[@@@warning "-45"] open Trace open Ast_simplified module Raw = Parser.Ligodity.AST module SMap = Map.String module Option = Simple_utils.Option open Combinators let nseq_to_list (hd, tl) = hd :: tl let npseq_to_list (hd, tl) = hd :: (List.map snd tl) let npseq_to_nelist (hd, tl) = hd, (List.map snd tl) let pseq_to_list = function | None -> [] | Some lst -> npseq_to_list lst let get_value : 'a Raw.reg -> 'a = fun x -> x.value module Errors = struct let wrong_pattern expected_name actual = let title () = "wrong pattern" in let message () = "" in let data = [ ("expected", fun () -> expected_name); ("actual_loc" , fun () -> Format.asprintf "%a" Location.pp_lift @@ Raw.region_of_pattern actual) ] in error ~data title message let multiple_patterns construct (patterns: Raw.pattern list) = let title () = "multiple patterns" in let message () = Format.asprintf "multiple patterns in \"%s\" are not supported yet" construct in let patterns_loc = List.fold_left (fun a p -> Region.cover a (Raw.region_of_pattern p)) Region.min patterns in let data = [ ("patterns_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ patterns_loc) ] in error ~data title message let unknown_predefined_type name = let title () = "type constants" in let message () = Format.asprintf "unknown predefined type \"%s\"" name.Region.value in let data = [ ("typename_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ name.Region.region) ] in error ~data title message let unsupported_arith_op expr = let title () = "arithmetic expressions" in let message () = Format.asprintf "this arithmetic operator is not supported yet" in let expr_loc = Raw.region_of_expr expr in let data = [ ("expr_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ expr_loc) ] in error ~data title message let unsupported_string_catenation expr = let title () = "string expressions" in let message () = Format.asprintf "string concatenation is not supported yet" in let expr_loc = Raw.region_of_expr expr in let data = [ ("expr_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ expr_loc) ] in error ~data title message let untyped_fun_param var = let title () = "function parameter" in let message () = Format.asprintf "untyped function parameters are not supported yet" in let param_loc = var.Region.region in let data = [ ("param_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ param_loc) ] in error ~data title message let unsupported_tuple_pattern p = let title () = "tuple pattern" in let message () = Format.asprintf "tuple patterns are not supported yet" in let pattern_loc = Raw.region_of_pattern p in let data = [ ("pattern_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_cst_constr p = let title () = "constant constructor" in let message () = Format.asprintf "constant constructors are not supported yet" in let pattern_loc = Raw.region_of_pattern p in let data = [ ("pattern_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_non_var_pattern p = let title () = "pattern is not a variable" in let message () = Format.asprintf "non-variable patterns in constructors \ are not supported yet" in let pattern_loc = Raw.region_of_pattern p in let data = [ ("pattern_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let simplifying_expr t = let title () = "simplifying expression" in let message () = "" in let data = [ ("expression" , thunk @@ Format.asprintf "%a" (PP_helpers.printer Raw.print_expr) t) ] in error ~data title message let only_constructors p = let title () = "constructors in patterns" in let message () = Format.asprintf "currently, only constructors are supported in patterns" in let pattern_loc = Raw.region_of_pattern p in let data = [ ("pattern_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ pattern_loc) ] in error ~data title message let unsupported_sugared_lists region = let title () = "lists in patterns" in let message () = Format.asprintf "currently, only empty lists and constructors (::) \ are supported in patterns" in let data = [ ("pattern_loc", fun () -> Format.asprintf "%a" Location.pp_lift @@ region) ] in error ~data title message end open Errors open Operators.Simplify.Ligodity let r_split = Location.r_split let rec pattern_to_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_var p.value.inside | Raw.PVar v -> ok v | _ -> fail @@ wrong_pattern "var" p let rec pattern_to_typed_var : Raw.pattern -> _ = fun p -> match p with | Raw.PPar p -> pattern_to_typed_var p.value.inside | Raw.PTyped tp -> ( let tp = tp.value in let%bind v = pattern_to_var tp.pattern in ok (v , Some tp.type_expr) ) | Raw.PVar v -> ok (v , None) | _ -> fail @@ wrong_pattern "typed variable" p let rec expr_to_typed_expr : Raw.expr -> _ = fun e -> match e with | EPar e -> expr_to_typed_expr e.value.inside | EAnnot a -> ok (fst a.value , Some (snd a.value)) | _ -> ok (e , None) let patterns_to_var : Raw.pattern list -> _ = fun ps -> match ps with | [ pattern ] -> pattern_to_var pattern | _ -> fail @@ multiple_patterns "let" ps let rec simpl_type_expression : Raw.type_expr -> type_expression result = fun te -> trace (simple_info "simplifying this type expression...") @@ match te with | TPar x -> simpl_type_expression x.value.inside | TAlias v -> ( match List.assoc_opt v.value type_constants with | Some s -> ok @@ T_constant (s , []) | None -> ok @@ T_variable v.value ) | TFun x -> ( let%bind (a , b) = let (a , _ , b) = x.value in let%bind a = simpl_type_expression a in let%bind b = simpl_type_expression b in ok (a , b) in ok @@ T_function (a , b) ) | TApp x -> ( let (name, tuple) = x.value in let lst = npseq_to_list tuple.value.inside in let%bind cst = trace_option (unknown_predefined_type name) @@ List.assoc_opt name.value type_constants in let%bind lst' = bind_map_list simpl_type_expression lst in ok @@ T_constant (cst , lst') ) | TProd p -> ( let%bind tpl = simpl_list_type_expression @@ npseq_to_list p.value in ok tpl ) | TRecord r -> let aux = fun (x, y) -> let%bind y = simpl_type_expression y in ok (x, y) in let apply (x:Raw.field_decl Raw.reg) = (x.value.field_name.value, x.value.field_type) in let%bind lst = bind_list @@ List.map aux @@ List.map apply @@ pseq_to_list r.value.elements in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_record m | TSum s -> let aux (v:Raw.variant Raw.reg) = let args = match v.value.args with None -> [] | Some (_, cartesian) -> npseq_to_list cartesian.value in let%bind te = simpl_list_type_expression @@ args in ok (v.value.constr.value, te) in let%bind lst = bind_list @@ List.map aux @@ npseq_to_list s.value in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_sum m and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result = match lst with | [] -> assert false | [hd] -> simpl_type_expression hd | lst -> let%bind lst = bind_map_list simpl_type_expression lst in ok @@ T_tuple lst let rec simpl_expression : Raw.expr -> expr result = fun t -> let return x = ok x in let simpl_projection = fun (p:Raw.projection Region.reg) -> let (p , loc) = r_split p in let var = let name = p.struct_name.value in e_variable name in let path = p.field_path in let path' = let aux (s:Raw.selection) = match s with | FieldName property -> Access_record property.value | Component index -> let index = index.value.inside in Access_tuple (Z.to_int (snd index.value)) in List.map aux @@ npseq_to_list path in return @@ e_accessor ~loc var path' in trace (simplifying_expr t) @@ match t with | Raw.ELetIn e -> ( let Raw.