%{ (* START HEADER *) open AST (* Rewrite "let pattern = e" as "let x = e;; let x1 = ...;; let x2 = ...;;" *) module VMap = Utils.String.Map let ghost_of value = Region.{region=ghost; value} let ghost = Region.ghost let fail_syn_unif type1 type2 : 'a = let reg = AST.region_of_type_expr type1 in let reg = reg#compact ~file:false `Byte in let value = Printf.sprintf "Unification with %s is not\ implemented." reg in let region = AST.region_of_type_expr type2 in let err = Region.{value; region} in (Lexer.prerr ~kind:"Syntactical" err; exit 1) let mk_component rank = let num = string_of_int rank, Z.of_int rank in let par = {lpar=ghost; inside = ghost_of num; rpar=ghost} in Component (ghost_of par) let rec mk_field_path (rank, tail) = let head = mk_component rank in match tail with [] -> head, [] | hd::tl -> mk_field_path (hd,tl) |> Utils.nsepseq_cons head ghost let mk_projection fresh (path : int Utils.nseq) = { struct_name = fresh; selector = ghost; field_path = Utils.nsepseq_rev (mk_field_path path) } let rec sub_rec fresh path (map, rank) pattern = let path' = Utils.nseq_cons rank path in let map' = split fresh map path' pattern in map', rank+1 (* We rewrite "fun p -> e" into "fun x -> match x with p -> e" *) (* END HEADER *) %} (* Entry points *) %start program expr %type program %type expr %% (* RULES *) (* This parser leverages Menhir-specific features, in particular parametric rules, rule inlining and primitives to get the source locations of tokens from the lexer engine generated by ocamllex. We define below two rules, [reg] and [oreg]. The former parses its argument and returns its synthesised value together with its region in the source code (that is, start and end positions --- see module [Region]). The latter discards the value and only returns the region: this is mostly useful for parsing keywords, because those can be easily deduced from the AST node and only their source region has to be recorded there. *) %inline reg(X): X { let start = Pos.from_byte $symbolstartpos and stop = Pos.from_byte $endpos in let region = Region.make ~start ~stop in Region.{region; value=$1} } %inline oreg(X): reg(X) { $1.Region.region } (* Keywords, symbols, literals and virtual tokens *) kwd(X) : oreg(X) { $1 } sym(X) : oreg(X) { $1 } ident : reg(Ident) { $1 } constr : reg(Constr) { $1 } string : reg(Str) { $1 } eof : oreg(EOF) { $1 } vbar : sym(VBAR) { $1 } lpar : sym(LPAR) { $1 } rpar : sym(RPAR) { $1 } lbracket : sym(LBRACKET) { $1 } rbracket : sym(RBRACKET) { $1 } lbrace : sym(LBRACE) { $1 } rbrace : sym(RBRACE) { $1 } comma : sym(COMMA) { $1 } semi : sym(SEMI) { $1 } colon : sym(COLON) { $1 } eq : sym(EQ) { $1 } dot : sym(DOT) { $1 } arrow : sym(ARROW) { $1 } wild : sym(WILD) { $1 } cons : sym(CONS) { $1 } (* The rule [sep_or_term(item,sep)] ("separated or terminated list") parses a non-empty list of items separated by [sep], and optionally terminated by [sep]. *) sep_or_term_list(item,sep): nsepseq(item,sep) { $1, None } | nseq(item sep {$1,$2}) { let (first,sep), tail = $1 in let rec trans (seq, prev_sep as acc) = function [] -> acc | (item,next_sep)::others -> trans ((prev_sep,item)::seq, next_sep) others