(* Abstract Syntax Tree (AST) for LIGO *) [@@@warning "-30"] open Utils (* Regions The AST carries all the regions where tokens have been found by the lexer, plus additional regions corresponding to whole subtrees (like entire expressions, patterns etc.). These regions are needed for error reporting and source-to-source transformations. To make these pervasive regions more legible, we define singleton types for the symbols, keywords etc. with suggestive names like "kwd_and" denoting the _region_ of the occurrence of the keyword "and". *) type 'a reg = 'a Region.reg val nseq_to_region : ('a -> Region.t) -> 'a nseq -> Region.t val nsepseq_to_region : ('a -> Region.t) -> ('a,'sep) nsepseq -> Region.t val sepseq_to_region : ('a -> Region.t) -> ('a,'sep) sepseq -> Region.t (* Keywords of LIGO *) type kwd_begin = Region.t type kwd_case = Region.t type kwd_const = Region.t type kwd_down = Region.t type kwd_else = Region.t type kwd_end = Region.t type kwd_entrypoint = Region.t type kwd_fail = Region.t type kwd_for = Region.t type kwd_function = Region.t type kwd_if = Region.t type kwd_in = Region.t type kwd_is = Region.t type kwd_map = Region.t type kwd_mod = Region.t type kwd_not = Region.t type kwd_of = Region.t type kwd_patch = Region.t type kwd_procedure = Region.t type kwd_record = Region.t type kwd_skip = Region.t type kwd_step = Region.t type kwd_storage = Region.t type kwd_then = Region.t type kwd_to = Region.t type kwd_type = Region.t type kwd_var = Region.t type kwd_while = Region.t type kwd_with = Region.t (* Data constructors *) type c_False = Region.t type c_None = Region.t type c_Some = Region.t type c_True = Region.t type c_Unit = Region.t (* Symbols *) type semi = Region.t (* ";" *) type comma = Region.t (* "," *) type lpar = Region.t (* "(" *) type rpar = Region.t (* ")" *) type lbrace = Region.t (* "{" *) type rbrace = Region.t (* "}" *) type lbracket = Region.t (* "[" *) type rbracket = Region.t (* "]" *) type cons = Region.t (* "#" *) type vbar = Region.t (* "|" *) type arrow = Region.t (* "->" *) type assign = Region.t (* ":=" *) type equal = Region.t (* "=" *) type colon = Region.t (* ":" *) type bool_or = Region.t (* "||" *) type bool_and = Region.t (* "&&" *) type lt = Region.t (* "<" *) type leq = Region.t (* "<=" *) type gt = Region.t (* ">" *) type geq = Region.t (* ">=" *) type neq = Region.t (* "=/=" *) type plus = Region.t (* "+" *) type minus = Region.t (* "-" *) type slash = Region.t (* "/" *) type times = Region.t (* "*" *) type dot = Region.t (* "." *) type wild = Region.t (* "_" *) type cat = Region.t (* "^" *) (* Virtual tokens *) type eof = Region.t (* Literals *) type variable = string reg type fun_name = string reg type type_name = string reg type field_name = string reg type map_name = string reg type constr = string reg (* Parentheses *) type 'a par = { lpar : lpar; inside : 'a; rpar : rpar } (* Brackets compounds *) type 'a brackets = { lbracket : lbracket; inside : 'a; rbracket : rbracket } (* Braced compounds *) type 'a braces = { lbrace : lbrace; inside : 'a; rbrace : rbrace } (* The Abstract Syntax Tree *) type t = { decl : declaration nseq; eof : eof } and ast = t and declaration = TypeDecl of type_decl reg | ConstDecl of const_decl reg | LambdaDecl of lambda_decl and const_decl = { kwd_const : kwd_const; name : variable; colon : colon; const_type : type_expr; equal : equal; init : expr; terminator : semi option } (* Type declarations *) and type_decl = { kwd_type : kwd_type; name : type_name; kwd_is : kwd_is; type_expr : type_expr; terminator : semi option } and type_expr = Prod of cartesian | Sum of (variant reg, vbar) nsepseq reg | Record of