open Trace open Mini_c open Michelson module Stack = Meta_michelson.Stack module Contract_types = Meta_michelson.Types open Memory_proto_alpha.Script_ir_translator open Operators.Compiler open Proto_alpha_utils let get_predicate : string -> type_value -> expression list -> predicate result = fun s ty lst -> match Map.String.find_opt s Operators.Compiler.predicates with | Some x -> ok x | None -> ( match s with | "NONE" -> ( let%bind ty' = Mini_c.get_t_option ty in let%bind m_ty = Compiler_type.type_ ty' in ok @@ simple_constant @@ prim ~children:[m_ty] I_NONE ) | "NIL" -> ( let%bind ty' = Mini_c.get_t_list ty in let%bind m_ty = Compiler_type.type_ ty' in ok @@ simple_unary @@ prim ~children:[m_ty] I_NIL ) | "SET_EMPTY" -> ( let%bind ty' = Mini_c.get_t_set ty in let%bind m_ty = Compiler_type.type_ ty' in ok @@ simple_constant @@ prim ~children:[m_ty] I_EMPTY_SET ) | "UNPACK" -> ( let%bind ty' = Mini_c.get_t_option ty in let%bind m_ty = Compiler_type.type_ ty' in ok @@ simple_unary @@ prim ~children:[m_ty] I_UNPACK ) | "MAP_REMOVE" -> let%bind v = match lst with | [ _ ; expr ] -> let%bind (_, v) = Mini_c.Combinators.(get_t_map (Expression.get_type expr)) in ok v | _ -> simple_fail "mini_c . MAP_REMOVE" in let%bind v_ty = Compiler_type.type_ v in ok @@ simple_binary @@ seq [dip (i_none v_ty) ; prim I_UPDATE ] | "LEFT" -> let%bind r = match lst with | [ _ ] -> get_t_right ty | _ -> simple_fail "mini_c . LEFT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ prim ~children:[r_ty] I_LEFT | "RIGHT" -> let%bind l = match lst with | [ _ ] -> get_t_left ty | _ -> simple_fail "mini_c . RIGHT" in let%bind l_ty = Compiler_type.type_ l in ok @@ simple_unary @@ prim ~children:[l_ty] I_RIGHT | "CONTRACT" -> let%bind r = match lst with | [ _ ] -> get_t_contract ty | _ -> simple_fail "mini_c . CONTRACT" in let%bind r_ty = Compiler_type.type_ r in ok @@ simple_unary @@ seq [ prim ~children:[r_ty] I_CONTRACT ; i_assert_some_msg (i_push_string "bad address for get_contract") ; ] | x -> simple_fail ("predicate \"" ^ x ^ "\" doesn't exist") ) let rec translate_value (v:value) : michelson result = match v with | D_bool b -> ok @@ prim (if b then D_True else D_False) | D_int n -> ok @@ int (Z.of_int n) | D_nat n -> ok @@ int (Z.of_int n) | D_timestamp n -> ok @@ int (Z.of_int n) | D_tez n -> ok @@ int (Z.of_int n) | D_string s -> ok @@ string s | D_bytes s -> ok @@ bytes (Tezos_stdlib.MBytes.of_bytes s) | D_unit -> ok @@ prim D_Unit | D_pair (a, b) -> ( let%bind a = translate_value a in let%bind b = translate_value b in ok @@ prim ~children:[a;b] D_Pair ) | D_left a -> translate_value a >>? fun a -> ok @@ prim ~children:[a] D_Left | D_right b -> translate_value b >>? fun b -> ok @@ prim ~children:[b] D_Right | D_function anon -> translate_function anon | D_none -> ok @@ prim D_None | D_some s -> let%bind s' = translate_value s in ok @@ prim ~children:[s'] D_Some | D_map lst -> let%bind lst' = bind_map_list (bind_map_pair translate_value) lst in let sorted = List.sort (fun (x , _) (y , _) -> compare x y) lst' in let aux (a, b) = prim ~children:[a;b] D_Elt in ok @@ seq @@ List.map aux sorted | D_list lst -> let%bind lst' = bind_map_list translate_value lst in ok @@ seq lst' | D_set lst -> let%bind lst' = bind_map_list translate_value lst in let sorted = List.sort compare lst' in ok @@ seq sorted | D_operation _ -> simple_fail "can't compile an operation" and translate_function (content:anon_function) : michelson result = let%bind body = translate_quote_body content in ok @@ seq [ body ] and translate_expression ?push_var_name (expr:expression) (env:environment) : (michelson * environment) result = let (expr' , ty) = Combinators.Expression.(get_content expr , get_type expr) in let error_message () = Format.asprintf "\n- expr: %a\n- type: %a\n" PP.expression expr PP.type_ ty in (* let i_skip = i_push_unit in *) let return ?prepend_env ?end_env ?