module Typer = struct open Trace open Ast_typed module Errors = struct let wrong_param_number = fun name expected got -> let title () = "wrong number of params" in let full () = Format.asprintf "constant name: %s\nexpected: %d\ngot: %d\n" name expected (List.length got) in error title full let error_uncomparable_types a b () = let title () = "these types are not comparable" in let message () = "" in let data = [ ("a" , fun () -> Format.asprintf "%a" PP.type_expression a) ; ("b" , fun () -> Format.asprintf "%a" PP.type_expression b ) ] in error ~data title message () end open Errors type type_result = type_expression type typer = type_expression list -> type_expression option -> type_result result let typer_0 : string -> (type_expression option -> type_expression result) -> typer = fun s f lst tv_opt -> match lst with | [] -> ( let%bind tv' = f tv_opt in ok (tv') ) | _ -> fail @@ wrong_param_number s 0 lst let typer_1 : string -> (type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ] -> ( let%bind tv' = f a in ok (tv') ) | _ -> fail @@ wrong_param_number s 1 lst let typer_1_opt : string -> (type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt -> match lst with | [ a ] -> ( let%bind tv' = f a tv_opt in ok (tv') ) | _ -> fail @@ wrong_param_number s 1 lst let typer_2 : string -> (type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ; b ] -> ( let%bind tv' = f a b in ok (tv') ) | _ -> fail @@ wrong_param_number s 2 lst let typer_2_opt : string -> (type_expression -> type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt -> match lst with | [ a ; b ] -> ( let%bind tv' = f a b tv_opt in ok (tv') ) | _ -> fail @@ wrong_param_number s 2 lst let typer_3 : string -> (type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ; b ; c ] -> ( let%bind tv' = f a b c in ok (tv') ) | _ -> fail @@ wrong_param_number s 3 lst let typer_4 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ; b ; c ; d ] -> ( let%bind tv' = f a b c d in ok (tv') ) | _ -> fail @@ wrong_param_number s 4 lst let typer_5 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ; b ; c ; d ; e ] -> ( let%bind tv' = f a b c d e in ok (tv') ) | _ -> fail @@ wrong_param_number s 5 lst let typer_6 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ -> match lst with | [ a ; b ; c ; d ; e ; f_ ] -> ( let%bind tv' = f a b c d e f_ in ok (tv') ) | _ -> fail @@ wrong_param_number s 6 lst let constant' name cst = typer_0 name (fun _ -> ok cst) open Combinators let eq_1 a cst = type_expression_eq (a , cst) let eq_2 (a , b) cst = type_expression_eq (a , cst) && type_expression_eq (b , cst) let assert_eq_1 ?msg a b = Assert.assert_true ?msg (eq_1 a b) let comparator : string -> typer = fun s -> typer_2 s @@ fun a b -> let%bind () = trace_strong (error_uncomparable_types a b) @@ Assert.assert_true @@ List.exists (eq_2 (a , b)) [ t_int () ; t_nat () ; t_mutez () ; t_string () ; t_bytes () ; t_address () ; t_timestamp () ; t_key_hash () ; ] in ok @@ t_bool () let boolean_operator_2 : string -> typer = fun s -> typer_2 s @@ fun a b -> let%bind () = trace_strong (simple_error "A isn't of type bool") @@ Assert.assert_true @@ type_expression_eq (t_bool () , a) in let%bind () = trace_strong (simple_error "B isn't of type bool") @@ Assert.assert_true @@ type_expression_eq (t_bool () , b) in ok @@ t_bool () end module Compiler = struct open Tezos_utils.Michelson type predicate = | Constant of michelson | Unary of michelson | Binary of michelson | Ternary of michelson | Tetrary of michelson | Pentary of michelson | Hexary of michelson let simple_constant c = Constant c let simple_unary c = Unary c let simple_binary c = Binary c let simple_ternary c = Ternary c let simple_tetrary c = Tetrary c let simple_pentary c = Pentary c let simple_hexary c = Hexary c end