(* Abstract Syntax Tree (AST) for Ligo *) (* To disable warning about multiply-defined record labels. *) [@@@warning "-30-42"] (* Utilities *) open Utils (* Regions The AST carries all the regions where tokens have been found by the lexer, plus additional regions corresponding to whole subtrees (like entire expressions, patterns etc.). These regions are needed for error reporting and source-to-source transformations. To make these pervasive regions more legible, we define singleton types for the symbols, keywords etc. with suggestive names like "kwd_and" denoting the _region_ of the occurrence of the keyword "and". *) type 'a reg = 'a Region.reg let rec last to_region = function [] -> Region.ghost | [x] -> to_region x | _::t -> last to_region t let nseq_to_region to_region (hd,tl) = Region.cover (to_region hd) (last to_region tl) let nsepseq_to_region to_region (hd,tl) = let reg (_, item) = to_region item in Region.cover (to_region hd) (last reg tl) let sepseq_to_region to_region = function None -> Region.ghost | Some seq -> nsepseq_to_region to_region seq (* Keywords of Ligo *) type kwd_begin = Region.t type kwd_const = Region.t type kwd_down = Region.t type kwd_fail = Region.t type kwd_if = Region.t type kwd_in = Region.t type kwd_is = Region.t type kwd_for = Region.t type kwd_function = Region.t type kwd_parameter = Region.t type kwd_storage = Region.t type kwd_type = Region.t type kwd_of = Region.t type kwd_operations = Region.t type kwd_var = Region.t type kwd_end = Region.t type kwd_then = Region.t type kwd_else = Region.t type kwd_match = Region.t type kwd_procedure = Region.t type kwd_null = Region.t type kwd_record = Region.t type kwd_step = Region.t type kwd_to = Region.t type kwd_mod = Region.t type kwd_not = Region.t type kwd_while = Region.t type kwd_with = Region.t (* Data constructors *) type c_False = Region.t type c_None = Region.t type c_Some = Region.t type c_True = Region.t type c_Unit = Region.t (* Symbols *) type semi = Region.t type comma = Region.t type lpar = Region.t type rpar = Region.t type lbrace = Region.t type rbrace = Region.t type lbracket = Region.t type rbracket = Region.t type cons = Region.t type vbar = Region.t type arrow = Region.t type ass = Region.t type equal = Region.t type colon = Region.t type bool_or = Region.t type bool_and = Region.t type lt = Region.t type leq = Region.t type gt = Region.t type geq = Region.t type neq = Region.t type plus = Region.t type minus = Region.t type slash = Region.t type times = Region.t type dot = Region.t type wild = Region.t type cat = Region.t (* Virtual tokens *) type eof = Region.t (* Literals *) type variable = string reg type fun_name = string reg type type_name = string reg type field_name = string reg type map_name = string reg type constr = string reg (* Comma-separated non-empty lists *) type 'a csv = ('a, comma) nsepseq (* Bar-separated non-empty lists *) type 'a bsv = ('a, vbar) nsepseq (* Parentheses *) type 'a par = (lpar * 'a * rpar) reg (* Brackets compounds *) type 'a brackets = (lbracket * 'a * rbracket) reg (* Braced compounds *) type 'a braces = (lbrace * 'a * rbrace) reg (* The Abstract Syntax Tree *) type t = { types : type_decl reg list; constants : const_decl reg list; parameter : parameter_decl reg; storage : storage_decl reg; operations : operations_decl reg; lambdas : lambda_decl list; block : block reg; eof : eof } and ast = t and parameter_decl = { kwd_parameter : kwd_parameter; name : variable; colon : colon; param_type : type_expr; terminator : semi option } and storage_decl = { kwd_storage : kwd_storage; store_type : type_expr; terminator : semi option } and operations_decl = { kwd_operations : kwd_operations; op_type : type_expr; terminator : semi option } (* Type declarations *) and type_decl = { kwd_type : kwd_type; name : type_name; kwd_is : kwd_is; type_expr : type_expr; terminator : semi option } and type_expr = Prod of cartesian | Sum of (variant, vbar) nsepseq reg | Record of record_type | TypeApp of (type_name * type_tuple) reg | ParType of type_expr par | TAlias of variable and cartesian = (type_expr, times) nsepseq reg and variant = (constr * kwd_of * cartesian) reg and record_type = (kwd_record * field_decls * kwd_end) reg and