open Trace open Mini_c open Michelson module Stack = Meta_michelson.Stack module Contract_types = Meta_michelson.Types open Memory_proto_alpha.Script_ir_translator open Operators.Compiler open Proto_alpha_utils let get_predicate : string -> type_value -> expression list -> predicate result = fun s ty lst -> match Map.String.find_opt s Operators.Compiler.predicates with | Some x -> ok x | None -> ( match s with | "MAP_REMOVE" -> let%bind v = match lst with | [ _ ; expr ] -> let%bind (_, v) = Mini_c.Combinators.(get_t_map (Expression.get_type expr)) in ok v | _ -> simple_fail "mini_c . MAP_REMOVE" in let%bind v_ty = Compiler_type.type_ v in ok @@ simple_binary @@ seq [dip (i_none v_ty) ; prim I_UPDATE ] | "LEFT" -> let%bind r = match lst with | [ _ ] -> get_t_right ty | _ -> simple_fail "mini_c . LEFT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ prim ~children:[r_ty] I_LEFT | "RIGHT" -> let%bind l = match lst with | [ _ ] -> get_t_left ty | _ -> simple_fail "mini_c . RIGHT" in let%bind l_ty = Compiler_type.type_ l in ok @@ simple_unary @@ prim ~children:[l_ty] I_RIGHT | "CONTRACT" -> let%bind r = match lst with | [ _ ] -> get_t_contract ty | _ -> simple_fail "mini_c . CONTRACT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ seq [ prim ~children:[r_ty] I_CONTRACT ; i_assert_some_msg (i_push_string "bad address for get_contract") ; ] | x -> simple_fail ("predicate \"" ^ x ^ "\" doesn't exist") ) let rec translate_value (v:value) : michelson result = match v with | D_bool b -> ok @@ prim (if b then D_True else D_False) | D_int n -> ok @@ int (Z.of_int n) | D_nat n -> ok @@ int (Z.of_int n) | D_tez n -> ok @@ int (Z.of_int n) | D_string s -> ok @@ string s | D_bytes s -> ok @@ bytes (Tezos_stdlib.MBytes.of_bytes s) | D_unit -> ok @@ prim D_Unit | D_pair (a, b) -> ( let%bind a = translate_value a in let%bind b = translate_value b in ok @@ prim ~children:[a;b] D_Pair ) | D_left a -> translate_value a >>? fun a -> ok @@ prim ~children:[a] D_Left | D_right b -> translate_value b >>? fun b -> ok @@ prim ~children:[b] D_Right | D_function anon -> translate_function anon | D_none -> ok @@ prim D_None | D_some s -> let%bind s' = translate_value s in ok @@ prim ~children:[s'] D_Some | D_map lst -> let%bind lst' = bind_map_list (bind_map_pair translate_value) lst in let aux (a, b) = prim ~children:[a;b] D_Elt in ok @@ seq @@ List.map aux lst' | D_list lst -> let%bind lst' = bind_map_list translate_value lst in ok @@ seq lst' | D_operation _ -> simple_fail "can't compile an operation" and translate_function (content:anon_function) : michelson result = let%bind body = translate_quote_body content in ok @@ seq [ body ] and translate_expression ?(first=false) (expr:expression) (env:environment) : (michelson * environment) result = let (expr' , ty) = Combinators.Expression.(get_content expr , get_type expr) in let error_message () = Format.asprintf "\n- expr: %a\n- type: %a\n" PP.expression expr PP.type_ ty in let i_skip = i_push_unit in let return ?prepend_env ?end_env code = let%bind env' = match (prepend_env , end_env) with | (Some _ , Some _) -> simple_fail ("two args to return at " ^ __LOC__) | None , None -> ok @@ Environment.add ("_tmp_expression" , ty) env | Some prepend_env , None -> ok @@ Environment.add ("_tmp_expression" , ty) prepend_env | None , Some end_env -> ok end_env in let%bind (Stack.Ex_stack_ty input_stack_ty) = Compiler_type.Ty.environment env in let%bind output_type = Compiler_type.type_ ty in let%bind (Stack.Ex_stack_ty output_stack_ty) = Compiler_type.Ty.environment env' in let error_message () = let%bind schema_michelsons = Compiler_type.environment env in ok @@ Format.asprintf "expression : %a\ncode : %a\nschema type : %a\noutput type : %a" PP.expression expr Michelson.pp code PP_helpers.(list_sep Michelson.pp (const ".")) schema_michelsons Michelson.pp output_type in let%bind _ = Trace.trace_tzresult_lwt_r (fun () -> let%bind error_message = error_message () in ok @@ (fun () -> error (thunk "error parsing expression code") (fun () -> error_message) ())) @@ Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok (code , env') in trace (error (thunk "compiling expression") error_message) @@ match expr' with | E_skip -> return @@ i_skip | E_environment_capture c -> let%bind code = Compiler_environment.pack_select env c in return @@ code | E_environment_load (expr , load_env) -> let%bind (expr' , _) = translate_expression expr env in let%bind clear = Compiler_environment.select env [] in let%bind unpack = Compiler_environment.unpack load_env in return ~prepend_env:load_env @@ seq [ expr' ; dip