record_type reg | TypeApp of (type_name * type_tuple) reg | ParType of type_expr par reg | TAlias of variable and cartesian = (type_expr, times) nsepseq reg and variant = { constr : constr; kwd_of : kwd_of; product : cartesian } and record_type = { kwd_record : kwd_record; fields : field_decls; kwd_end : kwd_end } and field_decls = (field_decl reg, semi) nsepseq and field_decl = { field_name : field_name; colon : colon; field_type : type_expr } and type_tuple = (type_expr, comma) nsepseq par reg (* Function and procedure declarations *) and lambda_decl = FunDecl of fun_decl reg | ProcDecl of proc_decl reg | EntryDecl of entry_decl reg and fun_decl = { kwd_function : kwd_function; name : variable; param : parameters; colon : colon; ret_type : type_expr; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; kwd_with : kwd_with; return : expr; terminator : semi option } and proc_decl = { kwd_procedure : kwd_procedure; name : variable; param : parameters; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; terminator : semi option } and entry_decl = { kwd_entrypoint : kwd_entrypoint; name : variable; param : entry_params; colon : colon; ret_type : type_expr; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; kwd_with : kwd_with; return : expr; terminator : semi option } and parameters = (param_decl, semi) nsepseq par reg and entry_params = (entry_param_decl, semi) nsepseq par reg and entry_param_decl = EntryConst of param_const reg | EntryVar of param_var reg | EntryStore of storage reg and storage = { kwd_storage : kwd_storage; var : variable; colon : colon; storage_type : type_expr } and param_decl = ParamConst of param_const reg | ParamVar of param_var reg and param_const = { kwd_const : kwd_const; var : variable; colon : colon; param_type : type_expr } and param_var = { kwd_var : kwd_var; var : variable; colon : colon; param_type : type_expr } and block = { opening : kwd_begin; instr : instructions; terminator : semi option; close : kwd_end } and local_decl = LocalLam of lambda_decl | LocalConst of const_decl reg | LocalVar of var_decl reg and var_decl = { kwd_var : kwd_var; name : variable; colon : colon; var_type : type_expr; assign : assign; init : expr; terminator : semi option } and instructions = (instruction, semi) nsepseq and instruction = Single of single_instr | Block of block reg and single_instr = Cond of conditional reg | Case of case_instr reg | Assign of assignment reg | Loop of loop | ProcCall of fun_call | Fail of fail_instr reg | Skip of kwd_skip | RecordPatch of record_patch reg | MapPatch of map_patch reg and map_patch = { kwd_patch : kwd_patch; map_name : variable; kwd_with : kwd_with; delta : map_injection reg } and map_injection = { opening : kwd_map; bindings : (binding reg, semi) nsepseq; terminator : semi option; close : kwd_end } and binding = { source : expr; arrow : arrow; image : expr } and record_patch = { kwd_patch : kwd_patch; record_name : variable; kwd_with : kwd_with; delta : record_injection reg } and fail_instr = { kwd_fail : kwd_fail; fail_expr : expr } and conditional = { kwd_if : kwd_if; test : expr; kwd_then : kwd_then; ifso : instruction; kwd_else : kwd_else; ifnot : instruction } and case_instr = { kwd_case : kwd_case; expr : expr; kwd_of : kwd_of; lead_vbar : vbar option; cases : cases; kwd_end : kwd_end } and cases = (case reg, vbar) nsepseq reg and case = { pattern : pattern; arrow : arrow; instr : instruction } and assignment = { var : variable; assign : assign; expr : expr } and loop = While of while_loop reg | For of for_loop and while_loop = { kwd_while : kwd_while; cond : expr; block : block reg } and for_loop = ForInt of for_int