[@@@warning "-30"] exception TODO of string open Region module In = AST module SMap = Utils.String.Map module Out = struct type type_name = string type variable = string type ast = { types : type_decl list; storage : typed_var; operations : typed_var; declarations : decl list; prev : In.t; } and typed_var = {name: variable; ty: type_expr} and type_decl = {name: variable; ty: type_expr} and decl = {name: variable; ty: type_expr; value: expr} and type_expr = Prod of type_expr list | Sum of (type_name * type_expr) list | Record of (type_name * type_expr) list | TypeApp of type_name * type_expr list | Function of {args: type_expr list; ret: type_expr} | Ref of type_expr | Unit | Int | TODO and expr = App of {operator: operator; arguments: expr list} | Variable of variable | Constant of constant | Lambda of lambda and lambda = { parameters : type_expr SMap.t; declarations : decl list; instructions : instr list; result : expr } and operator = Add | Sub | Lt | Gt | Function of string and constant = Unit | Int of Z.t and instr = Assignment of { name: variable; value: expr } | While of { condition: expr; body: instr list } | ForCollection of { list: expr; key: variable; value: variable option; body: instr list } | If of { condition: expr; ifso: instr list; ifnot: instr list } | Match of { expr: expr; cases: (pattern * instr list) list } | DropUnit of expr (* expr returns unit, drop the result. *) | Fail of { expr: expr } | Null and pattern = PVar of variable | PWild | PInt of Z.t | PBytes of MBytes.t | PString of string | PUnit | PFalse | PTrue | PNone | PSome of pattern | Cons of pattern * pattern | PTuple of pattern list end let map f l = List.(rev_map f l |> rev) (* TODO: check that List.to_seq, SMap.of_seq are not broken (i.e. check that they are tail-recursive) *) let append_map f l = map f l |> List.flatten let append l = List.(rev l |> rev_append) let list_to_map l = l |> List.to_seq |> SMap.of_seq (* Why lazy ? *) let fold_map f a l = let f (acc, l) elem = let acc', elem' = f acc elem in acc', (elem' :: l) in let last_acc, last_l = List.fold_left f (a, []) l in last_acc, List.rev last_l (* Simplify the AST *) let s_nsepseq : ('a,'sep) Utils.nsepseq -> 'a list = fun (first, rest) -> first :: (map snd rest) let s_sepseq : ('a,'sep) Utils.sepseq -> 'a list = function None -> [] | Some nsepseq -> s_nsepseq nsepseq let s_name ({value=name; region}: string reg) = ignore region; name let rec s_cartesian {value=sequence; region} : Out.type_expr = let () = ignore region in Prod (map s_type_expr (s_nsepseq sequence)) and s_sum_type {value=sequence; region} : Out.type_expr = let () = ignore region in let _todo = sequence in (* Sum (map s_type_expr (s_nsepseq sequence)) *) TODO and s_record_type {value=(kwd_record, field_decls, kwd_end); region} : Out.type_expr = let () = ignore (kwd_record,region,kwd_end) in let _todo = (* s_field_decls *) field_decls in TODO and s_type_app {value=node; region} : Out.type_expr = let () = ignore region in let _todo = node in TODO (* let type_name, type_tuple = node in *) (* s_var type_name; *) (* s_type_tuple type_tuple *) and s_par_type {value=node; region} : Out.type_expr = let () = ignore region in let _todo = node in TODO and s_var {region; value=lexeme} : Out.type_expr = let () = ignore region in let _todo = lexeme in TODO (* let lpar, type_expr, rpar = node in s_token lpar "("; s_type_expr type_expr; s_token rpar ")"*) and s_type_expr : In.type_expr -> Out.type_expr = function Prod cartesian -> s_cartesian cartesian | Sum sum_type -> s_sum_type sum_type | Record record_type -> s_record_type record_type | TypeApp type_app -> s_type_app type_app | ParType par_type -> s_par_type par_type | TAlias type_alias -> s_var type_alias let s_type_decl In.