(* Abstract Syntax Tree (AST) for LIGO *) [@@@warning "-30"] open Utils (* Regions The AST carries all the regions where tokens have been found by the lexer, plus additional regions corresponding to whole subtrees (like entire expressions, patterns etc.). These regions are needed for error reporting and source-to-source transformations. To make these pervasive regions more legible, we define singleton types for the symbols, keywords etc. with suggestive names like "kwd_and" denoting the _region_ of the occurrence of the keyword "and". *) type 'a reg = 'a Region.reg val nseq_to_region : ('a -> Region.t) -> 'a nseq -> Region.t val nsepseq_to_region : ('a -> Region.t) -> ('a,'sep) nsepseq -> Region.t val sepseq_to_region : ('a -> Region.t) -> ('a,'sep) sepseq -> Region.t (* Keywords of LIGO *) type keyword = Region.t type kwd_and = Region.t type kwd_begin = Region.t type kwd_block = Region.t type kwd_case = Region.t type kwd_const = Region.t type kwd_contains = Region.t type kwd_down = Region.t type kwd_else = Region.t type kwd_end = Region.t type kwd_entrypoint = Region.t type kwd_fail = Region.t type kwd_for = Region.t type kwd_from = Region.t type kwd_function = Region.t type kwd_if = Region.t type kwd_in = Region.t type kwd_is = Region.t type kwd_list = Region.t type kwd_map = Region.t type kwd_mod = Region.t type kwd_nil = Region.t type kwd_not = Region.t type kwd_of = Region.t type kwd_or = Region.t type kwd_patch = Region.t type kwd_procedure = Region.t type kwd_record = Region.t type kwd_remove = Region.t type kwd_set = Region.t type kwd_skip = Region.t type kwd_step = Region.t type kwd_storage = Region.t type kwd_then = Region.t type kwd_to = Region.t type kwd_type = Region.t type kwd_var = Region.t type kwd_while = Region.t type kwd_with = Region.t (* Data constructors *) type c_False = Region.t type c_None = Region.t type c_Some = Region.t type c_True = Region.t type c_Unit = Region.t (* Symbols *) type semi = Region.t (* ";" *) type comma = Region.t (* "," *) type lpar = Region.t (* "(" *) type rpar = Region.t (* ")" *) type lbrace = Region.t (* "{" *) type rbrace = Region.t (* "}" *) type lbracket = Region.t (* "[" *) type rbracket = Region.t (* "]" *) type cons = Region.t (* "#" *) type vbar = Region.t (* "|" *) type arrow = Region.t (* "->" *) type assign = Region.t (* ":=" *) type equal = Region.t (* "=" *) type colon = Region.t (* ":" *) type lt = Region.t (* "<" *) type leq = Region.t (* "<=" *) type gt = Region.t (* ">" *) type geq = Region.t (* ">=" *) type neq = Region.t (* "=/=" *) type plus = Region.t (* "+" *) type minus = Region.t (* "-" *) type slash = Region.t (* "/" *) type times = Region.t (* "*" *) type dot = Region.t (* "." *) type wild = Region.t (* "_" *) type cat = Region.t (* "^" *) (* Virtual tokens *) type eof = Region.t (* Literals *) type variable = string reg type fun_name = string reg type type_name = string reg type field_name = string reg type map_name = string reg type set_name = string reg type constr = string reg (* Parentheses *) type 'a par = { lpar : lpar; inside : 'a; rpar : rpar } (* Brackets compounds *) type 'a brackets = { lbracket : lbracket; inside : 'a; rbracket : rbracket } (* Braced compounds *) type 'a braces = { lbrace : lbrace; inside : 'a; rbrace : rbrace } (* The Abstract Syntax Tree *) type t = { decl : declaration nseq; eof : eof } and ast = t and declaration = TypeDecl of type_decl reg | ConstDecl of const_decl reg | LambdaDecl of lambda_decl and const_decl = { kwd_const : kwd_const; name : variable; colon : colon; const_type : type_expr; equal : equal; init : expr; terminator : semi option } (* Type declarations *) and type_decl = { kwd_type : kwd_type; name : type_name; kwd_is : kwd_is; type_expr : type_expr; terminator : semi option } and type_expr = TProd of cartesian | TSum of (variant reg, vbar) nsepseq reg | TRecord of record_type | TApp of (type_name * type_tuple) reg | TFun of (type_expr * arrow * type_expr) reg | TPar of type_expr par reg | TAlias of variable and cartesian = (type_expr, times) nsepseq reg and