(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Alpha_context open Script open Script_typed_ir open Script_ir_translator (* ---- Run-time errors -----------------------------------------------------*) type execution_trace = (Script.location * Gas.t * (Script.expr * string option) list) list type error += Reject of Script.location * Script.expr * execution_trace option type error += Overflow of Script.location * execution_trace option type error += Runtime_contract_error : Contract.t * Script.expr -> error type error += Bad_contract_parameter of Contract.t (* `Permanent *) type error += Cannot_serialize_log type error += Cannot_serialize_failure type error += Cannot_serialize_storage let () = let open Data_encoding in let trace_encoding = (list @@ obj3 (req "location" Script.location_encoding) (req "gas" Gas.encoding) (req "stack" (list (obj2 (req "item" (Script.expr_encoding)) (opt "annot" string))))) in (* Reject *) register_error_kind `Temporary ~id:"michelson_v1.script_rejected" ~title: "Script failed" ~description: "A FAILWITH instruction was reached" (obj3 (req "location" Script.location_encoding) (req "with" Script.expr_encoding) (opt "trace" trace_encoding)) (function Reject (loc, v, trace) -> Some (loc, v, trace) | _ -> None) (fun (loc, v, trace) -> Reject (loc, v, trace)); (* Overflow *) register_error_kind `Temporary ~id:"michelson_v1.script_overflow" ~title: "Script failed (overflow error)" ~description: "A FAIL instruction was reached due to the detection of an overflow" (obj2 (req "location" Script.location_encoding) (opt "trace" trace_encoding)) (function Overflow (loc, trace) -> Some (loc, trace) | _ -> None) (fun (loc, trace) -> Overflow (loc, trace)); (* Runtime contract error *) register_error_kind `Temporary ~id:"michelson_v1.runtime_error" ~title: "Script runtime error" ~description: "Toplevel error for all runtime script errors" (obj2 (req "contract_handle" Contract.encoding) (req "contract_code" Script.expr_encoding)) (function | Runtime_contract_error (contract, expr) -> Some (contract, expr) | _ -> None) (fun (contract, expr) -> Runtime_contract_error (contract, expr)) ; (* Bad contract parameter *) register_error_kind `Permanent ~id:"michelson_v1.bad_contract_parameter" ~title:"Contract supplied an invalid parameter" ~description:"Either no parameter was supplied to a contract with \ a non-unit parameter type, a non-unit parameter was \ passed to an account, or a parameter was supplied of \ the wrong type" Data_encoding.(obj1 (req "contract" Contract.encoding)) (function Bad_contract_parameter c -> Some c | _ -> None) (fun c -> Bad_contract_parameter c) ; (* Cannot serialize log *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_log" ~title:"Not enough gas to serialize execution trace" ~description:"Execution trace with stacks was to big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_log -> Some () | _ -> None) (fun () -> Cannot_serialize_log) ; (* Cannot serialize failure *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_failure" ~title:"Not enough gas to serialize argument of FAILWITH" ~description:"Argument of FAILWITH was too big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_failure -> Some () | _ -> None) (fun () -> Cannot_serialize_failure) ; (* Cannot serialize storage *) register_error_kind `Temporary ~id:"michelson_v1.cannot_serialize_storage" ~title:"Not enough gas to serialize execution storage" ~description:"The returned storage was too big to be serialized with \ the provided gas" Data_encoding.empty (function Cannot_serialize_storage -> Some () | _ -> None) (fun () -> Cannot_serialize_storage) (* ---- interpreter ---------------------------------------------------------*) type 'tys stack = | Item : 'ty * 'rest stack -> ('ty * 'rest) stack | Empty : end_of_stack stack let unparse_stack ctxt (stack, stack_ty) = (* We drop the gas limit as this function is only used for debugging/errors. *) let ctxt = Gas.set_unlimited ctxt in let rec unparse_stack : type a. a stack * a stack_ty -> (Script.expr * string option) list