field_decls = (field_decl, semi) nsepseq and field_decl = (variable * colon * type_expr) reg and type_tuple = (type_name, comma) nsepseq par (* Function and procedure declarations *) and lambda_decl = FunDecl of fun_decl reg | ProcDecl of proc_decl reg and fun_decl = { kwd_function : kwd_function; name : variable; param : parameters; colon : colon; ret_type : type_expr; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; kwd_with : kwd_with; return : expr; terminator : semi option } and proc_decl = { kwd_procedure : kwd_procedure; name : variable; param : parameters; kwd_is : kwd_is; local_decls : local_decl list; block : block reg; terminator : semi option } and parameters = (param_decl, semi) nsepseq par and param_decl = ParamConst of param_const | ParamVar of param_var and param_const = (kwd_const * variable * colon * type_expr) reg and param_var = (kwd_var * variable * colon * type_expr) reg and block = { opening : kwd_begin; instr : instructions; terminator : semi option; close : kwd_end } and local_decl = LocalLam of lambda_decl | LocalConst of const_decl reg | LocalVar of var_decl reg and const_decl = { kwd_const : kwd_const; name : variable; colon : colon; vtype : type_expr; equal : equal; init : expr; terminator : semi option } and var_decl = { kwd_var : kwd_var; name : variable; colon : colon; vtype : type_expr; ass : ass; init : expr; terminator : semi option } and instructions = (instruction, semi) nsepseq reg and instruction = Single of single_instr | Block of block reg and single_instr = Cond of conditional reg | Match of match_instr reg | Ass of ass_instr | Loop of loop | ProcCall of fun_call | Null of kwd_null | Fail of (kwd_fail * expr) reg and conditional = { kwd_if : kwd_if; test : expr; kwd_then : kwd_then; ifso : instruction; kwd_else : kwd_else; ifnot : instruction } and match_instr = { kwd_match : kwd_match; expr : expr; kwd_with : kwd_with; lead_vbar : vbar option; cases : cases; kwd_end : kwd_end } and cases = (case, vbar) nsepseq reg and case = (pattern * arrow * instruction) reg and ass_instr = (variable * ass * expr) reg and loop = While of while_loop | For of for_loop and while_loop = (kwd_while * expr * block reg) reg and for_loop = ForInt of for_int reg | ForCollect of for_collect reg and for_int = { kwd_for : kwd_for; ass : ass_instr; down : kwd_down option; kwd_to : kwd_to; bound : expr; step : (kwd_step * expr) option; block : block reg } and for_collect = { kwd_for : kwd_for; var : variable; bind_to : (arrow * variable) option; kwd_in : kwd_in; expr : expr; block : block reg } (* Expressions *) and expr = Or of (expr * bool_or * expr) reg | And of (expr * bool_and * expr) reg | Lt of (expr * lt * expr) reg | Leq of (expr * leq * expr) reg | Gt of (expr * gt * expr) reg | Geq of (expr * geq * expr) reg | Equal of (expr * equal * expr) reg | Neq of (expr * neq * expr) reg | Cat of (expr * cat * expr) reg | Cons of (expr * cons * expr) reg | Add of (expr * plus * expr) reg | Sub of (expr * minus * expr) reg | Mult of (expr * times * expr) reg | Div of (expr * slash * expr) reg | Mod of (expr * kwd_mod * expr) reg | Neg of (minus * expr) reg | Not of (kwd_not * expr) reg | Int of (Lexer.lexeme * Z.t) reg | Var of Lexer.lexeme reg | String of Lexer.lexeme reg | Bytes of (Lexer.lexeme * MBytes.t) reg | False of c_False | True of c_True | Unit of c_Unit | Tuple of tuple | List of (expr, comma) nsepseq brackets | EmptyList of empty_list | Set of (expr, comma) nsepseq braces | EmptySet of empty_set | NoneExpr of none_expr | FunCall of fun_call | ConstrApp of constr_app | SomeApp of (c_Some * arguments) reg | MapLookUp of map_lookup reg | ParExpr of expr par and tuple = (expr, comma) nsepseq par and empty_list = (lbracket * rbracket * colon * type_expr) par and empty_set = (lbrace * rbrace * colon * type_expr) par and none_expr = (c_None * colon * type_expr) par and fun_call = (fun_name * arguments) reg and arguments = tuple and constr_app = (constr * arguments) reg and map_lookup = { map_name : variable; selector : dot; index : expr brackets } (* Patterns *) and pattern = (core_pattern, cons) nsepseq reg and core_pattern = PVar of Lexer.lexeme reg | PWild of wild | PInt of (Lexer.lexeme * Z.t) reg | PBytes of (Lexer.lexeme * MBytes.t) reg | PString of Lexer.lexeme reg | PUnit of c_Unit | PFalse of c_False | PTrue of c_True | PNone of c_None | PSome of (c_Some * core_pattern par) reg | PList of list_pattern | PTuple of (core_pattern, comma) nsepseq par and list_pattern = Sugar of (core_pattern, comma) sepseq brackets | Raw of (core_pattern * cons * pattern) par (* Projecting regions *) open! Region let type_expr_to_region = function Prod node -> node.region | Sum node -> node.region | Record node -> node.region | TypeApp node -> node.region | ParType node -> node.region | TAlias node -> node.region let expr_to_region = function Or {region; _} | And {region; _} | Lt {region; _} | Leq {region; _} | Gt {region; _} | Geq {region; _} | Equal {region; _} | Neq {region; _} | Cat {region; _} | Cons {region; _} | Add {region; _} | Sub {region; _} | Mult {region; _} | Div {region; _} | Mod {region; _} | Neg {region; _} | Not {region; _} | Int {region; _} | Var {region; _} | String {region; _} | Bytes {region; _} | False region | True region | Unit region | Tuple {region; _} | List {region; _} | EmptyList {region; _} | Set {region; _} | EmptySet {region; _} | NoneExpr {region; _} | FunCall {region; _} | ConstrApp {region; _} | SomeApp {region; _} | MapLookUp {region; _} | ParExpr {region; _} -> region let instr_to_region = function Single Cond {region;_} | Single Match {region; _} | Single Ass {region; _} | Single Loop While {region; _} | Single Loop For ForInt {region; _} | Single Loop For ForCollect {region; _} | Single ProcCall {region; _} | Single Null region | Single Fail {region; _} | Block {region; _} -> region let core_pattern_to_region = function PVar {region; _} | PWild region | PInt {region; _} | PBytes {region; _} | PString {region; _} | PUnit region | PFalse region | PTrue region | PNone region | PSome {region; _} | PList Sugar {region; _} | PList Raw {region; _} | PTuple {region; _} -> region let local_decl_to_region = function LocalLam FunDecl {region; _} | LocalLam ProcDecl {region; _} | LocalConst {region; _} | LocalVar {region; _} -> region (* Printing the tokens with their source regions *) let printf = Printf.printf let compact (region: Region.t) = region#compact ~offsets:EvalOpt.offsets EvalOpt.mode let print_nsepseq : string -> ('a -> unit) -> ('a, Region.t) nsepseq -> unit = fun sep visit (head, tail) -> let print_aux (sep_reg, item) = printf "%s: %s\n" (compact sep_reg) sep; visit item in visit head; List.iter print_aux tail let print_sepseq : string -> ('a -> unit) -> ('a, Region.t) sepseq -> unit = fun sep visit -> function None -> () | Some seq -> print_nsepseq sep visit seq let print_token region lexeme = printf "%s: %s\n"(compact region) lexeme let print_var {region; value=lexeme} = printf "%s: Ident \"%s\"\n" (compact region) lexeme let print_constr {region; value=lexeme} = printf "%s: Constr \"%s\"\n" (compact region) lexeme let print_string {region; value=lexeme} = printf "%s: String \"%s\"\n" (compact region) lexeme let print_bytes {region; value = lexeme, abstract} = printf "%s: Bytes (\"%s\", \"0x%s\")\n" (compact region) lexeme (MBytes.to_hex abstract |> Hex.to_string) let print_int {region; value = lexeme, abstract} = printf "%s: Int (\"%s\", %s)\n" (compact region) lexeme (Z.to_string abstract) (* Main printing function *) let rec print_tokens ast = List.iter print_type_decl ast.types; print_parameter_decl ast.parameter; (* TODO: Constants *) print_storage_decl ast.storage; print_operations_decl ast.operations; List.iter print_lambda_decl ast.lambdas; print_block ast.block; print_token ast.eof "EOF" and print_parameter_decl {value=node; _} = print_token node.kwd_parameter "parameter"; print_var node.name; print_token node.colon ":"; print_type_expr node.param_type; print_terminator node.terminator and print_storage_decl {value=node; _} = print_token node.kwd_storage "storage"; print_type_expr node.store_type; print_terminator node.terminator and print_operations_decl {value=node; _} = print_token node.kwd_operations "operations"; print_type_expr node.op_type; print_terminator node.terminator and print_type_decl {value=node; _} = print_token node.kwd_type "type"; print_var node.name; print_token node.kwd_is "is"; print_type_expr node.type_expr; print_terminator