variant = { constr : constr; kwd_of : kwd_of; product : cartesian } and record_type = field_decl reg injection reg and field_decl = { field_name : field_name; colon : colon; field_type : type_expr } and type_tuple = (type_expr, comma) nsepseq par reg (* Function and procedure declarations *) and lambda_decl = FunDecl of fun_decl reg | ProcDecl of proc_decl reg | EntryDecl of entry_decl reg and fun_decl = { kwd_function : kwd_function; name : variable; param : parameters; colon : colon; ret_type : type_expr; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; kwd_with : kwd_with; return : expr; terminator : semi option } and proc_decl = { kwd_procedure : kwd_procedure; name : variable; param : parameters; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; terminator : semi option } and entry_decl = { kwd_entrypoint : kwd_entrypoint; name : variable; param : entry_params; colon : colon; ret_type : type_expr; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; kwd_with : kwd_with; return : expr; terminator : semi option } and parameters = (param_decl, semi) nsepseq par reg and entry_params = (entry_param_decl, semi) nsepseq par reg and entry_param_decl = EntryConst of param_const reg | EntryVar of param_var reg | EntryStore of storage reg and storage = { kwd_storage : kwd_storage; var : variable; colon : colon; storage_type : type_expr } and param_decl = ParamConst of param_const reg | ParamVar of param_var reg and param_const = { kwd_const : kwd_const; var : variable; colon : colon; param_type : type_expr } and param_var = { kwd_var : kwd_var; var : variable; colon : colon; param_type : type_expr } and block = { opening : block_opening; statements : statements; terminator : semi option; closing : block_closing } and block_opening = Block of kwd_block * lbrace | Begin of kwd_begin and block_closing = Block of rbrace | End of kwd_end and statements = (statement, semi) nsepseq and statement = Instr of instruction | Data of data_decl and local_decl = LocalLam of lambda_decl | LocalData of data_decl and data_decl = LocalConst of const_decl reg | LocalVar of var_decl reg and var_decl = { kwd_var : kwd_var; name : variable; colon : colon; var_type : type_expr; assign : assign; init : expr; terminator : semi option } and instruction = Single of single_instr | Block of block reg and single_instr = Cond of conditional reg | CaseInstr of instruction case reg | Assign of assignment reg | Loop of loop | ProcCall of fun_call | Fail of fail_instr reg | Skip of kwd_skip | RecordPatch of record_patch reg | MapPatch of map_patch reg | SetPatch of set_patch reg | MapRemove of map_remove reg | SetRemove of set_remove reg and set_remove = { kwd_remove : kwd_remove; element : expr; kwd_from : kwd_from; kwd_set : kwd_set; set : path } and map_remove = { kwd_remove : kwd_remove; key : expr; kwd_from : kwd_from; kwd_map : kwd_map; map : path } and set_patch = { kwd_patch : kwd_patch; path : path; kwd_with : kwd_with; set_inj : expr injection reg } and map_patch = { kwd_patch : kwd_patch; path : path; kwd_with : kwd_with; map_inj : binding reg injection reg } and binding = { source : expr; arrow : arrow; image : expr } and record_patch = { kwd_patch : kwd_patch; path : path; kwd_with : kwd_with; record_inj : field_assign reg injection reg } and fail_instr = { kwd_fail : kwd_fail; fail_expr : expr } and conditional = { kwd_if : kwd_if; test : expr; kwd_then : kwd_then; ifso : if_clause; terminator : semi option; kwd_else : kwd_else; ifnot : if_clause } and if_clause = ClauseInstr of instruction | ClauseBlock of (statements * semi option) braces reg and set_membership = { set : expr; kwd_contains : kwd_contains; element : expr } and 'a case = { kwd_case : kwd_case; expr : expr; opening : opening; lead_vbar : vbar option; cases : ('a case_clause reg, vbar) nsepseq reg; closing : closing } and 'a case_clause = { pattern : pattern; arrow : arrow; rhs : 'a } and assignment = { lhs : lhs; assign : assign; rhs : rhs; } and lhs = Path of path | MapPath of map_lookup reg and rhs = Expr of expr | NoneExpr of c_None and