tzresult Lwt.t = function | Empty, Empty_t -> return_nil | Item (v, rest), Item_t (ty, rest_ty, annot) -> unparse_data ctxt Readable ty v >>=? fun (data, _ctxt) -> unparse_stack (rest, rest_ty) >>=? fun rest -> let annot = match Script_ir_annot.unparse_var_annot annot with | [] -> None | [ a ] -> Some a | _ -> assert false in let data = Micheline.strip_locations data in return ((data, annot) :: rest) in unparse_stack (stack, stack_ty) module Interp_costs = Michelson_v1_gas.Cost_of let rec interp : type p r. (?log: execution_trace ref -> context -> source: Contract.t -> payer:Contract.t -> self: Contract.t -> Tez.t -> (p, r) lambda -> p -> (r * context) tzresult Lwt.t) = fun ?log ctxt ~source ~payer ~self amount (Lam (code, _)) arg -> let rec step : type b a. context -> (b, a) descr -> b stack -> (a stack * context) tzresult Lwt.t = fun ctxt ({ instr ; loc ; _ } as descr) stack -> Lwt.return (Gas.consume ctxt Interp_costs.cycle) >>=? fun ctxt -> let logged_return : type a b. (b, a) descr -> a stack * context -> (a stack * context) tzresult Lwt.t = fun descr (ret, ctxt) -> match log with | None -> return (ret, ctxt) | Some log -> trace Cannot_serialize_log (unparse_stack ctxt (ret, descr.aft)) >>=? fun stack -> log := (descr.loc, Gas.level ctxt, stack) :: !log ; return (ret, ctxt) in let get_log (log : execution_trace ref option) = Option.map ~f:(fun l -> List.rev !l) log in let consume_gas_terop : type ret arg1 arg2 arg3 rest. (_ * (_ * (_ * rest)), ret * rest) descr -> ((arg1 -> arg2 -> arg3 -> ret) * arg1 * arg2 * arg3) -> (arg1 -> arg2 -> arg3 -> Gas.cost) -> rest stack -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, x1, x2, x3) cost_func rest -> Lwt.return (Gas.consume ctxt (cost_func x1 x2 x3)) >>=? fun ctxt -> logged_return descr (Item (op x1 x2 x3, rest), ctxt) in let consume_gas_binop : type ret arg1 arg2 rest. (_ * (_ * rest), ret * rest) descr -> ((arg1 -> arg2 -> ret) * arg1 * arg2) -> (arg1 -> arg2 -> Gas.cost) -> rest stack -> context -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, x1, x2) cost_func rest ctxt -> Lwt.return (Gas.consume ctxt (cost_func x1 x2)) >>=? fun ctxt -> logged_return descr (Item (op x1 x2, rest), ctxt) in let consume_gas_unop : type ret arg rest. (_ * rest, ret * rest) descr -> ((arg -> ret) * arg) -> (arg -> Gas.cost) -> rest stack -> context -> ((ret * rest) stack * context) tzresult Lwt.t = fun descr (op, arg) cost_func rest ctxt -> Lwt.return (Gas.consume ctxt (cost_func arg)) >>=? fun ctxt -> logged_return descr (Item (op arg, rest), ctxt) in let consume_gaz_comparison : type t rest. (t * (t * rest), Script_int.z Script_int.num * rest) descr -> (t -> t -> int) -> (t -> t -> Gas.cost) -> t -> t -> rest stack -> ((Script_int.z Script_int.num * rest) stack * context) tzresult Lwt.t = fun descr op cost x1 x2 rest -> Lwt.return (Gas.consume ctxt (cost x1 x2)) >>=? fun ctxt -> logged_return descr (Item (Script_int.of_int @@ op x1 x2, rest), ctxt) in let logged_return : a stack * context -> (a stack * context) tzresult Lwt.t = logged_return descr in match instr, stack with (* stack ops *) | Drop, Item (_, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (rest, ctxt) | Dup, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (Item (v, Item (v, rest)), ctxt) | Swap, Item (vi, Item (vo, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> logged_return (Item (vo, Item (vi, rest)), ctxt) | Const v, rest -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (v, rest), ctxt) (* options *) | Cons_some, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (Some v, rest), ctxt) | Cons_none _, rest -> Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | If_none (bt, _), Item (None, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bt rest | If_none (_, bf), Item (Some v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bf (Item (v, rest)) (* pairs *) | Cons_pair, Item (a, Item (b, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.pair) >>=? fun ctxt -> logged_return (Item ((a, b), rest), ctxt) | Car, Item ((a, _), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt -> logged_return (Item (a, rest), ctxt) | Cdr, Item ((_, b), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.pair_access) >>=? fun ctxt -> logged_return (Item (b, rest), ctxt) (* unions *) | Left, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (L v, rest), ctxt) | Right, Item (v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.wrap) >>=? fun ctxt -> logged_return (Item (R v, rest), ctxt) | If_left (bt, _), Item (L v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bt (Item (v, rest)) | If_left (_, bf), Item (R v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bf (Item (v, rest)) (* lists *) | Cons_list, Item (hd, Item (tl, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.cons) >>=? fun ctxt -> logged_return (Item (hd :: tl, rest), ctxt) | Nil, rest -> Lwt.return (Gas.consume ctxt Interp_costs.variant_no_data) >>=? fun ctxt -> logged_return (Item ([], rest), ctxt) | If_cons (_, bf), Item ([], rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bf rest | If_cons (bt, _), Item (hd :: tl, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bt (Item (hd, Item (tl, rest))) | List_map body, Item (l, rest) -> let rec loop rest ctxt l acc = Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> match l with | [] -> return (Item (List.rev acc, rest), ctxt) | hd :: tl -> step ctxt body (Item (hd, rest)) >>=? fun (Item (hd, rest), ctxt) -> loop rest ctxt tl (hd :: acc) in loop rest ctxt l [] >>=? fun (res, ctxt) -> logged_return (res, ctxt) | List_size, Item (list, rest) -> Lwt.return (List.fold_left (fun acc _ -> acc >>? fun (size, ctxt) -> Gas.consume ctxt Interp_costs.list_size >>? fun ctxt -> ok (size + 1 (* FIXME: overflow *), ctxt)) (ok (0, ctxt)) list) >>=? fun (len, ctxt) -> logged_return (Item (Script_int.(abs (of_int len)), rest), ctxt) | List_iter body, Item (l, init) -> let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ctxt body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) (* sets *) | Empty_set t, rest -> Lwt.return (Gas.consume ctxt Interp_costs.empty_set) >>=? fun ctxt -> logged_return (Item (empty_set t, rest), ctxt) | Set_iter body, Item (set, init) -> Lwt.return (Gas.consume ctxt (Interp_costs.set_to_list set)) >>=? fun ctxt -> let l = List.rev (set_fold (fun e acc -> e :: acc) set []) in let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ctxt body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | Set_mem, Item (v, Item (set, rest)) -> consume_gas_binop descr (set_mem, v, set) Interp_costs.set_mem rest ctxt | Set_update, Item (v, Item (presence, Item (set, rest))) -> consume_gas_terop descr (set_update, v, presence, set) Interp_costs.set_update rest | Set_size, Item (set, rest) -> consume_gas_unop descr (set_size, set) (fun _ -> Interp_costs.set_size) rest ctxt (* maps *) | Empty_map (t, _), rest -> Lwt.return (Gas.consume ctxt Interp_costs.empty_map) >>=? fun ctxt -> logged_return (Item (empty_map t, rest), ctxt) | Map_map body, Item (map, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop rest ctxt l acc = Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> match l with | [] -> return (acc, ctxt) | (k, _) as hd :: tl -> step ctxt body (Item (hd, rest)) >>=? fun (Item (hd, rest), ctxt) -> loop rest ctxt tl (map_update k (Some hd) acc) in loop rest ctxt l (empty_map (map_key_ty map)) >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Map_iter body, Item (map, init) -> Lwt.return (Gas.consume ctxt (Interp_costs.map_to_list map)) >>=? fun ctxt -> let l = List.rev (map_fold (fun k v acc -> (k, v) :: acc) map []) in let rec loop ctxt l stack = Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> match l with | [] -> return (stack, ctxt) | hd :: tl -> step ctxt body (Item (hd, stack)) >>=? fun (stack, ctxt) -> loop ctxt tl stack in loop ctxt l init >>=? fun (res, ctxt) -> logged_return (res, ctxt) | Map_mem, Item (v, Item (map, rest)) -> consume_gas_binop descr (map_mem, v, map) Interp_costs.map_mem rest ctxt | Map_get, Item (v, Item (map, rest)) -> consume_gas_binop descr (map_get, v, map) Interp_costs.map_get rest ctxt | Map_update, Item (k, Item (v, Item (map, rest))) -> consume_gas_terop descr (map_update, k, v, map) Interp_costs.map_update rest | Map_size, Item (map, rest) -> consume_gas_unop descr (map_size, map) (fun _ -> Interp_costs.map_size) rest ctxt (* Big map operations *) | Big_map_mem, Item (key, Item (map, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.big_map_mem key map)) >>=? fun ctxt -> Script_ir_translator.big_map_mem ctxt self key map >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Big_map_get, Item (key, Item (map, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.big_map_get key map)) >>=? fun ctxt -> Script_ir_translator.big_map_get ctxt self key map >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Big_map_update, Item (key, Item (maybe_value, Item (map, rest))) -> consume_gas_terop descr (Script_ir_translator.big_map_update, key, maybe_value, map) Interp_costs.big_map_update rest (* timestamp operations *) | Add_seconds_to_timestamp, Item (n, Item (t, rest)) -> consume_gas_binop descr (Script_timestamp.add_delta, t, n) Interp_costs.add_timestamp rest ctxt | Add_timestamp_to_seconds, Item (t, Item (n, rest)) -> consume_gas_binop descr (Script_timestamp.add_delta, t, n) Interp_costs.add_timestamp rest ctxt | Sub_timestamp_seconds, Item (t, Item (s, rest)) -> consume_gas_binop descr (Script_timestamp.sub_delta, t, s) Interp_costs.sub_timestamp rest ctxt | Diff_timestamps, Item (t1, Item (t2, rest)) -> consume_gas_binop descr (Script_timestamp.diff, t1, t2) Interp_costs.diff_timestamps rest ctxt (* string operations *) | Concat_string_pair, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_string [x; y])) >>=? fun ctxt -> let s = String.concat "" [x; y] in logged_return (Item (s, rest), ctxt) | Concat_string, Item (ss, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_string ss)) >>=? fun ctxt -> let s = String.concat "" ss in logged_return (Item (s, rest), ctxt) | Slice_string, Item (offset, Item (length, Item (s, rest))) -> let s_length = Z.of_int (String.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt -> logged_return (Item (Some (String.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt) else Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | String_size, Item (s, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (Script_int.(abs (of_int (String.length s))), rest), ctxt) (* bytes operations *) | Concat_bytes_pair, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes [x; y])) >>=? fun ctxt -> let s = MBytes.concat "" [x; y] in logged_return (Item (s, rest), ctxt) | Concat_bytes, Item (ss, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.concat_bytes ss)) >>=? fun ctxt -> let s = MBytes.concat "" ss in logged_return (Item (s, rest), ctxt) | Slice_bytes, Item (offset, Item (length, Item (s, rest))) -> let s_length = Z.of_int (MBytes.length s) in let offset = Script_int.to_zint offset in let length = Script_int.to_zint length in if Compare.Z.(offset < s_length && Z.add offset length <= s_length) then Lwt.return (Gas.consume ctxt (Interp_costs.slice_string (Z.to_int length))) >>=? fun ctxt -> logged_return (Item (Some (MBytes.sub s (Z.to_int offset) (Z.to_int length)), rest), ctxt) else Lwt.return (Gas.consume ctxt (Interp_costs.slice_string 0)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | Bytes_size, Item (s, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (Script_int.(abs (of_int (MBytes.length s))), rest), ctxt) (* currency operations *) | Add_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return Tez.(x +? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) | Sub_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return Tez.(x -? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) | Mul_teznat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt -> begin match Script_int.to_int64 y with | None -> fail (Overflow (loc, get_log log)) | Some y -> Lwt.return Tez.(x *? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) end | Mul_nattez, Item (y, Item (x, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_op) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.z_to_int64) >>=? fun ctxt -> begin match Script_int.to_int64 y with | None -> fail (Overflow (loc, get_log log)) | Some y -> Lwt.return Tez.(x *? y) >>=? fun res -> logged_return (Item (res, rest), ctxt) end (* boolean operations *) | Or, Item (x, Item (y, rest)) -> consume_gas_binop descr ((||), x, y) Interp_costs.bool_binop rest ctxt | And, Item (x, Item (y, rest)) -> consume_gas_binop descr ((&&), x, y) Interp_costs.bool_binop rest ctxt | Xor, Item (x, Item (y, rest)) -> consume_gas_binop descr (Compare.Bool.(<>), x, y) Interp_costs.bool_binop rest ctxt | Not, Item (x, rest) -> consume_gas_unop descr (not, x) Interp_costs.bool_unop rest ctxt (* integer operations *) | Is_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.is_nat, x) Interp_costs.abs rest ctxt | Abs_int, Item (x, rest) -> consume_gas_unop descr (Script_int.abs, x) Interp_costs.abs rest ctxt | Int_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.int, x) Interp_costs.int rest ctxt | Neg_int, Item (x, rest) -> consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt | Neg_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.neg, x) Interp_costs.neg rest ctxt | Add_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add, x, y) Interp_costs.add rest ctxt | Add_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.add_n, x, y) Interp_costs.add rest ctxt | Sub_int, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.sub, x, y) Interp_costs.sub rest ctxt | Mul_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul, x, y) Interp_costs.mul rest ctxt | Mul_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.mul_n, x, y) Interp_costs.mul rest ctxt | Ediv_teznat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> let x = Script_int.of_int64 (Tez.to_mutez x) in consume_gas_binop descr ((fun x y -> match Script_int.ediv x y with | None -> None | Some (q, r) -> match Script_int.to_int64 q, Script_int.to_int64 r with | Some q, Some r -> begin match Tez.of_mutez q, Tez.of_mutez r with | Some q, Some r -> Some (q,r) (* Cannot overflow *) | _ -> assert false end (* Cannot overflow *) | _ -> assert false), x, y) Interp_costs.div rest ctxt | Ediv_tez, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> Lwt.return (Gas.consume ctxt Interp_costs.int64_to_z) >>=? fun ctxt -> let x = Script_int.abs (Script_int.of_int64 (Tez.to_mutez x)) in let y = Script_int.abs (Script_int.of_int64 (Tez.to_mutez y)) in consume_gas_binop descr ((fun x y -> match Script_int.ediv_n x y with | None -> None | Some (q, r) -> match Script_int.to_int64 r with | None -> assert false (* Cannot overflow *) | Some r -> match Tez.of_mutez r with | None -> assert false (* Cannot overflow *) | Some r -> Some (q, r)), x, y) Interp_costs.div rest ctxt | Ediv_intint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_intnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_natint, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv, x, y) Interp_costs.div rest ctxt | Ediv_natnat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.ediv_n, x, y) Interp_costs.div rest ctxt | Lsl_nat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.shift_left x y)) >>=? fun ctxt -> begin match Script_int.shift_left_n x y with | None -> fail (Overflow (loc, get_log log)) | Some x -> logged_return (Item (x, rest), ctxt) end | Lsr_nat, Item (x, Item (y, rest)) -> Lwt.return (Gas.consume ctxt (Interp_costs.shift_right x y)) >>=? fun ctxt -> begin match Script_int.shift_right_n x y with | None -> fail (Overflow (loc, get_log log)) | Some r -> logged_return (Item (r, rest), ctxt) end | Or_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logor, x, y) Interp_costs.logor rest ctxt | And_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt | And_int_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logand, x, y) Interp_costs.logand rest ctxt | Xor_nat, Item (x, Item (y, rest)) -> consume_gas_binop descr (Script_int.logxor, x, y) Interp_costs.logxor rest ctxt | Not_int, Item (x, rest) -> consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt | Not_nat, Item (x, rest) -> consume_gas_unop descr (Script_int.lognot, x) Interp_costs.lognot rest ctxt (* control *) | Seq (hd, tl), stack -> step ctxt hd stack >>=? fun (trans, ctxt) -> step ctxt tl trans | If (bt, _), Item (true, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bt rest | If (_, bf), Item (false, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.branch) >>=? fun ctxt -> step ctxt bf rest | Loop body, Item (true, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> step ctxt body rest >>=? fun (trans, ctxt) -> step ctxt descr trans | Loop _, Item (false, rest) -> logged_return (rest, ctxt) | Loop_left body, Item (L v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> step ctxt body (Item (v, rest)) >>=? fun (trans, ctxt) -> step ctxt descr trans | Loop_left _, Item (R v, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.loop_cycle) >>=? fun ctxt -> logged_return (Item (v, rest), ctxt) | Dip b, Item (ign, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.stack_op) >>=? fun ctxt -> step ctxt b rest >>=? fun (res, ctxt) -> logged_return (Item (ign, res), ctxt) | Exec, Item (arg, Item (lam, rest)) -> Lwt.return (Gas.consume ctxt Interp_costs.exec) >>=? fun ctxt -> interp ?log ctxt ~source ~payer ~self amount lam arg >>=? fun (res, ctxt) -> logged_return (Item (res, rest), ctxt) | Lambda lam, rest -> Lwt.return (Gas.consume ctxt Interp_costs.push) >>=? fun ctxt -> logged_return (Item (lam, rest), ctxt) | Failwith tv, Item (v, _) -> trace Cannot_serialize_failure (unparse_data ctxt Optimized tv v) >>=? fun (v, _ctxt) -> let v = Micheline.strip_locations v in fail (Reject (loc, v, get_log log)) | Nop, stack -> logged_return (stack, ctxt) (* comparison *) | Compare (Bool_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Compare.Bool.compare Interp_costs.compare_bool a b rest | Compare (String_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Compare.String.compare Interp_costs.compare_string a b rest | Compare (Bytes_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr MBytes.compare Interp_costs.compare_bytes a b rest | Compare (Mutez_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Tez.compare Interp_costs.compare_tez a b rest | Compare (Int_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Script_int.compare Interp_costs.compare_int a b rest | Compare (Nat_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Script_int.compare Interp_costs.compare_nat a b rest | Compare (Key_hash_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Signature.Public_key_hash.compare Interp_costs.compare_key_hash a b rest | Compare (Timestamp_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Script_timestamp.compare Interp_costs.compare_timestamp a b rest | Compare (Address_key _), Item (a, Item (b, rest)) -> consume_gaz_comparison descr Contract.compare Interp_costs.compare_address a b rest (* comparators *) | Eq, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres = 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Neq, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <> 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Lt, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres < 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Le, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres <= 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Gt, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres > 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) | Ge, Item (cmpres, rest) -> let cmpres = Script_int.compare cmpres Script_int.zero in let cmpres = Compare.Int.(cmpres >= 0) in Lwt.return (Gas.consume ctxt Interp_costs.compare_res) >>=? fun ctxt -> logged_return (Item (cmpres, rest), ctxt) (* packing *) | Pack t, Item (value, rest) -> Script_ir_translator.pack_data ctxt t value >>=? fun (bytes, ctxt) -> logged_return (Item (bytes, rest), ctxt) | Unpack t, Item (bytes, rest) -> Lwt.return (Gas.check_enough ctxt (Script.serialized_cost bytes)) >>=? fun () -> if Compare.Int.