clear ; unpack ; i_skip ; ] | E_environment_select sub_env -> let%bind code = Compiler_environment.select_env env sub_env in return ~prepend_env:sub_env @@ seq [ code ; i_skip ; ] | E_environment_return expr -> ( let%bind (expr' , env) = translate_expression expr env in let%bind (code , cleared_env) = Compiler_environment.clear env in return ~end_env:cleared_env @@ seq [ expr' ; code ; ] ) | E_literal v -> let%bind v = translate_value v in let%bind t = Compiler_type.type_ ty in return @@ i_push t v | E_application(f, arg) -> ( match Combinators.Expression.get_type f with | T_function _ -> ( trace (simple_error "Compiling quote application") @@ let%bind (f , env') = translate_expression ~first f env in let%bind (arg , _) = translate_expression arg env' in return @@ seq [ i_comment "quote application" ; i_comment "get f" ; f ; i_comment "get arg" ; arg ; prim I_EXEC ; ] ) | T_deep_closure (small_env, input_ty , _) -> ( trace (simple_error "Compiling deep closure application") @@ let%bind (arg' , env') = translate_expression arg env in let%bind (f' , env'') = translate_expression f env' in let%bind f_ty = Compiler_type.type_ f.type_value in let%bind append_closure = Compiler_environment.add_packed_anon small_env input_ty in let error = let error_title () = "michelson type-checking closure application" in let error_content () = Format.asprintf "\nEnv. %a\nEnv'. %a\nEnv''. %a\nclosure. %a ; %a ; %a\narg. %a\n" PP.environment env PP.environment env' PP.environment env'' PP.expression_with_type f Michelson.pp f_ty Michelson.pp f' PP.expression_with_type arg in error error_title error_content in trace error @@ return @@ seq [ i_comment "closure application" ; i_comment "arg" ; arg' ; i_comment "f'" ; f' ; i_unpair ; i_comment "append" ; dip @@ seq [i_swap ; append_closure] ; i_comment "exec" ; i_swap ; i_exec ; ] ) | _ -> simple_fail "E_applicationing something not appliable" ) | E_variable x -> let%bind code = Compiler_environment.get env x in return code | E_sequence (a , b) -> let%bind (a' , env_a) = translate_expression a env in let%bind env_a' = Compiler_environment.pop env_a in let%bind (b' , env_b) = translate_expression b env_a' in return ~end_env:env_b @@ seq [ a' ; i_drop ; b' ; ] (* | E_sequence_drop (a , b) -> * let%bind (a' , env_a) = translate_expression a env in * let%bind (b' , env_b) = translate_expression b env_a in * return ~end_env:env_b @@ seq [ * a' ; * i_drop ; * b' ; * ] *) | E_constant(str, lst) -> let module L = Logger.Stateful() in let%bind lst' = let aux env expr = let%bind (code , env') = translate_expression expr env in L.log @@ Format.asprintf "\n%a -> %a in %a\n" PP.expression expr Michelson.pp code PP.environment env ; ok (env' , code) in bind_fold_map_right_list aux env lst in let%bind predicate = get_predicate str ty lst in let pre_code = seq @@ List.rev lst' in let%bind code = match (predicate, List.length lst) with | Constant c, 0 -> ok @@ seq [ pre_code ; c ; ] | Unary f, 1 -> ok @@ seq [ pre_code ; f ; ] | Binary f, 2 -> ok @@ seq [ pre_code ; f ; ] | Ternary f, 3 -> ok @@ seq [ pre_code ; f ; ] | _ -> simple_fail "bad arity" in let error = let title () = "error compiling constant" in let content () = L.get () in error title content in trace error @@ return code | E_make_empty_map sd -> let%bind (src, dst) = bind_map_pair Compiler_type.type_ sd in return @@ i_empty_map src dst | E_make_empty_list t -> let%bind t' = Compiler_type.type_ t in return @@ i_nil t' | E_make_none o -> let%bind o' = Compiler_type.type_ o in return @@ i_none o' | E_if_bool (c, a, b) -> ( let%bind (c' , env') = translate_expression c env in let%bind popped = Compiler_environment.pop env' in let%bind (a' , _) = translate_expression a popped in let%bind (b' , _) = translate_expression b popped in let%bind code = ok (seq [ c' ; i_if a' b' ; ]) in return code ) | E_if_none (c, n, (ntv , s)) -> ( let%bind (c' , env') = translate_expression c env in let%bind popped = Compiler_environment.pop env' in let%bind (n' , _) = translate_expression n popped in let s_env = Environment.add ntv popped in let%bind (s' , s_env') = translate_expression s s_env in let%bind popped' = Compiler_environment.pop s_env' in let%bind restrict_s = Compiler_environment.select_env popped' popped in let%bind code = ok (seq [ c' ; i_if_none n' (seq [ s' ; dip restrict_s ; ]) ; ]) in return code ) | E_if_left (c, (l_ntv , l), (r_ntv , r)) -> ( let%bind (c' , _env') = translate_expression c env in let l_env = Environment.add l_ntv env in let%bind (l' , _) = translate_expression l l_env in let r_env = Environment.add r_ntv env in let%bind (r' , _) = translate_expression r r_env in let%bind restrict_l = Compiler_environment.select_env l_env env in let%bind restrict_r = Compiler_environment.select_env r_env env in let%bind code = ok (seq [ c' ; i_if_left (seq [ l' ; i_comment "restrict left" ; dip restrict_l ; ]) (seq [ r' ; i_comment "restrict right" ; dip restrict_r ; ]) ; ]) in return code ) | E_let_in (v, expr , body) -> ( let%bind (expr' , expr_env) = translate_expression expr env in let%bind env' = let%bind popped = Compiler_environment.pop expr_env in ok @@ Environment.add v popped in let%bind (body' , body_env) = translate_expression body env' in let%bind restrict = let%bind popped = Compiler_environment.pop body_env in Compiler_environment.select_env popped env in let%bind code = ok (seq [ expr' ; body' ; i_comment "restrict let" ; dip restrict ; ]) in return code ) | E_assignment (name , lrs , expr) -> ( let%bind (expr' , env') = translate_expression expr env in (* Format.printf "\nass env':%a\n" PP.environment env' ; *) let%bind get_code = Compiler_environment.get env' name in let modify_code = let aux acc step = match step with | `Left -> seq [dip i_unpair ; acc ; i_pair] | `Right -> seq [dip i_unpiar ; acc ; i_piar] in let init = dip i_drop in List.fold_right' aux init lrs in let%bind set_code = Compiler_environment.set env name in let error = let title () = "michelson type-checking patch" in let content () = let aux ppf = function | `Left -> Format.fprintf ppf "left" | `Right -> Format.fprintf ppf "right" in Format.asprintf "Sub path: %a\n" PP_helpers.(list_sep aux (const " , ")) lrs in error title content in trace error @@ return ~prepend_env:env @@ seq [ i_comment "assign: start # env" ; expr' ; i_comment "assign: compute rhs # rhs : env" ; get_code ; i_comment "assign: get name # name : rhs : env" ; i_swap ; i_comment "assign: swap # rhs : name : env" ; modify_code ; i_comment "assign: modify code # name+rhs : env" ; set_code ; i_comment "assign: set new # new_env" ; i_skip ; ] ) | E_while (expr, block) -> ( let%bind (expr' , env') = translate_expression expr env in let%bind popped = Compiler_environment.pop env' in let%bind (block' , env'') = translate_expression block popped in let%bind restrict_block = Compiler_environment.select_env env'' popped in return @@ seq [ expr' ; prim ~children:[seq [ block' ; restrict_block ; expr']] I_LOOP ; i_skip ; ] ) and translate_quote_body ({result ; binder ; input} as f:anon_function) : michelson result = let env = Environment.(add (binder , input) empty) in let%bind (expr , _) = translate_expression result env in let code = seq [ i_comment "function result" ; expr ; ] in let%bind _assert_type = let%bind (Ex_ty input_ty) = Compiler_type.Ty.type_ f.input in let%bind (Ex_ty output_ty) = Compiler_type.Ty.type_ f.output in let input_stack_ty = Stack.(input_ty @: nil) in let output_stack_ty = Stack.(output_ty @: nil) in let error_message () = Format.asprintf "\ncode : %a\ninput : %a\noutput : %a\n" Michelson.pp code PP.type_ f.input PP.type_ f.output in let%bind _ = Trace.trace_tzresult_lwt ( error (thunk "error parsing quote code") error_message ) @@ Proto_alpha_utils.Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok () in ok code type compiled_program = { input : ex_ty ; output : ex_ty ; body : michelson ; } let get_main : program -> string -> anon_function result = fun p entry -> let is_main (((name , expr), _):toplevel_statement) = match Combinators.Expression.(get_content expr , get_type expr)with | (E_literal (D_function content) , T_function _) when name = entry -> Some content | _ -> None in let%bind main = trace_option (simple_error "no functional entry") @@ List.find_map is_main p in ok main let translate_program (p:program) (entry:string) : compiled_program result = let%bind main = get_main p entry in let {input;output} : anon_function = main in let%bind body = translate_quote_body main in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) let translate_entry (p:anon_function) : compiled_program result = let {input;output} : anon_function = p in let%bind body = trace (simple_error "compile entry body") @@ translate_quote_body p in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) let translate_contract : anon_function -> michelson result = fun f -> let%bind compiled_program = translate_entry f in let%bind (param_ty , storage_ty) = Combinators.get_t_pair f.input in let%bind param_michelson = Compiler_type.type_ param_ty in let%bind storage_michelson = Compiler_type.type_ storage_ty in let contract = Michelson.contract param_michelson storage_michelson compiled_program.body in ok contract