{binding ; body ; _} = e.value in let Raw.{bindings ; lhs_type ; let_rhs ; _} = binding in let%bind variable = patterns_to_var bindings in let%bind ty_opt = bind_map_option (fun (_ , type_expr) -> simpl_type_expression type_expr) lhs_type in let%bind rhs = simpl_expression let_rhs in let rhs' = match ty_opt with | None -> rhs | Some ty -> e_annotation rhs ty in let%bind body = simpl_expression body in return @@ e_let_in (variable.value , None) rhs' body ) | Raw.EAnnot a -> ( let (a , loc) = r_split a in let (expr , type_expr) = a in let%bind expr' = simpl_expression expr in let%bind type_expr' = simpl_type_expression type_expr in return @@ e_annotation ~loc expr' type_expr' ) | EVar c -> ( let c' = c.value in match List.assoc_opt c' constants with | None -> return @@ e_variable c.value | Some s -> return @@ e_constant s [] ) | ECall x -> ( let ((e1 , e2) , loc) = r_split x in let%bind args = bind_map_list simpl_expression (nseq_to_list e2) in match e1 with | EVar f -> ( let (f , f_loc) = r_split f in match List.assoc_opt f constants with | None -> ( let%bind arg = simpl_tuple_expression (nseq_to_list e2) in return @@ e_application ~loc (e_variable ~loc:f_loc f) arg ) | Some s -> return @@ e_constant ~loc s args ) | e1 -> ( let%bind e1' = simpl_expression e1 in let%bind arg = simpl_tuple_expression (nseq_to_list e2) in return @@ e_application ~loc e1' arg ) ) | EPar x -> simpl_expression x.value.inside | EUnit reg -> ( let (_ , loc) = r_split reg in return @@ e_literal ~loc Literal_unit ) | EBytes x -> ( let (x , loc) = r_split x in return @@ e_literal ~loc (Literal_bytes (Bytes.of_string @@ fst x)) ) | ETuple tpl -> simpl_tuple_expression @@ (npseq_to_list tpl.value) | ERecord r -> ( let (r , loc) = r_split r in let%bind fields = bind_list @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ pseq_to_list r.elements in let map = SMap.of_list fields in return @@ e_record ~loc map ) | EProj p -> simpl_projection p | EConstr c -> ( let ((c_name , args) , loc) = r_split c in let (c_name , _c_loc) = r_split c_name in let args = match args with None -> [] | Some arg -> [arg] in let%bind arg = simpl_tuple_expression @@ args in return @@ e_constructor ~loc c_name arg ) | EArith (Add c) -> simpl_binop "ADD" c | EArith (Sub c) -> simpl_binop "SUB" c | EArith (Mult c) -> simpl_binop "TIMES" c | EArith (Div c) -> simpl_binop "DIV" c | EArith (Mod c) -> simpl_binop "MOD" c | EArith (Int n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_int n) ) | EArith (Nat n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_nat n) ) | EArith (Mtz n) -> ( let (n , loc) = r_split n in let n = Z.to_int @@ snd @@ n in return @@ e_literal ~loc (Literal_tez n) ) | EArith _ as e -> fail @@ unsupported_arith_op e | EString (String s) -> ( let (s , loc) = r_split s in let s' = let s = s in String.(sub s 1 ((length s) - 2)) in return @@ e_literal ~loc (Literal_string s') ) | EString (Cat _) as e -> fail @@ unsupported_string_catenation e | ELogic l -> simpl_logic_expression l | EList l -> simpl_list_expression l | ECase c -> ( let (c , loc) = r_split c in let%bind e = simpl_expression c.expr in let%bind lst = let aux (x : Raw.expr Raw.case_clause) = let%bind expr = simpl_expression x.rhs in ok (x.pattern, expr) in bind_list @@ List.map aux @@ List.map get_value @@ npseq_to_list c.cases.value in let default_action () = let%bind cases = simpl_cases lst in return @@ e_matching ~loc e cases in (* Hack to take care of patterns introduced by `parser/ligodity/Parser.mly` in "norm_fun_expr" *) match lst with | [ (pattern , rhs) ] -> ( match pattern with | Raw.PPar p -> ( let p' = p.value.inside in match