--- id: interop title: Interop --- import Syntax from '@theme/Syntax'; LIGO can work together with other smart contract languages on Tezos. However data structures might have different representations in Michelson and not correctly match the standard LIGO types. ## Michelson types and annotations Michelson types consist of `or`'s and `pair`'s, combined with field annotations. Field annotations add contraints on a Michelson type, for example a pair of `(pair (int %foo) (string %bar))` will only work with the exact equivalence or the same type without the field annotations. To clarify: ```michelson (pair (int %foo) (string %bar)) ```` works with ```michelson (pair (int %foo) (string %bar)) ``` works with ```michelson (pair int string) ``` works not with ```michelson (pair (int %bar) (string %foo)) ``` works not with ```michelson (pair (string %bar) (int %foo)) ``` :::info In the case of annotated entrypoints - the annotated `or` tree directly under `parameter` in a contract - you should annotations, as otherwise it would become unclear which entrypoint you are referring to. ::: ## Entrypoints and annotations It's possible for a contract to have multiple entrypoints, which translates in LIGO to a `parameter` with a variant type as shown here: ```pascaligo type storage is int type parameter is | Left of int | Right of int function main (const p: parameter; const x: storage): (list(operation) * storage) is ((nil: list(operation)), case p of | Left(i) -> x - i | Right(i) -> x + i end) ``` ```cameligo type storage = int type parameter = | Left of int | Right of int let main ((p, x): (parameter * storage)): (operation list * storage) = (([]: operation list), (match p with | Left i -> x - i | Right i -> x + i )) ``` ```reasonligo type storage = int type parameter = | Left(int) | Right(int) let main = ((p, x): (parameter, storage)): (list(operation), storage) => { ([]: list(operation), (switch(p) { | Left(i) => x - i | Right(i) => x + i })) }; ``` This contract can be called by another contract, like this one: ```pascaligo group=get_entrypoint_opt type storage is int type parameter is int type x is Left of int function main (const p: parameter; const s: storage): (list(operation) * storage) is block { const contract: contract(x) = case (Tezos.get_entrypoint_opt("%left", ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx":address)): option(contract(x))) of | Some (c) -> c | None -> (failwith("not a correct contract") : contract(x)) end; const result: (list(operation) * storage) = ((list [Tezos.transaction(Left(2), 2mutez, contract)]: list(operation)), s) } with result ``` ```cameligo group=get_entrypoint_opt type storage = int type parameter = int type x = Left of int let main (p, s: parameter * storage): operation list * storage = ( let contract: x contract = match ((Tezos.get_entrypoint_opt "%left" ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)): x contract option) with | Some c -> c | None -> (failwith "contract does not match": x contract) in (([ Tezos.transaction (Left 2) 2mutez contract; ]: operation list), s) ) ``` ```reasonligo group=get_entrypoint_opt type storage = int; type parameter = int; type x = Left(int); let main = ((p, s): (parameter, storage)): (list(operation), storage) => { let contract: contract(x) = switch (Tezos.get_entrypoint_opt("%left", ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)): option(contract(x))) { | Some c => c | None => (failwith ("contract does not match"): contract(x)) }; ([ Tezos.transaction(Left(2), 2mutez, contract) ]: list(operation), s); }; ``` Notice how we directly use the `%left` entrypoint without mentioning the `%right` entrypoint. This is done with the help of annotations. Without annotations it wouldn't be clear what our `int` would be referring to. This currently only works for `or`'s or variant types in LIGO. ## Interop with Michelson To interop with existing Michelson code or for compatibility with certain development tooling, LIGO has two special interop types: `michelson_or` and `michelson_pair`. These types give the flexibility to model the exact Michelson output, including field annotations. Take for example the following Michelson type that we want to interop with: ```michelson (or (unit %z) (or %other (unit %y) (pair %other (string %x) (pair %other (int %w) (nat %v))))) ``` To reproduce this type we can use the following LIGO code: ```pascaligo type w_and_v is michelson_pair(int, "w", nat, "v") type x_and is michelson_pair(string, "x", w_and_v, "other") type y_or is michelson_or(unit, "y", x_and, "other") type z_or is michelson_or(unit, "z", y_or, "other") ``` ```cameligo type w_and_v = (int, "w", nat, "v") michelson_pair type