loop = While of while_loop reg | For of for_loop and while_loop = { kwd_while : kwd_while; cond : expr; block : block reg } and for_loop = ForInt of for_int reg | ForCollect of for_collect reg and for_int = { kwd_for : kwd_for; assign : var_assign reg; down : kwd_down option; kwd_to : kwd_to; bound : expr; step : (kwd_step * expr) option; block : block reg } and var_assign = { name : variable; assign : assign; expr : expr } and for_collect = { kwd_for : kwd_for; var : variable; bind_to : (arrow * variable) option; kwd_in : kwd_in; expr : expr; block : block reg } (* Expressions *) and expr = | ECase of expr case reg | EAnnot of annot_expr reg | ELogic of logic_expr | EArith of arith_expr | EString of string_expr | EList of list_expr | ESet of set_expr | EConstr of constr_expr | ERecord of record_expr | EProj of projection reg | EMap of map_expr | EVar of Lexer.lexeme reg | ECall of fun_call | EBytes of (Lexer.lexeme * Hex.t) reg | EUnit of c_Unit | ETuple of tuple_expr | EPar of expr par reg and annot_expr = (expr * type_expr) and set_expr = SetInj of expr injection reg | SetMem of set_membership reg and 'a injection = { opening : opening; elements : ('a, semi) sepseq; terminator : semi option; closing : closing } and opening = Kwd of keyword | KwdBracket of keyword * lbracket and closing = End of kwd_end | RBracket of rbracket and map_expr = MapLookUp of map_lookup reg | MapInj of binding reg injection reg and map_lookup = { path : path; index : expr brackets reg } and path = Name of variable | Path of projection reg and logic_expr = BoolExpr of bool_expr | CompExpr of comp_expr and bool_expr = Or of kwd_or bin_op reg | And of kwd_and bin_op reg | Not of kwd_not un_op reg | False of c_False | True of c_True and 'a bin_op = { op : 'a; arg1 : expr; arg2 : expr } and 'a un_op = { op : 'a; arg : expr } and comp_expr = Lt of lt bin_op reg | Leq of leq bin_op reg | Gt of gt bin_op reg | Geq of geq bin_op reg | Equal of equal bin_op reg | Neq of neq bin_op reg and arith_expr = Add of plus bin_op reg | Sub of minus bin_op reg | Mult of times bin_op reg | Div of slash bin_op reg | Mod of kwd_mod bin_op reg | Neg of minus un_op reg | Int of (Lexer.lexeme * Z.t) reg | Nat of (Lexer.lexeme * Z.t) reg | Mtz of (Lexer.lexeme * Z.t) reg and string_expr = Cat of cat bin_op reg | String of Lexer.lexeme reg and list_expr = Cons of cons bin_op reg | List of expr injection reg | Nil of nil and nil = kwd_nil and constr_expr = SomeApp of (c_Some * arguments) reg | NoneExpr of none_expr | ConstrApp of (constr * arguments) reg and record_expr = field_assign reg injection reg and field_assign = { field_name : field_name; equal : equal; field_expr : expr } and projection = { struct_name : variable; selector : dot; field_path : (selection, dot) nsepseq } and selection = FieldName of field_name | Component of (Lexer.lexeme * Z.t) reg and tuple_expr = TupleInj of tuple_injection and tuple_injection = (expr, comma) nsepseq par reg and none_expr = c_None and fun_call = (fun_name * arguments) reg and arguments = tuple_injection (* Patterns *) and pattern = PCons of (pattern, cons) nsepseq reg | PConstr of (constr * pattern reg) reg | PVar of Lexer.lexeme reg | PWild of wild | PInt of (Lexer.lexeme * Z.t) reg | PBytes of (Lexer.lexeme * Hex.t) reg | PString of Lexer.lexeme reg | PUnit of c_Unit | PFalse of c_False | PTrue of c_True | PNone of c_None | PSome of (c_Some * pattern par reg) reg | PList of list_pattern | PTuple of (pattern, comma) nsepseq par reg and list_pattern = Sugar of pattern injection reg | PNil of kwd_nil | Raw of (pattern * cons * pattern) par reg (* Projecting regions *) val type_expr_to_region : type_expr -> Region.t val expr_to_region : expr -> Region.t val instr_to_region : instruction -> Region.t val pattern_to_region : pattern -> Region.t val local_decl_to_region : local_decl -> Region.t val path_to_region : path -> Region.t val lhs_to_region : lhs -> Region.t val rhs_to_region : rhs -> Region.t val if_clause_to_region : if_clause -> Region.t val selection_to_region : selection -> Region.t