in let list, term = trans ([],sep) tail in (first, List.rev list), Some term } (* Compound constructs *) par(X): reg(lpar X rpar { {lpar=$1; inside=$2; rpar=$3} }) { $1 } (* Sequences Series of instances of the same syntactical category have often to be parsed, like lists of expressions, patterns etc. The simplest of all is the possibly empty sequence (series), parsed below by [seq]. The non-empty sequence is parsed by [nseq]. Note that the latter returns a pair made of the first parsed item (the parameter [X]) and the rest of the sequence (possibly empty). This way, the OCaml typechecker can keep track of this information along the static control-flow graph. The rule [sepseq] parses possibly empty sequences of items separated by some token (e.g., a comma), and rule [nsepseq] is for non-empty such sequences. See module [Utils] for the types corresponding to the semantic actions of those rules. *) (* Possibly empty sequence of items *) seq(item): (**) { [] } | item seq(item) { $1::$2 } (* Non-empty sequence of items *) nseq(item): item seq(item) { $1,$2 } (* Non-empty separated sequence of items *) nsepseq(item,sep): item { $1, [] } | item sep nsepseq(item,sep) { let h,t = $3 in $1, ($2,h)::t } (* Possibly empy separated sequence of items *) sepseq(item,sep): (**) { None } | nsepseq(item,sep) { Some $1 } (* Helpers *) type_name : ident { $1 } field_name : ident { $1 } module_name : constr { $1 } struct_name : ident { $1 } (* Non-empty comma-separated values (at least two values) *) tuple(item): item comma nsepseq(item,comma) { let h,t = $3 in $1,($2,h)::t } (* Possibly empty semicolon-separated values between brackets *) list_of(item): lbracket sepseq(item,semi) rbracket { {opening = LBracket $1; elements = $2; terminator = None; closing = RBracket $3} } (* Main *) program: declarations eof { {decl = Utils.nseq_rev $1; eof=$2} } declarations: declaration { $1 } | declaration declarations { Utils.(nseq_foldl (swap nseq_cons) $2 $1)} declaration: reg(kwd(LetEntry) entry_binding {$1,$2}) { LetEntry $1, [] } | reg(type_decl) { TypeDecl $1, [] } | let_declaration { $1 } (* Type declarations *) type_decl: kwd(Type) type_name eq type_expr { {kwd_type=$1; name=$2; eq=$3; type_expr=$4} } type_expr: cartesian { TProd $1 } | reg(sum_type) { TSum $1 } | reg(record_type) { TRecord $1 } cartesian: reg(nsepseq(fun_type, sym(TIMES))) { $1 } fun_type: core_type { $1 } | reg(arrow_type) { TFun $1 } arrow_type: core_type arrow fun_type { $1,$2,$3 } core_type: type_projection { TAlias $1 } | reg(reg(core_type) type_constr {$1,$2}) { let arg, constr = $1.value in let Region.{value=arg_val; _} = arg in let lpar, rpar = ghost, ghost in let value = {lpar; inside=arg_val,[]; rpar} in let arg = {arg with value} in TApp Region.{$1 with value = constr, arg} } | reg(type_tuple type_constr {$1,$2}) { let arg, constr = $1.value in TApp Region.{$1 with value = constr, arg} } | par(cartesian) { let Region.{value={inside=prod; _}; _} = $1 in TPar {$1 with value={$1.value with inside = TProd prod}} } type_projection: type_name { $1 } | reg(module_name dot type_name {$1,$2,$3}) { let open Region in let module_name,_ , type_name = $1.value in let value = module_name.value ^ "." ^ type_name.value in {$1 with value} } type_constr: type_name { $1 } | kwd(Set) { Region.