(unit_opt = false) code = let code = if unit_opt && push_var_name <> None then seq [code ; i_push_unit] else code in let%bind env' = match (prepend_env , end_env , push_var_name) with | (Some _ , Some _ , _) -> simple_fail ("two args to return at " ^ __LOC__) | None , None , None -> ok @@ Environment.add ("_tmp_expression" , ty) env | None , None , Some push_var_name -> ok @@ Environment.add (push_var_name , ty) env | Some prepend_env , None , None -> ok @@ Environment.add ("_tmp_expression" , ty) prepend_env | Some prepend_env , None , Some push_var_name -> ok @@ Environment.add (push_var_name , ty) prepend_env | None , Some end_env , None -> ok end_env | None , Some end_env , Some push_var_name -> ( if unit_opt then ok @@ Environment.add (push_var_name , ty) end_env else ok end_env ) in let%bind (Stack.Ex_stack_ty input_stack_ty) = Compiler_type.Ty.environment env in let%bind output_type = Compiler_type.type_ ty in let%bind (Stack.Ex_stack_ty output_stack_ty) = Compiler_type.Ty.environment env' in let error_message () = let%bind schema_michelsons = Compiler_type.environment env in ok @@ Format.asprintf "expression : %a\ncode : %a\npreenv : %a\npostenv : %a\nschema type : %a\noutput type : %a" PP.expression expr Michelson.pp code PP.environment env PP.environment env' PP_helpers.(list_sep Michelson.pp (const ".")) schema_michelsons Michelson.pp output_type in let%bind _ = Trace.trace_tzresult_lwt_r (fun () -> let%bind error_message = error_message () in ok @@ (fun () -> error (thunk "error parsing expression code") (fun () -> error_message) ())) @@ Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok (code , env') in trace (error (thunk "compiling expression") error_message) @@ match expr' with | E_skip -> return ~end_env:env ~unit_opt:true @@ seq [] | E_environment_capture c -> let%bind code = Compiler_environment.pack_select env c in return @@ code | E_environment_load (expr , load_env) -> ( let%bind (expr' , _) = translate_expression ~push_var_name:"env_to_load" expr env in let%bind clear = Compiler_environment.select env [] in let%bind unpack = Compiler_environment.unpack load_env in return ~end_env:load_env @@ seq [ expr' ; dip clear ; unpack ; ] ) | E_environment_select sub_env -> let%bind code = Compiler_environment.select_env env sub_env in return ~end_env:sub_env @@ seq [ code ; ] | E_environment_return expr -> ( let%bind (expr' , env) = translate_expression ~push_var_name:"return_clause" expr env in let%bind (code , cleared_env) = Compiler_environment.clear env in return ~end_env:cleared_env @@ seq [ expr' ; code ; ] ) | E_literal v -> let%bind v = translate_value v in let%bind t = Compiler_type.type_ ty in return @@ i_push t v | E_application(f, arg) -> ( match Combinators.Expression.get_type f with | T_function _ -> ( trace (simple_error "Compiling quote application") @@ let%bind (f , env') = translate_expression ~push_var_name:"application_f" f env in let%bind (arg , _) = translate_expression ~push_var_name:"application_arg" arg env' in return @@ seq [ i_comment "quote application" ; i_comment "get f" ; f ; i_comment "get arg" ; arg ; prim I_EXEC ; ] ) | T_deep_closure (small_env, input_ty , _) -> ( trace (simple_error "Compiling deep closure application") @@ let%bind (arg' , env') = translate_expression ~push_var_name:"closure_arg" arg env in let%bind (f' , env'') = translate_expression ~push_var_name:"closure_f" f env' in let%bind f_ty = Compiler_type.type_ f.type_value in let%bind append_closure = Compiler_environment.add_packed_anon small_env input_ty in let error = let error_title () = "michelson type-checking closure application" in let error_content () = Format.asprintf "\nEnv. %a\nEnv'. %a\nEnv''. %a\nclosure. %a ; %a ; %a\narg. %a\n" PP.environment env PP.environment env' PP.environment env'' PP.expression_with_type f Michelson.pp f_ty Michelson.pp f' PP.expression_with_type arg in error error_title error_content in trace error @@ return @@ seq [ i_comment "closure application" ; i_comment "arg" ; arg' ; i_comment "f'" ; f' ; i_unpair ; i_comment "append" ; dip @@ seq [i_swap ; append_closure] ; i_comment "exec" ; i_swap ; i_exec ; ] ) | _ -> simple_fail "E_applicationing something not appliable" ) | E_variable x -> let%bind code = Compiler_environment.get env x in return code | E_sequence (a , b) -> ( let%bind (a' , env_a) = translate_expression a env in let%bind (b' , env_b) = translate_expression b env_a in return ~end_env:env_b @@ seq [ a' ; b' ; ] ) | E_constant(str, lst) -> let module L = Logger.Stateful() in let%bind lst' = let aux env expr = let%bind (code , env') = translate_expression ~push_var_name:"constant_argx" expr env in L.log @@ Format.asprintf "\n%a -> %a in %a\n" PP.expression expr Michelson.pp code PP.environment env ; ok (env' , code) in bind_fold_map_right_list aux env lst in let%bind predicate = get_predicate str ty lst in let pre_code = seq @@ List.rev lst' in let%bind code = match (predicate, List.length lst) with | Constant c, 0 -> ok @@ seq [ pre_code ; c ; ] | Unary f, 1 -> ok @@ seq [ pre_code ; f ; ] | Binary f, 2 -> ok @@ seq [ pre_code ; f ; ] | Ternary f, 3 -> ok @@ seq [ pre_code ; f ; ] | _ -> simple_fail "bad arity" in let error = let title () = "error compiling constant" in let content () = L.get () in error title content in trace error @@ return code | E_make_empty_map sd -> let%bind (src, dst) = bind_map_pair Compiler_type.type_ sd in return @@ i_empty_map src dst | E_make_empty_list t -> let%bind t' = Compiler_type.type_ t in return @@ i_nil t' | E_make_empty_set t -> let%bind t' = Compiler_type.type_ t in return @@ i_empty_set t' | E_make_none o -> let%bind o' = Compiler_type.type_ o in return @@ i_none o' | E_if_bool (c, a, b) -> ( let%bind (c' , env') = translate_expression ~push_var_name:"bool_condition" c env in let%bind popped = Compiler_environment.pop env' in let%bind (a' , env_a') = translate_expression ~push_var_name:"if_true" a popped in let%bind (b' , _env_b') = translate_expression ~push_var_name:"if_false" b popped in let%bind code = ok (seq [ c' ; i_if a' b' ; ]) in return ~end_env:env_a' code ) | E_if_none (c, n, (ntv , s)) -> ( let%bind (c' , env') = translate_expression ~push_var_name:"if_none_condition" c env in let%bind popped = Compiler_environment.pop env' in let%bind (n' , _) = translate_expression ~push_var_name:"if_none" n popped in let s_env = Environment.add ntv popped in let%bind (s' , s_env') = translate_expression ~push_var_name:"if_some" s s_env in let%bind popped' = Compiler_environment.pop s_env' in let%bind restrict_s = Compiler_environment.select_env popped' popped in let%bind code = ok (seq [ c' ; i_if_none n' (seq [ s' ; dip restrict_s ; ]) ; ]) in return code ) | E_if_left (c, (l_ntv , l), (r_ntv , r)) -> ( let%bind (c' , _env') = translate_expression ~push_var_name:"if_left_cond" c env in let l_env = Environment.add l_ntv env in let%bind (l' , _l_env') = translate_expression ~push_var_name:"if_left" l l_env in let r_env = Environment.add r_ntv env in let%bind (r' , _r_env') = translate_expression ~push_var_name:"if_right" r r_env in let%bind restrict_l = Compiler_environment.select_env l_env env in let%bind restrict_r = Compiler_environment.select_env r_env env in let%bind code = ok (seq [ c' ; i_if_left (seq [ l' ; i_comment "restrict left" ; dip restrict_l ; ]) (seq [ r' ; i_comment "restrict right" ; dip restrict_r ; ]) ; ]) in return code ) | E_let_in (v , expr , body) -> ( let%bind (expr' , expr_env) = translate_expression ~push_var_name:"let_expr" expr env in let%bind env' = let%bind popped = Compiler_environment.pop expr_env in ok @@ Environment.add v popped in let%bind (body' , body_env) = translate_expression ~push_var_name:"let_body" body env' in let%bind restrict = let%bind popped = Compiler_environment.pop body_env in Compiler_environment.select_env popped env in let%bind code = ok (seq [ expr' ; body' ; i_comment "restrict let" ; dip restrict ; ]) in return code ) | E_iterator (name , (v , body) , expr) -> ( let%bind (expr' , expr_env) = translate_expression ~push_var_name:"iter_expr" expr env in let%bind popped = Compiler_environment.pop expr_env in let%bind env' = ok @@ Environment.add v popped in let%bind (body' , body_env) = translate_expression ~push_var_name:"iter_body" body env' in match name with | "ITER" -> ( let%bind restrict = Compiler_environment.select_env body_env popped in let%bind code = ok (seq [ expr' ; i_iter (seq [body' ; restrict]) ; ]) in return ~end_env:popped code ) | "MAP" -> ( let%bind restrict = let%bind popped' = Compiler_environment.pop body_env in Compiler_environment.select_env popped' popped in let%bind code = ok (seq [ expr' ; i_map (seq [body' ; dip restrict]) ; ]) in return ~prepend_env:popped code ) | s -> ( let error = error (thunk "bad iterator") (thunk s) in fail error ) ) | E_assignment (name , lrs , expr) -> ( let%bind (expr' , env') = translate_expression ~push_var_name:"assignment_expr" expr env in let%bind get_code = Compiler_environment.get env' name in let modify_code = let aux acc step = match step with | `Left -> seq [dip i_unpair ; acc ; i_pair] | `Right -> seq [dip i_unpiar ; acc ; i_piar] in let init = dip i_drop in List.fold_right' aux init lrs in let%bind set_code = Compiler_environment.set env name in let error = let title () = "michelson type-checking patch" in let content () = let aux ppf = function | `Left -> Format.fprintf ppf "left" | `Right -> Format.fprintf ppf "right" in Format.asprintf "Sub path: %a\n" PP_helpers.