let%bind expr' = simpl_expression ~te_annot expr in ok expr' ) | Some _ -> simple_fail "no double annotation" ) | EVar c -> ( let c' = c.value in match List.assoc_opt c' constants with | None -> return @@ E_variable c.value | Some s -> return @@ E_constant (s , []) ) | ECall x -> ( let (e1, e2) = x.value in let%bind args = bind_map_list simpl_expression (nseq_to_list e2) in match e1 with | EVar f -> (match List.assoc_opt f.value constants with | None -> let%bind arg = simpl_tuple_expression (nseq_to_list e2) in return @@ E_application (e_variable f.value, arg) | Some s -> return @@ E_constant (s , args)) | e1 -> let%bind e1' = simpl_expression e1 in let%bind arg = simpl_tuple_expression (nseq_to_list e2) in return @@ E_application (e1' , arg) ) | EPar x -> simpl_expression ?te_annot x.value.inside | EUnit _ -> return @@ E_literal Literal_unit | EBytes x -> return @@ E_literal (Literal_bytes (Bytes.of_string @@ fst x.value)) | ETuple tpl -> simpl_tuple_expression ?te_annot @@ (npseq_to_list tpl.value) | ERecord r -> let%bind fields = bind_list @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ pseq_to_list r.value.elements in let aux prev (k, v) = SMap.add k v prev in return @@ E_record (List.fold_left aux SMap.empty fields) | EProj p' -> ( let p = p'.value in simpl_projection p ) | EConstr c -> let (c, args) = c.value in let args = match args with None -> [] | Some arg -> [arg] in let%bind arg = simpl_tuple_expression @@ args in return @@ E_constructor (c.value, arg) | EArith (Add c) -> simpl_binop ?te_annot "ADD" c.value | EArith (Sub c) -> simpl_binop ?te_annot "SUB" c.value | EArith (Mult c) -> simpl_binop ?te_annot "TIMES" c.value | EArith (Div c) -> simpl_binop ?te_annot "DIV" c.value | EArith (Mod c) -> simpl_binop ?te_annot "MOD" c.value | EArith (Int n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_int n) | EArith (Nat n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_nat n) | EArith (Mtz n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_tez n) | EArith _ -> simple_fail "arith: not supported yet" | EString (String s) -> let s' = let s = s.value in String.(sub s 1 ((length s) - 2)) in return @@ E_literal (Literal_string s') | EString _ -> simple_fail "string: not supported yet" | ELogic l -> simpl_logic_expression ?te_annot l | EList l -> simpl_list_expression ?te_annot l | ECase c -> ( let%bind e = simpl_expression c.value.expr in let%bind lst = let aux (x : Raw.expr Raw.case_clause) = let%bind expr = simpl_expression x.rhs in ok (x.pattern, expr) in bind_list @@ List.map aux @@ List.map get_value @@ npseq_to_list c.value.cases.value in let default_action () = let%bind cases = simpl_cases lst in return @@ E_matching (e , cases) in (* Hack to take care of patterns introduced by `parser/ligodity/Parser.mly` in "norm_fun_expr" *) match lst with | [ (pattern , rhs) ] -> ( match pattern with | Raw.PPar p -> ( let p' = p.value.inside in match p' with | Raw.PTyped x -> ( let x' = x.value in match x'.pattern with | Raw.PVar y -> let var_name = y.value in let%bind type_expr = simpl_type_expression x'.type_expr in return @@ e_let_in (var_name , Some type_expr) e rhs | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | EFun lamb -> simpl_fun lamb | ESeq s -> let items : Raw.expr list = pseq_to_list s.value.elements in (match items with [] -> return @@ E_skip | expr::more -> let expr' = simpl_expression expr in let apply (e1: Raw.expr) (e2: expression Trace.result) = let%bind a = simpl_expression e1 in let%bind e2' = e2 in return @@ E_sequence (a, e2') in List.fold_right apply more expr') | ECond c -> let c = c.value in let%bind expr = simpl_expression c.test in let%bind match_true = simpl_expression c.ifso in let%bind match_false = simpl_expression c.ifnot in return @@ E_matching (expr, (Match_bool {match_true; match_false})) and simpl_fun lamb : expr result = let return x = ok x in let rec aux args body = match body with | Raw.EFun l -> ( let l' = l.value in let annot = Option.map snd l'.p_annot in aux (args @ [(l'.param.value , annot)]) l'.body ) | _ -> (args , body) in let (args , body) = aux [] (Raw.EFun lamb) in let%bind args' = let aux = fun (name , ty_opt) -> let%bind ty = match ty_opt with | Some ty -> simpl_type_expression ty | None when name = "storage" -> ok (T_variable "storage") | None -> simple_fail "missing type annotation on input" in ok (name , ty) in bind_map_list aux args in let arguments_name = "arguments" in let (binder , input_type) = let type_expression = T_tuple (List.map snd args') in (arguments_name , type_expression) in let body, body_type = match body with | EAnnot {value = expr, type_expr} -> expr, Some type_expr | expr -> expr, None in let%bind output_type = bind_map_option simpl_type_expression body_type in let%bind result = simpl_expression body in let wrapped_result = let aux = fun i (name , ty) wrapped -> let accessor = E_accessor (E_variable arguments_name , [ Access_tuple i ]) in e_let_in (name , Some ty) accessor wrapped in let wraps = List.mapi aux args' in List.fold_right' (fun