p' with | Raw.PTyped x -> ( let x' = x.value in match x'.pattern with | Raw.PVar y -> let var_name = y.value in let%bind type_expr = simpl_type_expression x'.type_expr in return @@ e_let_in (var_name , Some type_expr) e rhs | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | _ -> default_action () ) | EFun lamb -> simpl_fun lamb | ESeq s -> ( let (s , loc) = r_split s in let items : Raw.expr list = pseq_to_list s.elements in (match items with [] -> return @@ e_skip ~loc () | expr::more -> let expr' = simpl_expression expr in let apply (e1: Raw.expr) (e2: expression Trace.result) = let%bind a = simpl_expression e1 in let%bind e2' = e2 in return @@ e_sequence a e2' in List.fold_right apply more expr') ) | ECond c -> ( let (c , loc) = r_split c in let%bind expr = simpl_expression c.test in let%bind match_true = simpl_expression c.ifso in let%bind match_false = simpl_expression c.ifnot in return @@ e_matching ~loc expr (Match_bool {match_true; match_false}) ) and simpl_fun lamb' : expr result = let return x = ok x in let (lamb , loc) = r_split lamb' in let%bind args' = let args = lamb.params in let%bind p_args = bind_map_list pattern_to_typed_var args in let aux ((var : Raw.variable) , ty_opt) = match var.value , ty_opt with | "storage" , None -> ok (var , T_variable "storage") | _ , None -> fail @@ untyped_fun_param var | _ , Some ty -> ( let%bind ty' = simpl_type_expression ty in ok (var , ty') ) in bind_map_list aux p_args in let arguments_name = "arguments" in let (binder , input_type) = let type_expression = T_tuple (List.map snd args') in (arguments_name , type_expression) in let%bind (body , body_type) = expr_to_typed_expr lamb.body in let%bind output_type = bind_map_option simpl_type_expression body_type in let%bind result = simpl_expression body in let wrapped_result = let aux = fun i ((name : Raw.variable) , ty) wrapped -> let accessor = e_accessor (e_variable arguments_name) [ Access_tuple i ] in e_let_in (name.value , Some ty) accessor wrapped in let wraps = List.mapi aux args' in List.fold_right' (fun x f -> f x) result wraps in return @@ e_lambda ~loc binder (Some input_type) output_type wrapped_result and simpl_logic_expression ?te_annot (t:Raw.logic_expr) : expr result = let return x = ok @@ make_option_typed x te_annot in match t with | BoolExpr (False reg) -> ( let loc = Location.lift reg in return @@ e_literal ~loc (Literal_bool false) ) | BoolExpr (True reg) -> ( let loc = Location.lift reg in return @@ e_literal ~loc (Literal_bool true) ) | BoolExpr (Or b) -> simpl_binop "OR" b | BoolExpr (And b) -> simpl_binop "AND" b | BoolExpr (Not b) -> simpl_unop "NOT" b | CompExpr (Lt c) -> simpl_binop "LT" c | CompExpr (Gt c) -> simpl_binop "GT" c | CompExpr (Leq c) -> simpl_binop "LE" c | CompExpr (Geq c) -> simpl_binop "GE" c | CompExpr (Equal c) -> simpl_binop "EQ" c | CompExpr (Neq c) -> simpl_binop "NEQ" c and simpl_list_expression (t:Raw.list_expr) : expression result = let return x = ok @@ x in match t with | Cons c -> simpl_binop "CONS" c | List lst -> ( let (lst , loc) = r_split lst in let%bind lst' = bind_map_list simpl_expression @@ pseq_to_list lst.elements in return @@ e_list ~loc lst' ) and simpl_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result = let return x = ok @@ x in let (args , loc) = r_split t in let%bind a = simpl_expression args.arg1 in let%bind b = simpl_expression args.arg2 in return @@ e_constant ~loc name [ a ; b ] and simpl_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result = let return x = ok @@ x in let (t , loc) = r_split t in let%bind a = simpl_expression t.arg in return @@ e_constant ~loc name [ a ] and simpl_tuple_expression ?loc (lst:Raw.expr