open Trace open Ast_simplified module Raw = Parser.Pascaligo.AST module SMap = Map.String open Combinators let nseq_to_list (hd, tl) = hd :: tl let npseq_to_list (hd, tl) = hd :: (List.map snd tl) let npseq_to_nelist (hd, tl) = hd, (List.map snd tl) let pseq_to_list = function | None -> [] | Some lst -> npseq_to_list lst let get_value : 'a Raw.reg -> 'a = fun x -> x.value let type_constants = Operators.Simplify.type_constants let constants = Operators.Simplify.constants let return expr = ok @@ fun expr'_opt -> let expr = expr in match expr'_opt with | None -> ok @@ expr | Some expr' -> ok @@ e_sequence expr expr' let return_let_in binder rhs = ok @@ fun expr'_opt -> match expr'_opt with | None -> simple_fail "missing return" (* Hard to explain. Shouldn't happen in prod. *) | Some expr' -> ok @@ e_let_in binder rhs expr' let rec simpl_type_expression (t:Raw.type_expr) : type_expression result = match t with | TPar x -> simpl_type_expression x.value.inside | TAlias v -> ( match List.assoc_opt v.value type_constants with | Some 0 -> ok @@ T_constant (v.value, []) | Some _ -> simple_fail "type constructor with wrong number of args" | None -> ok @@ T_variable v.value ) | TFun x -> ( let%bind (a , b) = let (a , _ , b) = x.value in bind_map_pair simpl_type_expression (a , b) in ok @@ T_function (a , b) ) | TApp x -> let (name, tuple) = x.value in let lst = npseq_to_list tuple.value.inside in let%bind _ = match List.assoc_opt name.value type_constants with | Some n when n = List.length lst -> ok () | Some _ -> simple_fail "type constructor with wrong number of args" | None -> simple_fail "unrecognized type constants" in let%bind lst' = bind_list @@ List.map simpl_type_expression lst in ok @@ T_constant (name.value, lst') | TProd p -> let%bind tpl = simpl_list_type_expression @@ npseq_to_list p.value in ok tpl | TRecord r -> let aux = fun (x, y) -> let%bind y = simpl_type_expression y in ok (x, y) in let%bind lst = bind_list @@ List.map aux @@ List.map (fun (x:Raw.field_decl Raw.reg) -> (x.value.field_name.value, x.value.field_type)) @@ pseq_to_list r.value.elements in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_record m | TSum s -> let aux (v:Raw.variant Raw.reg) = let args = match v.value.args with None -> [] | Some (_, product) -> npseq_to_list product.value in let%bind te = simpl_list_type_expression @@ args in ok (v.value.constr.value, te) in let%bind lst = bind_list @@ List.map aux @@ npseq_to_list s.value in let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in ok @@ T_sum m and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result = match lst with | [] -> assert false | [hd] -> simpl_type_expression hd | lst -> let%bind lst = bind_list @@ List.map simpl_type_expression lst in ok @@ T_tuple lst let rec simpl_expression (t:Raw.expr) : expr result = let return x = ok x in let simpl_projection = fun (p:Raw.projection) -> let var = let name = p.struct_name.value in e_variable name in let path = p.field_path in let path' = let aux (s:Raw.selection) = match s with | FieldName property -> Access_record property.value | Component index -> Access_tuple (Z.to_int (snd index.value)) in List.map aux @@ npseq_to_list path in return @@ E_accessor (var, path') in match t with | EAnnot a -> ( let (expr , type_expr) = a.value in let%bind expr' = simpl_expression expr in let%bind type_expr' = simpl_type_expression type_expr in return @@ e_annotation expr' type_expr' ) | EVar c -> ( let c' = c.value in match List.assoc_opt c' constants with | None -> return @@ E_variable c.value | Some 0 -> return @@ E_constant (c' , []) | Some n -> ( let error = let title () = "non nullary constant without parameters" in let content () = Format.asprintf "%s (%d)" c' n in error title content in fail error ) ) | ECall x -> ( let (name, args) = x.value in let f = name.value in let args' = npseq_to_list args.value.inside in match List.assoc_opt f constants with | None -> let%bind arg = simpl_tuple_expression args' in return @@ E_application (e_variable f, arg) | Some arity -> let%bind _arity = trace (simple_error "wrong arity for constants") @@ Assert.assert_equal_int arity (List.length args') in let%bind lst = bind_map_list simpl_expression args' in return @@ E_constant (f, lst) ) | EPar x -> simpl_expression x.value.inside | EUnit _ -> return @@ E_literal Literal_unit | EBytes x -> return @@ E_literal (Literal_bytes (Bytes.of_string @@ fst x.value)) | ETuple tpl -> let (Raw.TupleInj tpl') = tpl in simpl_tuple_expression @@ npseq_to_list tpl'.value.inside | ERecord r -> let%bind fields = bind_list @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ pseq_to_list r.value.elements in let aux prev (k, v) = SMap.add k v prev in return @@ E_record (List.fold_left aux SMap.empty fields) | EProj p' -> ( let p = p'.value in simpl_projection p ) | EConstr (ConstrApp c) -> let (c, args) = c.value in let%bind arg = simpl_tuple_expression @@ npseq_to_list args.value.inside in return @@ E_constructor (c.value, arg) | EConstr (SomeApp a) -> let (_, args) = a.value in let%bind arg = simpl_tuple_expression @@ npseq_to_list args.value.inside in return @@ E_constant ("SOME", [arg]) | EConstr (NoneExpr _) -> return @@ E_constant ("NONE" , []) | EArith (Add c) -> simpl_binop "ADD" c.value | EArith (Sub c) -> simpl_binop "SUB" c.value | EArith (Mult c) -> simpl_binop "TIMES" c.value | EArith (Div c) -> simpl_binop "DIV" c.value | EArith (Mod c) -> simpl_binop "MOD" c.value | EArith (Int n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_int n) | EArith (Nat n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_nat n) | EArith (Mtz n) -> let n = Z.to_int @@ snd @@ n.value in return @@ E_literal (Literal_tez n) | EArith _ -> simple_fail "arith: not supported yet" | EString (String s) -> let s' = let s = s.value in String.(sub s 1 ((length s) - 2)) in return @@ E_literal (Literal_string s') | EString _ -> simple_fail "string: not supported yet" | ELogic l -> simpl_logic_expression l | EList l -> simpl_list_expression l | ESet _ -> simple_fail "set: not supported yet" | ECase c -> let%bind e = simpl_expression c.value.expr in let%bind lst = let aux (x : Raw.expr Raw.case_clause) = let%bind expr = simpl_expression x.rhs in ok (x.pattern, expr) in bind_list @@ List.map aux @@ List.map get_value @@ npseq_to_list c.value.cases.value in let%bind cases = simpl_cases lst in return @@ E_matching (e, cases) | EMap (MapInj mi) -> let%bind lst = let lst = List.map get_value @@ pseq_to_list mi.value.elements in let aux : Raw.binding -> (expression * expression) result = fun b -> let%bind src = simpl_expression b.source in let%bind dst = simpl_expression b.image in ok (src, dst) in bind_map_list aux lst in return (E_map lst) | EMap (MapLookUp lu) -> let%bind path = match lu.value.path with | Name v -> return (E_variable v.value) | Path p -> simpl_projection p.value in let%bind index = simpl_expression lu.value.index.value.inside in return (E_look_up (path, index)) and simpl_logic_expression (t:Raw.logic_expr) : expression result = let return x = ok x in match t with | BoolExpr (False _) -> return @@ E_literal (Literal_bool false) | BoolExpr (True _) -> return @@ E_literal (Literal_bool true) | BoolExpr (Or b) -> simpl_binop "OR" b.value | BoolExpr (And b) -> simpl_binop "AND" b.value | BoolExpr (Not b) -> simpl_unop "NOT" b.value | CompExpr (Lt c) -> simpl_binop "LT" c.value | CompExpr (Gt c) -> simpl_binop "GT" c.value | CompExpr (Leq c) -> simpl_binop "LE" c.value | CompExpr (Geq c) -> simpl_binop "GE" c.value | CompExpr (Equal c) -> simpl_binop "EQ" c.value | CompExpr (Neq c) -> simpl_binop "NEQ" c.value and simpl_list_expression (t:Raw.list_expr) : expression result = let return x = ok x in match t with | Cons c -> simpl_binop "CONS" c.value | List lst -> let%bind lst' = bind_map_list simpl_expression @@ pseq_to_list lst.value.elements in return @@ E_list lst' | Nil _ -> return @@ E_list [] and simpl_binop (name:string) (t:_ Raw.bin_op) : expression result = let return x = ok x in let%bind a = simpl_expression t.arg1 in let%bind b = simpl_expression t.arg2 in return @@ E_constant (name, [a;b]) and simpl_unop (name:string) (t:_ Raw.un_op) : expression result = let return x = ok x in let%bind a = simpl_expression t.arg in return @@ E_constant (name, [a]) and simpl_tuple_expression (lst:Raw.expr list) : expression result = let return x = ok x in match lst with | [] -> return @@ E_literal Literal_unit | [hd] -> simpl_expression hd | lst -> let%bind lst = bind_list @@ List.map simpl_expression lst in return @@ E_tuple lst and simpl_local_declaration : Raw.local_decl -> _ result = fun t -> match t with | LocalData d -> simpl_data_declaration d | LocalLam l -> simpl_lambda_declaration l and simpl_lambda_declaration : Raw.lambda_decl -> _ result = fun l -> match l with | FunDecl f -> let%bind (name , e) = simpl_fun_declaration (f.value) in return_let_in name e | ProcDecl _ -> simple_fail "no local procedure yet" | EntryDecl _ -> simple_fail "no local entry-point yet" and simpl_data_declaration : Raw.data_decl -> _ result = fun t -> match t with | LocalVar x -> let x = x.value in let name = x.name.value in let%bind t = simpl_type_expression x.var_type in let%bind expression = simpl_expression x.init in return_let_in (name , Some t) expression | LocalConst x -> let x = x.value in let name = x.name.value in let%bind t = simpl_type_expression x.const_type in let%bind expression = simpl_expression x.init in return_let_in (name , Some t) expression and simpl_param : Raw.param_decl -> (type_name * type_expression) result = fun t -> match t with | ParamConst c -> let c = c.value in let type_name = c.var.value in let%bind type_expression = simpl_type_expression c.param_type in ok (type_name , type_expression) | ParamVar v -> let c = v.value in let type_name = c.var.value in let%bind type_expression = simpl_type_expression c.param_type in ok (type_name , type_expression) and simpl_fun_declaration : Raw.fun_decl -> ((name * type_expression option) * expression) result = fun x -> let open! Raw in let {name;param;ret_type;local_decls;block;return} : fun_decl = x in (match npseq_to_list param.value.inside with | [] -> simple_fail "function without parameters are not allowed" | [a] -> ( let%bind input = simpl_param a in let name = name.value in let (binder , input_type) = input in let%bind local_declarations = bind_map_list simpl_local_declaration local_decls in let%bind instructions = bind_list @@ List.map simpl_statement @@ npseq_to_list block.value.statements in let%bind result = simpl_expression return in let%bind output_type = simpl_type_expression ret_type in let body = local_declarations @ instructions in let%bind result = let aux prec cur = cur (Some prec) in bind_fold_right_list aux result body in let expression = E_lambda { binder = (binder , Some input_type) ; input_type = Some input_type ; output_type = Some output_type ; result } in let type_annotation = Some (T_function (input_type, output_type)) in ok ((name , type_annotation) , expression) ) | lst -> ( let arguments_name = "arguments" in let%bind params = bind_map_list simpl_param lst in let (binder , input_type) = let type_expression = T_tuple (List.map snd params) in (arguments_name , type_expression) in let%bind tpl_declarations = let aux = fun i x -> let expr = E_accessor (E_variable arguments_name , [ Access_tuple i ]) in let type_ = Some (snd x) in let ass = return_let_in (fst x , type_) expr in ass in bind_list @@ List.mapi aux params in let%bind local_declarations = bind_map_list simpl_local_declaration local_decls in let%bind instructions = bind_list @@ List.map simpl_statement @@ npseq_to_list block.value.statements in let%bind result = simpl_expression return in let%bind output_type = simpl_type_expression ret_type in let body = tpl_declarations @ local_declarations @ instructions in let%bind result = let aux prec cur = cur (Some prec) in bind_fold_right_list aux result body in let expression = E_lambda { binder = (binder , Some input_type) ; input_type = Some input_type ; output_type = Some output_type ; result } in let type_annotation = Some (T_function (input_type, output_type)) in ok ((name.value , type_annotation) , expression) ) ) and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t -> let open! Raw in let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in match t with | TypeDecl x -> let {name;type_expr} : Raw.type_decl = x.value in let%bind type_expression = simpl_type_expression type_expr in ok @@ loc x @@ Declaration_type (name.value , type_expression) | ConstDecl x -> let simpl_const_decl = fun {name;const_type;init} -> let%bind expression = simpl_expression init in let%bind t = simpl_type_expression const_type in let type_annotation = Some t in ok @@ Declaration_constant (name.value , type_annotation , expression) in bind_map_location simpl_const_decl (Location.lift_region x) | LambdaDecl (FunDecl x) -> let aux f x = let%bind ((name , ty_opt) , expr) = f x in ok @@ Declaration_constant (name , ty_opt , expr) in bind_map_location (aux simpl_fun_declaration) (Location.lift_region x) | LambdaDecl (ProcDecl _) -> simple_fail "no proc declaration yet" | LambdaDecl (EntryDecl _)-> simple_fail "no entry point yet" and simpl_statement : Raw.statement -> (_ -> expression result) result = fun s -> match s with | Instr i -> simpl_instruction i | Data d -> simpl_data_declaration d and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) result = fun t -> match t with | ProcCall _ -> simple_fail "no proc call" | Fail e -> ( let%bind expr = simpl_expression e.value.fail_expr in return @@ e_failwith expr ) | Skip _ -> return @@ e_skip | Loop (While l) -> let l = l.value in let%bind cond = simpl_expression l.cond in let%bind body = simpl_block l.block.value in let%bind body = body None in return @@ e_loop cond body | Loop (For _) -> simple_fail "no for yet" | Cond c -> let c = c.value in let%bind expr = simpl_expression c.test in let%bind match_true = match c.ifso with | ClauseInstr i -> simpl_instruction_block i | ClauseBlock b -> simpl_statements @@ fst b.value.inside in let%bind match_false = match c.ifnot with | ClauseInstr i -> simpl_instruction_block i | ClauseBlock b -> simpl_statements @@ fst b.value.inside in let%bind match_true = match_true None in let%bind match_false = match_false None in return @@ E_matching (expr, (Match_bool {match_true; match_false})) | Assign a -> ( let a = a.value in let%bind value_expr = match a.rhs with | Expr e -> simpl_expression e | NoneExpr _ -> simple_fail "no none assignments yet" in match a.lhs with | Path path -> ( let (name , path') = simpl_path path in return @@ E_assign (name , path' , value_expr) ) | MapPath v -> ( let v' = v.value in let%bind name = match v'.path with | Name name -> ok name | _ -> simple_fail "no complex map assignments yet" in let%bind key_expr = simpl_expression v'.index.value.inside in let old_expr = e_variable name.value in let expr' = e_map_update key_expr value_expr old_expr in return @@ E_assign (name.value , [] , expr') ) ) | CaseInstr c -> ( let c = c.value in let%bind expr = simpl_expression c.expr in let%bind cases = let aux (x : Raw.instruction Raw.case_clause Raw.reg) = let%bind i = simpl_instruction_block x.value.rhs in let%bind i = i None in ok (x.value.pattern, i) in bind_list @@ List.map aux @@ npseq_to_list c.cases.value in let%bind m = simpl_cases cases in return @@ E_matching (expr, m) ) | RecordPatch r -> ( let r = r.value in let (name , access_path) = simpl_path r.path in let%bind inj = bind_list @@ List.map (fun (x:Raw.field_assign) -> let%bind e = simpl_expression x.field_expr in ok (x.field_name.value, e)) @@ List.map (fun (x:_ Raw.reg) -> x.value) @@ pseq_to_list r.record_inj.value.elements in let%bind expr = let aux = fun (access , v) -> E_assign (name , access_path @ [ Access_record access ] , v) in let assigns = List.map aux inj in match assigns with | [] -> simple_fail "empty record patch" | hd :: tl -> ( let aux acc cur = e_sequence (acc) (cur) in ok @@ List.fold_left aux hd tl ) in return @@ expr ) | MapPatch _ -> simple_fail "no map patch yet" | SetPatch _ -> simple_fail "no set patch yet" | MapRemove r -> let v = r.value in let key = v.key in let%bind map = match v.map with | Name v -> ok v.value | _ -> simple_fail "no complex map remove yet" in