{value="set"; region=$1} } | kwd(Map) { Region.{value="map"; region=$1} } | kwd(List) { Region.{value="list"; region=$1} } type_tuple: par(tuple(type_expr)) { $1 } sum_type: ioption(vbar) nsepseq(reg(variant),vbar) { $2 } variant: constr kwd(Of) cartesian { {constr=$1; args = Some ($2,$3)} } | constr { {constr=$1; args = None} } record_type: lbrace sep_or_term_list(reg(field_decl),semi) rbrace { let elements, terminator = $2 in { opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_decl: field_name colon type_expr { {field_name=$1; colon=$2; field_type=$3} } (* Entry points *) entry_binding: ident nseq(sub_irrefutable) type_annotation? eq expr { let let_rhs = $5 in {bindings = ($1 , $2); lhs_type=$3; eq=$4; let_rhs} } | ident type_annotation? eq fun_expr(expr) { {bindings = ($1 , []); lhs_type=$2; eq=$3; let_rhs=$4} } (* Top-level non-recursive definitions *) let_declaration: reg(kwd(Let) let_binding {$1,$2}) { let kwd_let, (binding, map) = $1.value in let let0 = Let {$1 with value = kwd_let, binding} in mk_let_bindings map (let0,[]) } let_binding: ident nseq(sub_irrefutable) type_annotation? eq expr { let let_rhs = $5 in let map = VMap.empty in {bindings= ($1 , $2); lhs_type=$3; eq=$4; let_rhs}, map } | irrefutable type_annotation? eq expr { let variable, type_opt, map = split_pattern $1 in match type_opt, $2 with Some type1, Some (_,type2) when type1 <> type2 -> fail_syn_unif type1 type2 | Some type1, None -> let lhs_type = Some (ghost, type1) in {variable; lhs_type; eq=$3; let_rhs=$4}, map | _ -> {variable; lhs_type=$2; eq=$3; let_rhs=$4}, map } type_annotation: colon type_expr { $1,$2 } (* Patterns *) irrefutable: reg(tuple(sub_irrefutable)) { PTuple $1 } | sub_irrefutable { $1 } sub_irrefutable: ident { PVar $1 } | wild { PWild $1 } | unit { PUnit $1 } | reg(record_pattern) { PRecord $1 } | par(closed_irrefutable) { PPar $1 } closed_irrefutable: irrefutable { $1 } | reg(constr_pattern) { PConstr $1 } | reg(typed_pattern) { PTyped $1 } typed_pattern: irrefutable colon type_expr { {pattern=$1; colon=$2; type_expr=$3} } pattern: reg(sub_pattern cons tail {$1,$2,$3}) { PList (PCons $1) } | reg(tuple(sub_pattern)) { PTuple $1 } | core_pattern { $1 } sub_pattern: par(tail) { PPar $1 } | core_pattern { $1 } core_pattern: ident { PVar $1 } | wild { PWild $1 } | unit { PUnit $1 } | reg(Int) { PInt $1 } | kwd(True) { PTrue $1 } | kwd(False) { PFalse $1 } | string { PString $1 } | par(ptuple) { PPar $1 } | reg(list_of(tail)) { PList (Sugar $1) } | reg(constr_pattern) { PConstr $1 } | reg(record_pattern) { PRecord $1 } record_pattern: lbrace sep_or_term_list(reg(field_pattern),semi) rbrace { let elements, terminator = $2 in {opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_pattern: field_name eq sub_pattern { {field_name=$1; eq=$2; pattern=$3} } constr_pattern: constr sub_pattern { $1, Some $2 } | constr { $1, None } ptuple: reg(tuple(tail)) { PTuple $1 } unit: reg(lpar rpar {$1,$2}) { $1 } tail: reg(sub_pattern cons tail {$1,$2,$3}) { PList (PCons $1) } | sub_pattern { $1 } (* Expressions *) expr: base_cond__open(expr) { $1 } | reg(match_expr(base_cond)) { ECase $1 } base_cond__open(x): base_expr(x) | conditional(x) { $1 } base_cond: base_cond__open(base_cond) { $1 } base_expr(right_expr): let_expr(right_expr) | fun_expr(right_expr) | disj_expr_level { $1 } | reg(tuple(disj_expr_level)) { ETuple $1 } conditional(right_expr): reg(if_then_else(right_expr)) | reg(if_then(right_expr)) { ECond $1 } if_then(right_expr): kwd(If) expr kwd(Then) right_expr { let the_unit = ghost, ghost in let ifnot = EUnit {region=ghost; value=the_unit} in {kwd_if=$1; test=$2; kwd_then=$3; ifso=$4; kwd_else=ghost; ifnot} } if_then_else(right_expr): kwd(If) expr kwd(Then) closed_if kwd(Else) right_expr { {kwd_if=$1; test=$2; kwd_then=$3; ifso=$4; kwd_else=$5; ifnot = $6} } base_if_then_else__open(x): base_expr(x) { $1 } | reg(if_then_else(x)) { ECond $1 } base_if_then_else: base_if_then_else__open(base_if_then_else) { $1 } closed_if: base_if_then_else__open(closed_if) { $1 } | reg(match_expr(base_if_then_else)) { ECase $1 } match_expr(right_expr): kwd(Match) expr kwd(With) vbar? reg(cases(right_expr)) { let cases = Utils.nsepseq_rev $5.value in {kwd_match = $1; expr = $2; opening = With $3; lead_vbar = $4; cases = {$5 with value=cases}; closing = End ghost} } | kwd(MatchNat) expr kwd(With) vbar? reg(cases(right_expr)) { let cases = Utils.nsepseq_rev $5.value in let cast = EVar {region=ghost; value="assert_pos"} in let cast = ECall {region=ghost; value=cast,($2,[])} in {kwd_match = $1; expr = cast; opening = With $3; lead_vbar = $4; cases = {$5 with value=cases}; closing = End ghost} } cases(right_expr): reg(case_clause(right_expr)) { $1, [] } | cases(base_cond) vbar reg(case_clause(right_expr)) { let h,t = $1 in $3, ($2,h)::t } case_clause(right_expr): pattern arrow right_expr { {pattern=$1; arrow=$2; rhs=$3} } let_expr(right_expr): reg(kwd(Let) let_binding kwd(In) right_expr {$1,$2,$3,$4}) { let kwd_let, (binding, map), kwd_in, body = $1.value in let body = mk_let_in_bindings map body in let let_in = {kwd_let; binding; kwd_in; body} in ELetIn {region=$1.region; value=let_in} } fun_expr(right_expr): kwd(Fun) nseq(irrefutable) arrow right_expr { norm_fun_expr $2 $4 } disj_expr_level: reg(disj_expr) { ELogic (BoolExpr (Or $1)) } | conj_expr_level { $1 } bin_op(arg1,op,arg2): arg1 op arg2 { {arg1=$1; op=$2; arg2=$3} } un_op(op,arg): op arg { {op=$1; arg=$2} } disj_expr: bin_op(disj_expr_level, sym(BOOL_OR), conj_expr_level) | bin_op(disj_expr_level, kwd(Or), conj_expr_level) { $1 } conj_expr_level: reg(conj_expr) { ELogic (BoolExpr (And $1)) } | comp_expr_level { $1 } conj_expr: bin_op(conj_expr_level, sym(BOOL_AND), comp_expr_level) { $1 } comp_expr_level: reg(lt_expr) { ELogic (CompExpr (Lt $1)) } | reg(le_expr) { ELogic (CompExpr (Leq $1)) } | reg(gt_expr) { ELogic (CompExpr (Gt $1)) } | reg(ge_expr) { ELogic (CompExpr (Geq $1)) } | reg(eq_expr) { ELogic (CompExpr (Equal $1)) } | reg(ne_expr) { ELogic (CompExpr (Neq $1)) } | cat_expr_level { $1 } lt_expr: bin_op(comp_expr_level, sym(LT), cat_expr_level) { $1 } le_expr: bin_op(comp_expr_level, sym(LE), cat_expr_level) { $1 } gt_expr: bin_op(comp_expr_level, sym(GT), cat_expr_level) { $1 } ge_expr: bin_op(comp_expr_level, sym(GE), cat_expr_level) { $1 } eq_expr: bin_op(comp_expr_level, eq, cat_expr_level) { $1 } ne_expr: bin_op(comp_expr_level, sym(NE), cat_expr_level) { $1 } cat_expr_level: reg(cat_expr) { EString (Cat $1) } (*| reg(append_expr) { EList (Append $1) } *) | cons_expr_level { $1 } cat_expr: bin_op(cons_expr_level, sym(CAT), cat_expr_level) { $1 } (* append_expr: cons_expr_level sym(APPEND) cat_expr_level { $1,$2,$3 } *) cons_expr_level: reg(cons_expr) { EList (Cons $1) } | add_expr_level { $1 } cons_expr: bin_op(add_expr_level, cons, cons_expr_level) { $1 } add_expr_level: reg(plus_expr) { EArith (Add $1) } | reg(minus_expr) { EArith (Sub $1) } | mult_expr_level { $1 } plus_expr: bin_op(add_expr_level, sym(PLUS), mult_expr_level) { $1 } minus_expr: bin_op(add_expr_level, sym(MINUS), mult_expr_level) { $1 } mult_expr_level: reg(times_expr) { EArith (Mult $1) } | reg(div_expr) { EArith (Div $1) } | reg(mod_expr) { EArith (Mod $1) } | unary_expr_level { $1 } times_expr: bin_op(mult_expr_level, sym(TIMES), unary_expr_level) { $1 } div_expr: bin_op(mult_expr_level, sym(SLASH), unary_expr_level) { $1 } mod_expr: bin_op(mult_expr_level, kwd(Mod), unary_expr_level) { $1 } unary_expr_level: reg(uminus_expr) { EArith (Neg $1) } | reg(not_expr) { ELogic (BoolExpr (Not $1)) } | call_expr_level { $1 } uminus_expr: un_op(sym(MINUS), call_expr_level) { $1 } not_expr: un_op(kwd(Not), call_expr_level) { $1 } call_expr_level: reg(call_expr) { ECall $1 } | reg(constr_expr) { EConstr $1 } | core_expr { $1 } constr_expr: constr core_expr? { $1,$2 } call_expr: core_expr nseq(core_expr) { $1,$2 } core_expr: reg(Int) { EArith (Int $1) } | reg(Mtz) { EArith (Mtz $1) } | reg(Nat) { EArith (Nat $1) } | ident | reg(module_field) { EVar $1 } | reg(projection) { EProj $1 } | string { EString (String $1) } | unit { EUnit $1 } | kwd(False) { ELogic (BoolExpr (False $1)) } | kwd(True) { ELogic (BoolExpr (True $1)) } | reg(list_of(expr)) { EList (List $1) } | par(expr) { EPar $1 } | reg(sequence) { ESeq $1 } | reg(record_expr) { ERecord $1 } | par(expr colon type_expr {$1,$3}) { EAnnot {$1 with value=$1.value.inside} } module_field: module_name dot field_name { $1.value ^ "." ^ $3.value } projection: struct_name dot nsepseq(selection,dot) { {struct_name = $1; selector = $2; field_path = $3} } | reg(module_name dot field_name {$1,$3}) dot nsepseq(selection,dot) { let open Region in let module_name, field_name = $1.value in let value = module_name.value ^ "." ^ field_name.value in let struct_name = {$1 with value} in {struct_name; selector = $2; field_path = $3} } selection: field_name { FieldName $1 } | par(reg(Int)) { Component $1 } record_expr: lbrace sep_or_term_list(reg(field_assignment),semi) rbrace { let elements, terminator = $2 in {opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_assignment: field_name eq expr { {field_name=$1; assignment=$2; field_expr=$3} } sequence: kwd(Begin) sep_or_term_list(expr,semi) kwd(End) { let elements, terminator = $2 in {opening = Begin $1; elements = Some elements; terminator; closing = End $3} }