x_and = (string, "x", w_and_v, "other") michelson_pair type y_or = (unit, "y", x_and, "other") michelson_or type z_or = (unit, "z", y_or, "other") michelson_or ``` ```reasonligo type w_and_v = michelson_pair(int, "w", nat, "v") type x_and = michelson_pair(string, "x", w_and_v, "other") type y_or = michelson_or(unit, "y", x_and, "other") type z_or = michelson_or(unit, "z", y_or, "other") ``` If you don't want to have an annotation, you need to provide an empty string. :::info Alternatively, if annotations are not important you can also use plain tuples for pair's instead. Plain tuples don't have any annotations. ::: To use variables of type `michelson_or` you have to use `M_left` and `M_right`. `M_left` picks the left `or` case while `M_right` picks the right `or` case. For `michelson_pair` you need to use tuples. ```pascaligo const z: z_or = (M_left (unit) : z_or); const y_1: y_or = (M_left (unit): y_or); const y: z_or = (M_right (y_1) : z_or); const x_pair: x_and = ("foo", (2, 3n)); const x_1: y_or = (M_right (x_pair): y_or); const x: z_or = (M_right (y_1) : z_or); ``` ```cameligo let z: z_or = (M_left (unit) : z_or) let y_1: y_or = (M_left (unit): y_or) let y: z_or = (M_right (y_1) : z_or) let x_pair: x_and = ("foo", (2, 3n)) let x_1: y_or = (M_right (x_pair): y_or) let x: z_or = (M_right (y_1) : z_or) ``` ```reasonligo let z: z_or = (M_left (unit) : z_or) let y_1: y_or = (M_left (unit): y_or) let y: z_or = (M_right (y_1) : z_or) let x_pair: x_and = ("foo", (2, 3n)) let x_1: y_or = (M_right (x_pair): y_or) let x: z_or = (M_right (y_1) : z_or) ``` ## Helper functions Converting between different LIGO types and data structures can happen in two ways. The first way is to use the provided layout conversion functions, and the second way is to handle the layout conversion manually. :::info In both cases it will increase the size of the smart contract and the conversion will happen when running the smart contract. ::: ### Converting left combed Michelson data structures Here's an example of a left combed Michelson data structure using pairs: ```michelson (pair %other (pair %other (string %s) (int %w) ) (nat %v) ) ``` Which could respond with the following record type: ```pascaligo type l_record is record [ s: string; w: int; v: nat ] ``` ```cameligo type l_record = { s: string; w: int; v: nat } ``` ```reasonligo type l_record = { s: string, w: int, v: nat } ``` If we want to convert from the Michelson type to our record type and vice versa, we can use the following code: ```pascaligo type michelson is michelson_pair_left_comb(l_record) function of_michelson (const f: michelson) : l_record is block { const p: l_record = Layout.convert_from_left_comb(f) } with p function to_michelson (const f: l_record) : michelson is block { const p: michelson = Layout.convert_to_left_comb ((f: l_record)) } with p ``` ```cameligo type michelson = l_record michelson_pair_left_comb let of_michelson (f: michelson) : l_record = let p: l_record = Layout.convert_from_left_comb f in p let to_michelson (f: l_record) : michelson = let p = Layout.convert_to_left_comb (f: l_record) in p ``` ```reasonligo type michelson = michelson_pair_left_comb(l_record); let of_michelson = (f: michelson) : l_record => { let p: l_record = Layout.convert_from_left_comb(f); p }; let to_michelson = (f: l_record) : michelson => { let p = Layout.convert_to_left_comb(f: l_record); p } ``` In the case of a left combed Michelson `or` data structure, that you want to translate to a variant, you can use the `michelson_or_left_comb` type. For example: ```pascaligo type vari is | Foo of int | Bar of nat | Other of bool type r is michelson_or_left_comb(vari) ``` ```cameligo type vari = | Foo of int | Bar of nat | Other of bool type r = vari michelson_or_left_comb ``` ```reasonligo type vari = | Foo(int) | Bar(nat) | Other(bool) type r = michelson_or_left_comb(vari) ``` And then use these types in `Layout.convert_from_left_comb` or `Layout.convert_to_left_comb`, similar to the `pair`s example above, like this: ```pascaligo function of_michelson_or (const f: r) : vari is block { const p: vari = Layout.convert_from_left_comb(f) } with p function to_michelson_or (const f: vari) : r is block { const p: r = Layout.convert_to_left_comb((f: vari)) } with p ``` ```cameligo let of_michelson_or (f: r) : vari = let p: vari = Layout.convert_from_left_comb f in p let to_michelson_or (f: vari) : r = let p = Layout.convert_to_left_comb (f: vari) in p ``` ```reasonligo let of_michelson_or = (f: r) : vari => { let p: vari = Layout.convert_from_left_comb(f); p }; let to_michelson_or = (f: vari) : r => { let p = Layout.convert_to_left_comb(f: vari); p } ``` ### Converting