(list_sep aux (const " , ")) lrs in error title content in trace error @@ return ~end_env:env ~unit_opt:true @@ seq [ i_comment "assign: start # env" ; expr' ; i_comment "assign: compute rhs # rhs : env" ; get_code ; i_comment "assign: get name # name : rhs : env" ; i_swap ; i_comment "assign: swap # rhs : name : env" ; modify_code ; i_comment "assign: modify code # name+rhs : env" ; set_code ; i_comment "assign: set new # new_env" ; ] ) | E_while (expr , block) -> ( let%bind (expr' , env') = translate_expression ~push_var_name:"while_expr" expr env in let%bind popped = Compiler_environment.pop env' in let%bind (block' , env'') = translate_expression block popped in let%bind restrict_block = Compiler_environment.select_env env'' popped in return ~end_env:env ~unit_opt:true @@ seq [ expr' ; prim ~children:[seq [ block' ; restrict_block ; expr']] I_LOOP ; ] ) and translate_quote_body ({result ; binder ; input} as f:anon_function) : michelson result = let env = Environment.(add (binder , input) empty) in let%bind (expr , env') = translate_expression result env in let code = seq [ i_comment "function result" ; expr ; ] in let%bind _assert_type = let%bind (Ex_ty input_ty) = Compiler_type.Ty.type_ f.input in let%bind (Ex_ty output_ty) = Compiler_type.Ty.type_ f.output in let input_stack_ty = Stack.(input_ty @: nil) in let output_stack_ty = Stack.(output_ty @: nil) in let error_message () = Format.asprintf "\nCode : %a\nMichelson code : %a\ninput : %a\noutput : %a\nstart env : %a\nend env : %a\n" PP.expression result Michelson.pp code PP.type_ f.input PP.type_ f.output PP.environment env PP.environment env' in let%bind _ = Trace.trace_tzresult_lwt ( error (thunk "error parsing quote code") error_message ) @@ Proto_alpha_utils.Memory_proto_alpha.parse_michelson code input_stack_ty output_stack_ty in ok () in ok code type compiled_program = { input : ex_ty ; output : ex_ty ; body : michelson ; } let get_main : program -> string -> anon_function result = fun p entry -> let is_main (((name , expr), _):toplevel_statement) = match Combinators.Expression.(get_content expr , get_type expr)with | (E_literal (D_function content) , T_function _) when name = entry -> Some content | _ -> None in let%bind main = trace_option (simple_error "no functional entry") @@ List.find_map is_main p in ok main let translate_program (p:program) (entry:string) : compiled_program result = let%bind main = get_main p entry in let {input;output} : anon_function = main in let%bind body = translate_quote_body main in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) let translate_entry (p:anon_function) : compiled_program result = let {input;output} : anon_function = p in let%bind body = trace (simple_error "compile entry body") @@ translate_quote_body p in let%bind input = Compiler_type.Ty.type_ input in let%bind output = Compiler_type.Ty.type_ output in ok ({input;output;body}:compiled_program) module Errors = struct let corner_case ~loc message = let title () = "corner case" in let content () = "we don't have a good error message for this case. we are striving find ways to better report them and find the use-cases that generate them. please report this to the developers." in let data = [ ("location" , fun () -> loc) ; ("message" , fun () -> message) ; ] in error ~data title content end open Errors let translate_contract : anon_function -> michelson result = fun f -> let%bind compiled_program = trace_strong (corner_case ~loc:__LOC__ "compiling") @@ translate_entry f in let%bind (param_ty , storage_ty) = Combinators.get_t_pair f.input in let%bind param_michelson = Compiler_type.type_ param_ty in let%bind storage_michelson = Compiler_type.type_ storage_ty in let contract = Michelson.contract param_michelson storage_michelson compiled_program.body in ok contract