list) : expression result = let return x = ok @@ x in match lst with | [] -> return @@ e_literal ?loc Literal_unit | [hd] -> simpl_expression hd | lst -> let%bind lst = bind_list @@ List.map simpl_expression lst in return @@ e_tuple ?loc lst and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t -> let open! Raw in let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in match t with | TypeDecl x -> let {name;type_expr} : Raw.type_decl = x.value in let%bind type_expression = simpl_type_expression type_expr in ok @@ loc x @@ Declaration_type (name.value , type_expression) | LetEntry x (* -> simple_fail "no entry point yet" *) | Let x -> ( let _ , binding = x.value in let {bindings ; lhs_type ; let_rhs} = binding in let%bind (var , args) = let%bind (hd , tl) = match bindings with | [] -> simple_fail "let without bindings" | hd :: tl -> ok (hd , tl) in let%bind var = pattern_to_var hd in ok (var , tl) in match args with | [] -> ( let%bind lhs_type' = bind_map_option (fun (_ , te) -> simpl_type_expression te) lhs_type in let%bind rhs' = simpl_expression let_rhs in ok @@ loc x @@ (Declaration_constant (var.value , lhs_type' , rhs')) ) | _ -> ( let fun_ = { kwd_fun = Region.ghost ; params = args ; p_annot = lhs_type ; arrow = Region.ghost ; body = let_rhs ; } in let rhs = Raw.EFun {region=Region.ghost ; value=fun_} in let%bind rhs' = simpl_expression rhs in ok @@ loc x @@ (Declaration_constant (var.value , None , rhs')) ) ) and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t -> let open Raw in let rec get_var (t:Raw.pattern) = match t with | PVar v -> ok v.value | PPar p -> get_var p.value.inside | _ -> fail @@ unsupported_non_var_pattern t in let rec get_tuple (t:Raw.pattern) = match t with | PTuple v -> npseq_to_list v.value | PPar p -> get_tuple p.value.inside | x -> [ x ] in let get_single (t:Raw.pattern) = let t' = get_tuple t in let%bind () = trace_strong (unsupported_tuple_pattern t) @@ Assert.assert_list_size t' 1 in ok (List.hd t') in let rec get_constr (t:Raw.pattern) = match t with | PPar p -> get_constr p.value.inside | PConstr v -> ( let (const , pat_opt) = v.value in let%bind pat = trace_option (unsupported_cst_constr t) @@ pat_opt in let%bind single_pat = get_single pat in let%bind var = get_var single_pat in ok (const.value , var) ) | _ -> fail @@ only_constructors t in let%bind patterns = let aux (x , y) = let xs = get_tuple x in trace_strong (unsupported_tuple_pattern x) @@ Assert.assert_list_size xs 1 >>? fun () -> ok (List.hd xs , y) in bind_map_list aux t in match patterns with | [(PFalse _ , f) ; (PTrue _ , t)] | [(PTrue _ , t) ; (PFalse _ , f)] -> ok @@ Match_bool {match_true = t ; match_false = f} | [(PList (PCons c) , cons) ; (PList (Sugar sugar_nil) , nil)] | [(PList (Sugar sugar_nil) , nil) ; (PList (PCons c), cons)] -> ( let%bind () = trace_strong (unsupported_sugared_lists sugar_nil.region) @@ Assert.assert_list_empty @@ pseq_to_list @@ sugar_nil.value.elements in let%bind (a, b) = let (a , _ , b) = c.value in let%bind a = get_var a in let%bind b = get_var b in ok (a, b) in ok @@ Match_list {match_cons = (a, b, cons) ; match_nil = nil} ) | lst -> ( trace (simple_info "currently, only booleans, lists and constructors \ are supported in patterns") @@ let%bind constrs = let aux (x , y) = let error = let title () = "Pattern" in let content () = Format.asprintf "Pattern : %a" (PP_helpers.printer Raw.print_pattern) x in error title content in let%bind x' = trace error @@ get_constr x in ok (x' , y) in bind_map_list aux lst in ok @@ Match_variant constrs ) let simpl_program : Raw.ast -> program result = fun t -> bind_list @@ List.map simpl_declaration @@ List.rev @@ nseq_to_list t.decl