right combed Michelson data structures In the case of right combed data structures, like: ```michelson (pair %other (string %s) (pair %other (int %w) (nat %v) ) ) ``` you can almost use the same code as that for the left combed data structures, but with `michelson_or_right_comb`, `michelson_pair_right_comb`, `Layout.convert_from_right_comb`, and `Layout.convert_to_left_comb` respectively. ### Manual data structure conversion If you want to get your hands dirty, it's also possible to do manual data structure conversion. The following code can be used as inspiration: ```pascaligo group=helper_functions type z_to_v is | Z | Y | X | W | V type w_or_v is michelson_or(unit, "w", unit, "v") type x_or is michelson_or(unit, "x", w_or_v, "other") type y_or is michelson_or(unit, "y", x_or, "other") type z_or is michelson_or(unit, "z", y_or, "other") type test is record [ z: string; y: int; x: string; w: bool; v: int; ] function make_concrete_sum (const r: z_to_v) : z_or is block { const z: z_or = (M_left (unit) : z_or); const y_1: y_or = (M_left (unit): y_or); const y: z_or = (M_right (y_1) : z_or); const x_2: x_or = (M_left (unit): x_or); const x_1: y_or = (M_right (x_2): y_or); const x: z_or = (M_right (x_1) : z_or); const w_3: w_or_v = (M_left (unit): w_or_v); const w_2: x_or = (M_right (w_3): x_or); const w_1: y_or = (M_right (w_2): y_or); const w: z_or = (M_right (w_1) : z_or); const v_3: w_or_v = (M_right (unit): w_or_v); const v_2: x_or = (M_right (v_3): x_or); const v_1: y_or = (M_right (v_2): y_or); const v: z_or = (M_right (v_1) : z_or); } with (case r of | Z -> z | Y -> y | X -> x | W -> w | V -> v end) function make_concrete_record (const r: test) : (string * int * string * bool * int) is (r.z, r.y, r.x, r.w, r.v) function make_abstract_sum (const z_or: z_or) : z_to_v is (case z_or of | M_left (n) -> Z | M_right (y_or) -> (case y_or of | M_left (n) -> Y | M_right (x_or) -> (case x_or of | M_left (n) -> X | M_right (w_or) -> (case (w_or) of | M_left (n) -> W | M_right (n) -> V end) end) end) end) function make_abstract_record (const z: string; const y: int; const x: string; const w: bool; const v: int) : test is record [ z = z; y = y; x = x; w = w; v = v ] ``` ```cameligo group=helper_functions type z_to_v = | Z | Y | X | W | V type w_or_v = (unit, "w", unit, "v") michelson_or type x_or = (unit, "x", w_or_v, "other") michelson_or type y_or = (unit, "y", x_or, "other") michelson_or type z_or = (unit, "z", y_or, "other") michelson_or type test = { z: string; y: int; x: string; w: bool; v: int; } let make_concrete_sum (r: z_to_v) : z_or = match r with | Z -> (M_left (unit) : z_or) | Y -> (M_right (M_left (unit): y_or) : z_or ) | X -> (M_right (M_right (M_left (unit): x_or): y_or) : z_or ) | W -> (M_right (M_right (M_right (M_left (unit): w_or_v): x_or): y_or) : z_or ) | V -> (M_right (M_right (M_right (M_right (unit): w_or_v): x_or): y_or) : z_or ) let make_concrete_record (r: test) : (string * int * string * bool * int) = (r.z, r.y, r.x, r.w, r.v) let make_abstract_sum (z_or: z_or) : z_to_v = match z_or with | M_left n -> Z | M_right y_or -> (match y_or with | M_left n -> Y | M_right x_or -> ( match x_or with | M_left n -> X | M_right w_or -> ( match w_or with | M_left n -> W | M_right n -> V))) let make_abstract_record (z: string) (y: int) (x: string) (w: bool) (v: int) : test = { z = z; y = y; x = x; w = w; v = v } ``` ```reasonligo group=helper_functions type z_to_v = | Z | Y | X | W | V type w_or_v = michelson_or(unit, "w", unit, "v") type x_or = michelson_or(unit, "x", w_or_v, "other") type y_or = michelson_or(unit, "y", x_or, "other") type z_or = michelson_or(unit, "z", y_or, "other") type test = { z: string, y: int, x: string, w: bool, v: int } let make_concrete_sum = (r: z_to_v) : z_or => switch(r){ | Z => (M_left (unit) : z_or) | Y => (M_right (M_left (unit): y_or) : z_or ) | X => (M_right (M_right (M_left (unit): x_or): y_or) : z_or ) | W => (M_right (M_right (M_right (M_left (unit): w_or_v): x_or): y_or) : z_or ) | V => (M_right (M_right (M_right (M_right (unit): w_or_v): x_or): y_or) : z_or ) } let make_concrete_record = (r: test) : (string, int, string, bool, int) => (r.z, r.y, r.x, r.w, r.v) let make_abstract_sum = (z_or: z_or) : z_to_v => switch (z_or) { | M_left n => Z | M_right y_or => ( switch (y_or) { | M_left n => Y | M_right x_or => ( switch (x_or) { | M_left n => X | M_right w_or => ( switch (w_or) { | M_left n => W | M_right n => V }) }) }) } let make_abstract_record = (z: string, y: int, x: string, w: bool, v: int) : test => { z : z, y, x, w, v } ``` ## Amendment With the upcoming 007 amendment to Tezos this will change though, and also `pair`'s can be ordered differently.