{value={kwd_type;name;kwd_is;type_expr;terminator}; region} : Out.type_decl = let () = ignore (kwd_type,kwd_is,terminator,region) in Out.{ name = s_name name; ty = s_type_expr type_expr } let s_storage_decl In.{value={kwd_storage; store_type; terminator}; region} : Out.typed_var = let () = ignore (kwd_storage,terminator,region) in Out.{ name = "storage"; ty = s_type_expr store_type } let s_operations_decl In.{value={kwd_operations;op_type;terminator}; region} : Out.typed_var = let () = ignore (kwd_operations,terminator,region) in Out.{ name = "operations"; ty = s_type_expr op_type } let s_expr : In.expr -> Out.expr = function | _ -> raise (TODO "simplify expressions") let s_case : In.case -> Out.pattern * (Out.instr list) = function | _ -> raise (TODO "simplify pattern matching cases") let s_const_decl In.{value; region} : Out.decl = let In.{kwd_const; name; colon; const_type; equal; init; terminator} = value in let () = ignore (kwd_const,colon,equal,terminator,region) in Out.{name = s_name name; ty = s_type_expr const_type; value = s_expr init} let s_param_const {value=(kwd_const,variable,colon,type_expr); region} : string * Out.type_expr = let () = ignore (kwd_const,colon,region) in s_name variable, s_type_expr type_expr let s_param_var {value=(kwd_var,variable,colon,type_expr); region} : string * Out.type_expr = let () = ignore (kwd_var,colon,region) in s_name variable, s_type_expr type_expr let s_param_decl : In.param_decl -> string * Out.type_expr = function ParamConst p -> s_param_const p | ParamVar p -> s_param_var p let s_parameters ({value=(lpar,param_decl,rpar);region} : In.parameters) : (string * Out.type_expr) list = let () = ignore (lpar,rpar,region) in let l = (s_nsepseq param_decl) in map s_param_decl l let rec s_var_decl {value; region} : Out.decl = let In.{kwd_var; name; colon; var_type; ass; init; terminator} = value in let () = ignore (kwd_var, colon, ass, terminator, region) in Out.{name = s_name name; ty = s_type_expr var_type; value = s_expr init} and s_local_decl : In.local_decl -> Out.decl = function LocalLam decl -> s_lambda_decl decl | LocalConst decl -> s_const_decl decl | LocalVar decl -> s_var_decl decl and s_instructions ({value=sequence; region} : In.instructions) : Out.instr list = let () = ignore region in append_map s_instruction (s_nsepseq sequence) and s_instruction : In.instruction -> Out.instr list = function Single instr -> s_single_instr instr | Block block -> (s_block block) and s_conditional In.{kwd_if;test;kwd_then;ifso;kwd_else;ifnot} : Out.instr = let () = ignore (kwd_if,kwd_then,kwd_else) in If { condition = s_expr test; ifso = s_instruction ifso; ifnot = s_instruction ifnot } and s_match_instr In.{kwd_match;expr;kwd_with;lead_vbar;cases;kwd_end} : Out.instr = let {value=cases;region} = cases in let () = ignore (kwd_match,kwd_with,lead_vbar,kwd_end,region) in Match { expr = s_expr expr; cases = map s_case (s_nsepseq cases) } and s_ass_instr {value=(variable,ass,expr); region} : Out.instr = let () = ignore (ass,region) in Assignment { name = s_name variable; value = s_expr expr } and s_while_loop {value=(kwd_while, expr, block); region} : Out.instr list = let () = ignore (kwd_while,region) in [While {condition = s_expr expr; body = s_block block}] and s_for_loop : In.for_loop -> Out.instr list = function ForInt for_int -> s_for_int for_int | ForCollect for_collect -> s_for_collect for_collect and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : In.for_int reg) : Out.instr list = let {value=(variable,ass_kwd,expr);region = ass_region} = ass in let () = ignore (kwd_for,ass_region,ass_kwd,kwd_to,region) in let name = s_name variable in let condition, operator = match down with Some kwd_down -> ignore kwd_down; Out.Gt, Out.Sub | None -> Out.Lt, Out.Add in let step = s_step step in [ Assignment { name; value = s_expr expr }; (* TODO: lift the declaration of the variable *) While { condition = App { operator = condition; arguments = [Variable name; s_expr bound] }; body = List.append (s_block block) [Out.Assignment { name; value = App { operator; arguments = [Variable name; step]}}] } ] and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : In.for_collect reg) : Out.instr list = let () = ignore (kwd_for,kwd_in) in [ Out.ForCollection { list = s_expr expr; key = s_name var; value = s_bind_to bind_to; body = s_block block } ] and s_step : (In.kwd_step * In.expr) option -> Out.expr = function Some (kwd_step, expr) -> let () = ignore (kwd_step) in s_expr expr | None -> Constant (Int Z.one) and s_bind_to : (In.arrow * In.variable) option -> Out.variable option = function Some (arrow, variable) -> let () = ignore arrow in Some (s_name variable) | None -> None and s_loop : In.loop -> Out.instr list = function While while_loop -> s_while_loop while_loop | For for_loop -> s_for_loop for_loop and s_fun_call {value=(fun_name, arguments); region} : Out.expr = let () = ignore region in App { operator = Function (s_name fun_name); arguments = s_arguments arguments } and s_arguments {value=(lpar, sequence, rpar); region} = let () = ignore (lpar, rpar, region) in map s_expr (s_nsepseq sequence); and s_fail ((kwd_fail, expr) : (In.kwd_fail * In.expr)) : Out.instr = ignore kwd_fail; Fail {expr = s_expr expr} and s_single_instr : In.single_instr -> Out.instr list = function Cond {value; _} -> [s_conditional value] | Match {value; _} -> [s_match_instr value] | Ass instr -> [s_ass_instr instr] | Loop loop -> s_loop loop | ProcCall fun_call -> [DropUnit (s_fun_call fun_call)] | Null kwd_null -> let () = ignore (kwd_null) in [] | Fail {value; _} -> [s_fail value] and s_block In.{value={opening;instr;terminator;close}; _} : Out.instr list = let () = ignore (opening,terminator,close) in s_instructions instr and s_fun_decl In.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_decls;block;kwd_with;return;terminator}; region} : Out.decl = let () = ignore (kwd_function,colon,kwd_is,kwd_with,terminator,region) in Out.{ name = s_name name; ty = Function { args = map snd (s_parameters param); ret = s_type_expr ret_type }; value = Lambda { parameters = s_parameters param |> list_to_map; declarations = map s_local_decl local_decls; instructions = s_block block; result = s_expr return } } and s_proc_decl In.{value={kwd_procedure;name;param;kwd_is;local_decls;block;terminator}; region} = let () = ignore (kwd_procedure,kwd_is,terminator,region) in Out.{ name = s_name name; ty = Function { args = map snd (s_parameters param); ret = Unit }; value = Lambda { parameters = s_parameters param |> list_to_map; declarations = map s_local_decl local_decls; instructions = s_block block; result = Out.Constant Out.Unit } } and s_lambda_decl : In.lambda_decl -> Out.decl = function FunDecl fun_decl -> s_fun_decl fun_decl | ProcDecl proc_decl -> s_proc_decl proc_decl | EntryDecl entry_decl -> failwith "TODO" let s_main_block (block: In.block reg) : Out.decl = Out.{ name = "main"; ty = Function { args = []; ret = Unit }; value = Lambda { parameters = SMap.empty; declarations = []; instructions = s_block block; result = Out.Constant Out.Unit } } let s_ast (ast : In.ast) : Out.ast = let In.{types;constants;storage;operations;lambdas;block;eof} = ast in let () = ignore (eof) in Out.