reg | ForCollect of for_collect reg and for_int = { kwd_for : kwd_for; assign : assignment reg; down : kwd_down option; kwd_to : kwd_to; bound : expr; step : (kwd_step * expr) option; block : block reg } and for_collect = { kwd_for : kwd_for; var : variable; bind_to : (arrow * variable) option; kwd_in : kwd_in; expr : expr; block : block reg } (* Expressions *) and expr = LogicExpr of logic_expr | ArithExpr of arith_expr | StringExpr of string_expr | ListExpr of list_expr | SetExpr of set_expr | ConstrExpr of constr_expr | RecordExpr of record_expr | MapExpr of map_expr | Var of Lexer.lexeme reg | FunCall of fun_call | Bytes of (Lexer.lexeme * MBytes.t) reg | Unit of c_Unit | Tuple of tuple | ParExpr of expr par reg and map_expr = MapLookUp of map_lookup reg and map_lookup = { path : path; index : expr brackets reg } and path = Name of variable | RecordPath of record_projection reg and logic_expr = BoolExpr of bool_expr | CompExpr of comp_expr and bool_expr = Or of bool_or bin_op reg | And of bool_and bin_op reg | Not of kwd_not un_op reg | False of c_False | True of c_True and 'a bin_op = { op : 'a; arg1 : expr; arg2 : expr } and 'a un_op = { op : 'a; arg : expr } and comp_expr = Lt of lt bin_op reg | Leq of leq bin_op reg | Gt of gt bin_op reg | Geq of geq bin_op reg | Equal of equal bin_op reg | Neq of neq bin_op reg and arith_expr = Add of plus bin_op reg | Sub of minus bin_op reg | Mult of times bin_op reg | Div of slash bin_op reg | Mod of kwd_mod bin_op reg | Neg of minus un_op reg | Int of (Lexer.lexeme * Z.t) reg and string_expr = Cat of cat bin_op reg | String of Lexer.lexeme reg and list_expr = Cons of cons bin_op reg | List of (expr, comma) nsepseq brackets reg | EmptyList of empty_list reg and set_expr = Set of (expr, comma) nsepseq braces reg | EmptySet of empty_set reg and constr_expr = SomeApp of (c_Some * arguments) reg | NoneExpr of none_expr reg | ConstrApp of (constr * arguments) reg and record_expr = RecordInj of record_injection reg | RecordProj of record_projection reg and record_injection = { opening : kwd_record; fields : (field_assign reg, semi) nsepseq; terminator : semi option; close : kwd_end } and field_assign = { field_name : field_name; equal : equal; field_expr : expr } and record_projection = { record_name : variable; selector : dot; field_path : (field_name, dot) nsepseq } and tuple = (expr, comma) nsepseq par reg and empty_list = typed_empty_list par and typed_empty_list = { lbracket : lbracket; rbracket : rbracket; colon : colon; list_type : type_expr } and empty_set = typed_empty_set par and typed_empty_set = { lbrace : lbrace; rbrace : rbrace; colon : colon; set_type : type_expr } and none_expr = typed_none_expr par and typed_none_expr = { c_None : c_None; colon : colon; opt_type : type_expr } and fun_call = (fun_name * arguments) reg and arguments = tuple (* Patterns *) and pattern = PCons of (pattern, cons) nsepseq reg | PVar of Lexer.lexeme reg | PWild of wild | PInt of (Lexer.lexeme * Z.t) reg | PBytes of (Lexer.lexeme * MBytes.t) reg | PString of Lexer.lexeme reg | PUnit of c_Unit | PFalse of c_False | PTrue of c_True | PNone of c_None | PSome of (c_Some * pattern par reg) reg | PList of list_pattern | PTuple of (pattern, comma) nsepseq par reg and list_pattern = Sugar of (pattern, comma) sepseq brackets reg | Raw of (pattern * cons * pattern) par reg (* Projecting regions *) val type_expr_to_region : type_expr -> Region.t val expr_to_region : expr -> Region.t val instr_to_region : instruction -> Region.t val pattern_to_region : pattern -> Region.t val local_decl_to_region : local_decl -> Region.t (* Printing *) val print_tokens : t -> unit