x f -> f x) result wraps in let lambda = {binder = (binder , Some input_type); input_type = (Some input_type); output_type; result = wrapped_result} in return @@ E_lambda lambda and simpl_logic_expression ?te_annot (t:Raw.logic_expr) : expr result = let return x = ok @@ make_option_typed x te_annot in match t with | BoolExpr (False _) -> return @@ E_literal (Literal_bool false) | BoolExpr (True _) -> return @@ E_literal (Literal_bool true) | BoolExpr (Or b) -> simpl_binop ?te_annot "OR" b.value | BoolExpr (And b) -> simpl_binop ?te_annot "AND" b.value | BoolExpr (Not b) -> simpl_unop ?te_annot "NOT" b.value | CompExpr (Lt c) -> simpl_binop ?te_annot "LT" c.value | CompExpr (Gt c) -> simpl_binop ?te_annot "GT" c.value | CompExpr (Leq c) -> simpl_binop ?te_annot "LE" c.value | CompExpr (Geq c) -> simpl_binop ?te_annot "GE" c.value | CompExpr (Equal c) -> simpl_binop ?te_annot "EQ" c.value | CompExpr (Neq c) -> simpl_binop ?te_annot "NEQ" c.value and simpl_list_expression ?te_annot (t:Raw.list_expr) : expression result = let return x = ok @@ make_option_typed x te_annot in match t with | Cons c -> simpl_binop ?te_annot "CONS" c.value | List lst -> let%bind lst' = bind_map_list simpl_expression @@ pseq_to_list lst.value.elements in return @@ E_list lst' and simpl_binop ?te_annot (name:string) (t:_ Raw.bin_op) : expression result = let return x = ok @@ make_option_typed x te_annot in let%bind a = simpl_expression t.arg1 in let%bind b = simpl_expression t.arg2 in return @@ E_constant (name, [a;b]) and simpl_unop ?te_annot (name:string) (t:_ Raw.un_op) : expression result = let return x = ok @@ make_option_typed x te_annot in let%bind a = simpl_expression t.arg in return @@ E_constant (name, [a]) and simpl_tuple_expression ?te_annot (lst:Raw.expr list) : expression result = let return x = ok @@ make_option_typed x te_annot in match lst with | [] -> return @@ E_literal Literal_unit | [hd] -> simpl_expression ?te_annot hd | lst -> let%bind lst = bind_list @@ List.map simpl_expression lst in return @@ E_tuple lst and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t -> let open! Raw in let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in match t with | TypeDecl x -> let {name;type_expr} : Raw.type_decl = x.value in let%bind type_expression = simpl_type_expression type_expr in ok @@ loc x @@ Declaration_type (name.value , type_expression) | LetEntry x (* -> simple_fail "no entry point yet" *) | Let x -> ( let _, binding = x.value in let {variable ; lhs_type ; let_rhs} = binding in let%bind type_annotation = bind_map_option (fun (_,type_expr) -> simpl_type_expression type_expr) lhs_type in let%bind rhs = simpl_expression ?te_annot:type_annotation let_rhs in let name = variable.value in ok @@ loc x @@ (Declaration_constant (name , type_annotation , rhs)) ) and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t -> let open Raw in let get_var (t:Raw.pattern) = match t with | PVar v -> ok v.value | _ -> let error = let title () = "not a var" in let content () = Format.asprintf "%a" (PP_helpers.printer Raw.print_pattern) t in error title content in fail error in let get_tuple (t:Raw.pattern) = match t with | PTuple v -> npseq_to_list v.value | x -> [ x ] in let get_single (t:Raw.pattern) = let t' = get_tuple t in let%bind () = trace_strong (simple_error "not single") @@ Assert.assert_list_size t' 1 in ok (List.hd t') in let get_constr (t:Raw.pattern) = match t with | PConstr v -> ( let (const , pat_opt) = v.value in let%bind pat = trace_option (simple_error "No constructor without variable yet") @@ pat_opt in let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (const.value , var) ) | _ -> simple_fail "not a constr" in let%bind patterns = let aux (x , y) = let xs = get_tuple x in trace_strong (simple_error "no tuple in patterns yet") @@ Assert.assert_list_size xs 1 >>? fun () -> ok (List.hd xs , y) in bind_map_list aux t in match patterns with | [(PFalse _ , f) ; (PTrue _ , t)] | [(PTrue _ , t) ; (PFalse _ , f)] -> ok @@ Match_bool {match_true = t ; match_false = f} | [(PList (PCons c) , cons) ; (PList (Sugar sugar_nil) , nil)] | [(PList (Sugar sugar_nil) , nil) ; (PList (PCons c), cons)] -> ( let%bind () = trace_strong (simple_error "Only empty list patterns and cons are allowed yet") @@ Assert.assert_list_empty @@ pseq_to_list @@ sugar_nil.value.elements in let%bind (a, b) = let (a , _ , b) = c.value in let%bind a = get_var a in let%bind b = get_var b in ok (a, b) in ok @@ Match_list {match_cons = (a, b, cons) ; match_nil = nil} ) | lst -> ( trace (simple_error "weird patterns not supported yet") @@ let%bind constrs = let aux (x , y) = let error = let title () = "Pattern" in let content () = Format.asprintf "Pattern : %a" (PP_helpers.printer Raw.print_pattern) x in error title content in let%bind x' = trace error @@ get_constr x in ok (x' , y) in bind_map_list aux lst in ok @@ Match_variant constrs ) let simpl_program : Raw.ast -> program result = fun t -> bind_list @@ List.map simpl_declaration @@ List.rev @@ nseq_to_list t.decl