{ types = map s_type_decl types; storage = s_storage_decl storage; operations = s_operations_decl operations; declarations = List.flatten [(map s_const_decl constants); (map s_lambda_decl lambdas); [s_main_block block]]; prev = ast } (* let s_token region lexeme = *) (* printf "%s: %s\n"(compact region) lexeme *) (* and s_var {region; value=lexeme} = *) (* printf "%s: Ident \"%s\"\n" (compact region) lexeme *) (* and s_constr {region; value=lexeme} = *) (* printf "%s: Constr \"%s\"\n" *) (* (compact region) lexeme *) (* and s_string {region; value=lexeme} = *) (* printf "%s: String \"%s\"\n" *) (* (compact region) lexeme *) (* and s_bytes {region; value = lexeme, abstract} = *) (* printf "%s: Bytes (\"%s\", \"0x%s\")\n" *) (* (compact region) lexeme *) (* (MBytes.to_hex abstract |> Hex.to_string) *) (* and s_int {region; value = lexeme, abstract} = *) (* printf "%s: Int (\"%s\", %s)\n" *) (* (compact region) lexeme *) (* (Z.to_string abstract) *) (* and s_cartesian {value=sequence; _} = *) (* s_nsepseq "*" s_type_expr sequence *) (* and s_variant {value=node; _} = *) (* let constr, kwd_of, cartesian = node in *) (* s_constr constr; *) (* s_token kwd_of "of"; *) (* s_cartesian cartesian *) (* and s_field_decls sequence = *) (* s_nsepseq ";" s_field_decl sequence *) (* and s_field_decl {value=node; _} = *) (* let var, colon, type_expr = node in *) (* s_var var; *) (* s_token colon ":"; *) (* s_type_expr type_expr *) (* and s_type_tuple {value=node; _} = *) (* let lpar, sequence, rpar = node in *) (* s_token lpar "("; *) (* s_nsepseq "," s_var sequence; *) (* s_token rpar ")" *) (* and s_parameters {value=node; _} = *) (* let lpar, sequence, rpar = node in *) (* s_token lpar "("; *) (* s_nsepseq ";" s_param_decl sequence; *) (* s_token rpar ")" *) (* and s_param_decl = function *) (* ParamConst param_const -> s_param_const param_const *) (* | ParamVar param_var -> s_param_var param_var *) (* and s_region_cases {value=sequence; _} = *) (* s_nsepseq "|" s_case sequence *) (* and s_case {value=node; _} = *) (* let pattern, arrow, instruction = node in *) (* s_pattern pattern; *) (* s_token arrow "->"; *) (* s_instruction instruction *) (* and s_expr = function *) (* Or {value = expr1, bool_or, expr2; _} -> *) (* s_expr expr1; s_token bool_or "||"; s_expr expr2 *) (* | And {value = expr1, bool_and, expr2; _} -> *) (* s_expr expr1; s_token bool_and "&&"; s_expr expr2 *) (* | Lt {value = expr1, lt, expr2; _} -> *) (* s_expr expr1; s_token lt "<"; s_expr expr2 *) (* | Leq {value = expr1, leq, expr2; _} -> *) (* s_expr expr1; s_token leq "<="; s_expr expr2 *) (* | Gt {value = expr1, gt, expr2; _} -> *) (* s_expr expr1; s_token gt ">"; s_expr expr2 *) (* | Geq {value = expr1, geq, expr2; _} -> *) (* s_expr expr1; s_token geq ">="; s_expr expr2 *) (* | Equal {value = expr1, equal, expr2; _} -> *) (* s_expr expr1; s_token equal "="; s_expr expr2 *) (* | Neq {value = expr1, neq, expr2; _} -> *) (* s_expr expr1; s_token neq "=/="; s_expr expr2 *) (* | Cat {value = expr1, cat, expr2; _} -> *) (* s_expr expr1; s_token cat "^"; s_expr expr2 *) (* | Cons {value = expr1, cons, expr2; _} -> *) (* s_expr expr1; s_token cons "<:"; s_expr expr2 *) (* | Add {value = expr1, add, expr2; _} -> *) (* s_expr expr1; s_token add "+"; s_expr expr2 *) (* | Sub {value = expr1, sub, expr2; _} -> *) (* s_expr expr1; s_token sub "-"; s_expr expr2 *) (* | Mult {value = expr1, mult, expr2; _} -> *) (* s_expr expr1; s_token mult "*"; s_expr expr2 *) (* | Div {value = expr1, div, expr2; _} -> *) (* s_expr expr1; s_token div "/"; s_expr expr2 *) (* | Mod {value = expr1, kwd_mod, expr2; _} -> *) (* s_expr expr1; s_token kwd_mod "mod"; s_expr expr2 *) (* | Neg {value = minus, expr; _} -> *) (* s_token minus "-"; s_expr expr *) (* | Not {value = kwd_not, expr; _} -> *) (* s_token kwd_not "not"; s_expr expr *) (* | Int i -> s_int i *) (* | Var var -> s_var var *) (* | String s -> s_string s *) (* | Bytes b -> s_bytes b *) (* | False region -> s_token region "False" *) (* | True region -> s_token region "True" *) (* | Unit region -> s_token region "Unit" *) (* | Tuple tuple -> s_tuple tuple *) (* | List list -> s_list list *) (* | EmptyList elist -> s_empty_list elist *) (* | Set set -> s_set set *) (* | EmptySet eset -> s_empty_set eset *) (* | NoneExpr nexpr -> s_none_expr nexpr *) (* | FunCall fun_call -> s_fun_call fun_call *) (* | ConstrApp capp -> s_constr_app capp *) (* | SomeApp sapp -> s_some_app sapp *) (* | MapLookUp lookup -> s_map_lookup lookup *) (* | ParExpr pexpr -> s_par_expr pexpr *) (* and s_list {value=node; _} = *) (* let lbra, sequence, rbra = node in *) (* s_token lbra "["; *) (* s_nsepseq "," s_expr sequence; *) (* s_token rbra "]" *) (* and s_empty_list {value=node; _} = *) (* let lpar, (lbracket, rbracket, colon, type_expr), rpar = node in *) (* s_token lpar "("; *) (* s_token lbracket "["; *) (* s_token rbracket "]"; *) (* s_token colon ":"; *) (* s_type_expr type_expr; *) (* s_token rpar ")" *) (* and s_set {value=node; _} = *) (* let lbrace, sequence, rbrace = node in *) (* s_token lbrace "{"; *) (* s_nsepseq "," s_expr sequence; *) (* s_token rbrace "}" *) (* and s_empty_set {value=node; _} = *) (* let lpar, (lbrace, rbrace, colon, type_expr), rpar = node in *) (* s_token lpar "("; *) (* s_token lbrace "{"; *) (* s_token rbrace "}"; *) (* s_token colon ":"; *) (* s_type_expr type_expr; *) (* s_token rpar ")" *) (* and s_none_expr {value=node; _} = *) (* let lpar, (c_None, colon, type_expr), rpar = node in *) (* s_token lpar "("; *) (* s_token c_None "None"; *) (* s_token colon ":"; *) (* s_type_expr type_expr; *) (* s_token rpar ")" *) (* and s_constr_app {value=node; _} = *) (* let constr, arguments = node in *) (* s_constr constr; *) (* s_tuple arguments *) (* and s_some_app {value=node; _} = *) (* let c_Some, arguments = node in *) (* s_token c_Some "Some"; *) (* s_tuple arguments *) (* and s_map_lookup {value=node; _} = *) (* let {value = lbracket, expr, rbracket; _} = node.index in *) (* s_var node.map_name; *) (* s_token node.selector "."; *) (* s_token lbracket "["; *) (* s_expr expr; *) (* s_token rbracket "]" *) (* and s_par_expr {value=node; _} = *) (* let lpar, expr, rpar = node in *) (* s_token lpar "("; *) (* s_expr expr; *) (* s_token rpar ")" *) (* and s_pattern {value=sequence; _} = *) (* s_nsepseq "<:" s_core_pattern sequence *) (* and s_core_pattern = function *) (* PVar var -> s_var var *) (* | PWild wild -> s_token wild "_" *) (* | PInt i -> s_int i *) (* | PBytes b -> s_bytes b *) (* | PString s -> s_string s *) (* | PUnit region -> s_token region "Unit" *) (* | PFalse region -> s_token region "False" *) (* | PTrue region -> s_token region "True" *) (* | PNone region -> s_token region "None" *) (* | PSome psome -> s_psome psome *) (* | PList pattern -> s_list_pattern pattern *) (* | PTuple ptuple -> s_ptuple ptuple *) (* and s_psome {value=node; _} = *) (* let c_Some, patterns = node in *) (* s_token c_Some "Some"; *) (* s_patterns patterns *) (* and s_patterns {value=node; _} = *) (* let lpar, core_pattern, rpar = node in *) (* s_token lpar "("; *) (* s_core_pattern core_pattern; *) (* s_token rpar ")" *) (* and s_list_pattern = function *) (* Sugar sugar -> s_sugar sugar *) (* | Raw raw -> s_raw raw *) (* and s_sugar {value=node; _} = *) (* let lbracket, sequence, rbracket = node in *) (* s_token lbracket "["; *) (* s_sepseq "," s_core_pattern sequence; *) (* s_token rbracket "]" *) (* and s_raw {value=node; _} = *) (* let lpar, (core_pattern, cons, pattern), rpar = node in *) (* s_token lpar "("; *) (* s_core_pattern core_pattern; *) (* s_token cons "<:"; *) (* s_pattern pattern; *) (* s_token rpar ")" *) (* and s_ptuple {value=node; _} = *) (* let lpar, sequence, rpar = node in *) (* s_token lpar "("; *) (* s_nsepseq "," s_core_pattern sequence; *) (* s_token rpar ")" *) (* and s_terminator = function *) (* Some semi -> s_token semi ";" *) (* | None -> () *)