(MBytes.length bytes >= 1) && Compare.Int.(MBytes.get_uint8 bytes 0 = 0x05) then let bytes = MBytes.sub bytes 1 (MBytes.length bytes - 1) in match Data_encoding.Binary.of_bytes Script.expr_encoding bytes with | None -> Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) | Some expr -> Lwt.return (Gas.consume ctxt (Script.deserialized_cost expr)) >>=? fun ctxt -> parse_data ctxt t (Micheline.root expr) >>= function | Ok (value, ctxt) -> logged_return (Item (Some value, rest), ctxt) | Error _ignored -> Lwt.return (Gas.consume ctxt (Interp_costs.unpack_failed bytes)) >>=? fun ctxt -> logged_return (Item (None, rest), ctxt) else logged_return (Item (None, rest), ctxt) (* protocol *) | Address, Item ((_, contract), rest) -> Lwt.return (Gas.consume ctxt Interp_costs.address) >>=? fun ctxt -> logged_return (Item (contract, rest), ctxt) | Contract t, Item (contract, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.contract) >>=? fun ctxt -> Script_ir_translator.parse_contract_for_script ctxt loc t contract >>=? fun (ctxt, maybe_contract) -> logged_return (Item (maybe_contract, rest), ctxt) | Transfer_tokens, Item (p, Item (amount, Item ((tp, destination), rest))) -> Lwt.return (Gas.consume ctxt Interp_costs.transfer) >>=? fun ctxt -> unparse_data ctxt Optimized tp p >>=? fun (p, ctxt) -> let operation = Transaction { amount ; destination ; parameters = Some (Script.lazy_expr (Micheline.strip_locations p)) } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt) | Create_account, Item (manager, Item (delegate, Item (delegatable, Item (credit, rest)))) -> Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt -> Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) -> let operation = Origination { credit ; manager ; delegate ; preorigination = Some contract ; delegatable ; script = None ; spendable = true } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item (Internal_operation { source = self ; operation ; nonce }, Item (contract, rest)), ctxt) | Implicit_account, Item (key, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.implicit_account) >>=? fun ctxt -> let contract = Contract.implicit_contract key in logged_return (Item ((Unit_t None, contract), rest), ctxt) | Create_contract (storage_type, param_type, Lam (_, code)), Item (manager, Item (delegate, Item (spendable, Item (delegatable, Item (credit, Item (init, rest)))))) -> Lwt.return (Gas.consume ctxt Interp_costs.create_contract) >>=? fun ctxt -> unparse_ty ctxt param_type >>=? fun (unparsed_param_type, ctxt) -> unparse_ty ctxt storage_type >>=? fun (unparsed_storage_type, ctxt) -> let code = Micheline.strip_locations (Seq (0, [ Prim (0, K_parameter, [ unparsed_param_type ], []) ; Prim (0, K_storage, [ unparsed_storage_type ], []) ; Prim (0, K_code, [ Micheline.root code ], []) ])) in unparse_data ctxt Optimized storage_type init >>=? fun (storage, ctxt) -> let storage = Micheline.strip_locations storage in Contract.fresh_contract_from_current_nonce ctxt >>=? fun (ctxt, contract) -> let operation = Origination { credit ; manager ; delegate ; preorigination = Some contract ; delegatable ; spendable ; script = Some { code = Script.lazy_expr code ; storage = Script.lazy_expr storage } } in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item (Internal_operation { source = self ; operation ; nonce }, Item (contract, rest)), ctxt) | Set_delegate, Item (delegate, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.create_account) >>=? fun ctxt -> let operation = Delegation delegate in Lwt.return (fresh_internal_nonce ctxt) >>=? fun (ctxt, nonce) -> logged_return (Item (Internal_operation { source = self ; operation ; nonce }, rest), ctxt) | Balance, rest -> Lwt.return (Gas.consume ctxt Interp_costs.balance) >>=? fun ctxt -> Contract.get_balance ctxt self >>=? fun balance -> logged_return (Item (balance, rest), ctxt) | Now, rest -> Lwt.return (Gas.consume ctxt Interp_costs.now) >>=? fun ctxt -> let now = Script_timestamp.now ctxt in logged_return (Item (now, rest), ctxt) | Check_signature, Item (key, Item (signature, Item (message, rest))) -> Lwt.return (Gas.consume ctxt Interp_costs.check_signature) >>=? fun ctxt -> let res = Signature.check key signature message in logged_return (Item (res, rest), ctxt) | Hash_key, Item (key, rest) -> Lwt.return (Gas.consume ctxt Interp_costs.hash_key) >>=? fun ctxt -> logged_return (Item (Signature.Public_key.hash key, rest), ctxt) | Blake2b, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt -> let hash = Raw_hashes.blake2b bytes in logged_return (Item (hash, rest), ctxt) | Sha256, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 32)) >>=? fun ctxt -> let hash = Raw_hashes.sha256 bytes in logged_return (Item (hash, rest), ctxt) | Sha512, Item (bytes, rest) -> Lwt.return (Gas.consume ctxt (Interp_costs.hash bytes 64)) >>=? fun ctxt -> let hash = Raw_hashes.sha512 bytes in logged_return (Item (hash, rest), ctxt) | Steps_to_quota, rest -> Lwt.return (Gas.consume ctxt Interp_costs.steps_to_quota) >>=? fun ctxt -> let steps = match Gas.level ctxt with | Limited { remaining } -> remaining | Unaccounted -> Z.of_string "99999999" in logged_return (Item (Script_int.(abs (of_zint steps)), rest), ctxt) | Source, rest -> Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt -> logged_return (Item (payer, rest), ctxt) | Sender, rest -> Lwt.return (Gas.consume ctxt Interp_costs.source) >>=? fun ctxt -> logged_return (Item (source, rest), ctxt) | Self t, rest -> Lwt.return (Gas.consume ctxt Interp_costs.self) >>=? fun ctxt -> logged_return (Item ((t,self), rest), ctxt) | Amount, rest -> Lwt.return (Gas.consume ctxt Interp_costs.amount) >>=? fun ctxt -> logged_return (Item (amount, rest), ctxt) in let stack = (Item (arg, Empty)) in begin match log with | None -> return_unit | Some log -> trace Cannot_serialize_log (unparse_stack ctxt (stack, code.bef)) >>=? fun stack -> log := (code.loc, Gas.level ctxt, stack) :: !log ; return_unit end >>=? fun () -> step ctxt code stack >>=? fun (Item (ret, Empty), ctxt) -> return (ret, ctxt) (* ---- contract handling ---------------------------------------------------*) and execute ?log ctxt mode ~source ~payer ~self script amount arg : (Script.expr * packed_internal_operation list * context * Script_typed_ir.ex_big_map option) tzresult Lwt.t = parse_script ctxt script >>=? fun ((Ex_script { code ; arg_type ; storage ; storage_type }), ctxt) -> trace (Bad_contract_parameter self) (parse_data ctxt arg_type arg) >>=? fun (arg, ctxt) -> Script.force_decode ctxt script.code >>=? fun (script_code, ctxt) -> trace (Runtime_contract_error (self, script_code)) (interp ?log ctxt ~source ~payer ~self amount code (arg, storage)) >>=? fun ((ops, sto), ctxt) -> trace Cannot_serialize_storage (unparse_data ctxt mode storage_type sto) >>=? fun (storage, ctxt) -> return (Micheline.strip_locations storage, ops, ctxt, Script_ir_translator.extract_big_map storage_type sto) type execution_result = { ctxt : context ; storage : Script.expr ; big_map_diff : Contract.big_map_diff option ; operations : packed_internal_operation list } let trace ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount = let log = ref [] in execute ~log ctxt mode ~source ~payer ~self script amount (Micheline.root parameter) >>=? fun (storage, operations, ctxt, big_map) -> begin match big_map with | None -> return (None, ctxt) | Some big_map -> Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) -> return (Some big_map_diff, ctxt) end >>=? fun (big_map_diff, ctxt) -> let trace = List.rev !log in return ({ ctxt ; storage ; big_map_diff ; operations }, trace) let execute ctxt mode ~source ~payer ~self:(self, script) ~parameter ~amount = execute ctxt mode ~source ~payer ~self script amount (Micheline.root parameter) >>=? fun (storage, operations, ctxt, big_map) -> begin match big_map with | None -> return (None, ctxt) | Some big_map -> Script_ir_translator.diff_of_big_map ctxt mode big_map >>=? fun (big_map_diff, ctxt) -> return (Some big_map_diff, ctxt) end >>=? fun (big_map_diff, ctxt) -> return { ctxt ; storage ; big_map_diff ; operations }