let%bind key' = simpl_expression key in let expr = E_constant ("MAP_REMOVE", [key' ; e_variable map]) in return @@ E_assign (map , [] , expr) | SetRemove _ -> simple_fail "no set remove yet" and simpl_path : Raw.path -> string * Ast_simplified.access_path = fun p -> match p with | Raw.Name v -> (v.value , []) | Raw.Path p -> ( let p' = p.value in let var = p'.struct_name.value in let path = p'.field_path in let path' = let aux (s:Raw.selection) = match s with | FieldName property -> Access_record property.value | Component index -> Access_tuple (Z.to_int (snd index.value)) in List.map aux @@ npseq_to_list path in (var , path') ) and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t -> let open Raw in let get_var (t:Raw.pattern) = match t with | PVar v -> ok v.value | _ -> let error = let title () = "not a var" in let content () = Format.asprintf "%a" (PP_helpers.printer Parser.Pascaligo.ParserLog.print_pattern) t in error title content in fail error in let get_tuple (t:Raw.pattern) = match t with | PCons v -> npseq_to_list v.value | PTuple v -> npseq_to_list v.value.inside | x -> [ x ] in let get_single (t:Raw.pattern) = let t' = get_tuple t in let%bind () = trace_strong (simple_error "not single") @@ Assert.assert_list_size t' 1 in ok (List.hd t') in let get_constr (t:Raw.pattern) = match t with | PConstr v -> let%bind var = get_single (snd v.value).value >>? get_var in ok ((fst v.value).value , var) | _ -> simple_fail "not a constr" in let%bind patterns = let aux (x , y) = let xs = get_tuple x in trace_strong (simple_error "no tuple in patterns yet") @@ Assert.assert_list_size xs 1 >>? fun () -> ok (List.hd xs , y) in bind_map_list aux t in match patterns with | [(PFalse _ , f) ; (PTrue _ , t)] | [(PTrue _ , t) ; (PFalse _ , f)] -> ok @@ Match_bool {match_true = t ; match_false = f} | [(PSome v , some) ; (PNone _ , none)] | [(PNone _ , none) ; (PSome v , some)] -> ( let (_, v) = v.value in let%bind v = match v.value.inside with | PVar v -> ok v.value | _ -> simple_fail "complex none patterns not supported yet" in ok @@ Match_option {match_none = none ; match_some = (v, some) } ) | [(PCons c , cons) ; (PList (PNil _) , nil)] | [(PList (PNil _) , nil) ; (PCons c, cons)] -> let%bind (a, b) = match c.value with | a, [(_, b)] -> let%bind a = get_var a in let%bind b = get_var b in ok (a, b) | _ -> simple_fail "complex list patterns not supported yet" in ok @@ Match_list {match_cons = (a, b, cons) ; match_nil = nil} | lst -> trace (simple_error "weird patterns not supported yet") @@ let%bind constrs = let aux (x , y) = let error = let title () = "Pattern" in let content () = Format.asprintf "Pattern : %a" (PP_helpers.printer Parser.Pascaligo.ParserLog.print_pattern) x in error title content in let%bind x' = trace error @@ get_constr x in ok (x' , y) in bind_map_list aux lst in ok @@ Match_variant constrs and simpl_instruction_block : Raw.instruction -> (_ -> expression result) result = fun t -> match t with | Single s -> simpl_single_instruction s | Block b -> simpl_block b.value and simpl_instruction : Raw.instruction -> (_ -> expression result) result = fun t -> let main_error = let title () = "simplifiying instruction" in let content () = Format.asprintf "%a" PP_helpers.(printer Parser.Pascaligo.ParserLog.print_instruction) t in error title content in trace main_error @@ match t with | Single s -> simpl_single_instruction s | Block _ -> simple_fail "no block instruction yet" and simpl_statements : Raw.statements -> (_ -> expression result) result = fun ss -> let lst = npseq_to_list ss in let%bind fs = bind_map_list simpl_statement lst in let aux : _ -> (expression option -> expression result) -> _ = fun prec cur -> let%bind res = cur prec in ok @@ Some res in ok @@ fun (expr' : _ option) -> let%bind ret = bind_fold_right_list aux expr' fs in ok @@ Option.unopt_exn ret and simpl_block : Raw.block -> (_ -> expression result) result = fun t -> simpl_statements t.statements let simpl_program : Raw.ast -> program result = fun t -> bind_list @@ List.map simpl_declaration @@ nseq_to_list t.decl