node.terminator and print_type_expr = function Prod cartesian -> print_cartesian cartesian | Sum sum_type -> print_sum_type sum_type | Record record_type -> print_record_type record_type | TypeApp type_app -> print_type_app type_app | ParType par_type -> print_par_type par_type | TAlias type_alias -> print_var type_alias and print_cartesian {value=sequence; _} = print_nsepseq "*" print_type_expr sequence and print_variant {value=node; _} = let constr, kwd_of, cartesian = node in print_constr constr; print_token kwd_of "of"; print_cartesian cartesian and print_sum_type {value=sequence; _} = print_nsepseq "|" print_variant sequence and print_record_type {value=node; _} = let kwd_record, field_decls, kwd_end = node in print_token kwd_record "record"; print_field_decls field_decls; print_token kwd_end "end" and print_type_app {value=node; _} = let type_name, type_tuple = node in print_var type_name; print_type_tuple type_tuple and print_par_type {value=node; _} = let lpar, type_expr, rpar = node in print_token lpar "("; print_type_expr type_expr; print_token rpar ")" and print_field_decls sequence = print_nsepseq ";" print_field_decl sequence and print_field_decl {value=node; _} = let var, colon, type_expr = node in print_var var; print_token colon ":"; print_type_expr type_expr and print_type_tuple {value=node; _} = let lpar, sequence, rpar = node in print_token lpar "("; print_nsepseq "," print_var sequence; print_token rpar ")" and print_lambda_decl = function FunDecl fun_decl -> print_fun_decl fun_decl | ProcDecl proc_decl -> print_proc_decl proc_decl and print_fun_decl {value=node; _} = print_token node.kwd_function "function"; print_var node.name; print_parameters node.param; print_token node.colon ":"; print_type_expr node.ret_type; print_token node.kwd_is "is"; print_local_decls node.local_decls; print_block node.block; print_token node.kwd_with "with"; print_expr node.return; print_terminator node.terminator and print_proc_decl {value=node; _} = print_token node.kwd_procedure "procedure"; print_var node.name; print_parameters node.param; print_token node.kwd_is "is"; print_local_decls node.local_decls; print_block node.block; print_terminator node.terminator and print_parameters {value=node; _} = let lpar, sequence, rpar = node in print_token lpar "("; print_nsepseq ";" print_param_decl sequence; print_token rpar ")" and print_param_decl = function ParamConst param_const -> print_param_const param_const | ParamVar param_var -> print_param_var param_var and print_param_const {value=node; _} = let kwd_const, variable, colon, type_expr = node in print_token kwd_const "const"; print_var variable; print_token colon ":"; print_type_expr type_expr and print_param_var {value=node; _} = let kwd_var, variable, colon, type_expr = node in print_token kwd_var "var"; print_var variable; print_token colon ":"; print_type_expr type_expr and print_block {value=node; _} = print_token node.opening "begin"; print_instructions node.instr; print_terminator node.terminator; print_token node.close "end" and print_local_decls sequence = List.iter print_local_decl sequence and print_local_decl = function LocalLam decl -> print_lambda_decl decl | LocalConst decl -> print_const_decl decl | LocalVar decl -> print_var_decl decl and print_const_decl {value=node; _} = print_token node.kwd_const "const"; print_var node.name; print_token node.colon ":"; print_type_expr node.vtype; print_token node.equal "="; print_expr node.init; print_terminator node.terminator and print_var_decl {value=node; _} = print_token node.kwd_var "var"; print_var node.name; print_token node.colon ":"; print_type_expr node.vtype; print_token node.ass ":="; print_expr node.init; print_terminator node.terminator and print_instructions {value=sequence; _} = print_nsepseq ";" print_instruction sequence and print_instruction = function Single instr -> print_single_instr instr | Block block -> print_block block and print_single_instr = function Cond {value; _} -> print_conditional value | Match {value; _} -> print_match_instr value | Ass instr -> print_ass_instr instr | Loop loop -> print_loop loop | ProcCall fun_call -> print_fun_call fun_call | Null kwd_null -> print_token kwd_null "null" | Fail {value; _} -> print_fail value and print_fail (kwd_fail, expr) = print_token kwd_fail "fail"; print_expr expr and print_conditional node = print_token node.kwd_if "if"; print_expr node.test; print_token node.kwd_then "then"; print_instruction node.ifso; print_token node.kwd_else "else"; print_instruction node.ifnot and print_match_instr node = print_token node.kwd_match "match"; print_expr node.expr; print_token node.kwd_with "with"; print_cases node.cases; print_token node.kwd_end "end" and print_cases {value=sequence; _} = print_nsepseq "|" print_case sequence and print_case {value=node; _} = let pattern, arrow, instruction = node in print_pattern pattern; print_token arrow "->"; print_instruction instruction and print_ass_instr {value=node; _} = let variable, ass, expr = node in print_var variable; print_token ass ":="; print_expr expr and print_loop = function While while_loop -> print_while_loop while_loop | For for_loop -> print_for_loop for_loop and print_while_loop {value=node; _} = let kwd_while, expr, block = node in print_token kwd_while "while"; print_expr expr; print_block block and print_for_loop = function ForInt for_int -> print_for_int for_int | ForCollect for_collect -> print_for_collect for_collect and print_for_int ({value=node; _} : for_int reg) = print_token node.kwd_for "for"; print_ass_instr node.ass; print_down node.down; print_token node.kwd_to "to"; print_expr node.bound; print_step node.step; print_block node.block and print_down = function Some kwd_down -> print_token kwd_down "down" | None -> () and print_step = function Some (kwd_step, expr) -> print_token kwd_step "step"; print_expr expr | None -> () and print_for_collect ({value=node; _} : for_collect reg) = print_token node.kwd_for "for"; print_var node.var; print_bind_to node.bind_to; print_token node.kwd_in "in"; print_expr node.expr; print_block node.block and print_bind_to = function Some (arrow, variable) -> print_token arrow "->"; print_var variable | None -> () and print_expr = function Or {value = expr1, bool_or, expr2; _} -> print_expr expr1; print_token bool_or "||"; print_expr expr2 | And {value = expr1, bool_and, expr2; _} -> print_expr expr1; print_token bool_and "&&"; print_expr expr2 | Lt {value = expr1, lt, expr2; _} -> print_expr expr1; print_token lt "<"; print_expr expr2 | Leq {value = expr1, leq, expr2; _} -> print_expr expr1; print_token leq "<="; print_expr expr2 | Gt {value = expr1, gt, expr2; _} -> print_expr expr1; print_token gt ">"; print_expr expr2 | Geq {value = expr1, geq, expr2; _} -> print_expr expr1; print_token geq ">="; print_expr expr2 | Equal {value = expr1, equal, expr2; _} -> print_expr expr1; print_token equal "="; print_expr expr2 | Neq {value = expr1, neq, expr2; _} -> print_expr expr1; print_token neq "=/="; print_expr expr2 | Cat {value = expr1, cat, expr2; _} -> print_expr expr1; print_token cat "^"; print_expr expr2 | Cons {value = expr1, cons, expr2; _} -> print_expr expr1; print_token cons "<:"; print_expr expr2 | Add {value = expr1, add, expr2; _} -> print_expr expr1; print_token add "+"; print_expr expr2 | Sub {value = expr1, sub, expr2; _} -> print_expr expr1; print_token sub "-"; print_expr expr2 | Mult {value = expr1, mult, expr2; _} -> print_expr expr1; print_token mult "*"; print_expr expr2 | Div {value = expr1, div, expr2; _} -> print_expr expr1; print_token div "/"; print_expr expr2 | Mod {value = expr1, kwd_mod, expr2; _} -> print_expr expr1; print_token kwd_mod "mod"; print_expr expr2 | Neg {value = minus, expr; _} -> print_token minus "-"; print_expr expr | Not {value = kwd_not, expr; _} -> print_token kwd_not "not"; print_expr expr | Int i -> print_int i | Var var -> print_var var | String s -> print_string s | Bytes b -> print_bytes b | False region -> print_token region "False" | True region -> print_token region "True" | Unit region -> print_token region "Unit" | Tuple tuple -> print_tuple tuple | List list -> print_list list | EmptyList elist -> print_empty_list elist | Set set -> print_set set | EmptySet eset -> print_empty_set eset | NoneExpr nexpr -> print_none_expr nexpr | FunCall fun_call -> print_fun_call fun_call | ConstrApp capp -> print_constr_app capp | SomeApp sapp -> print_some_app sapp | MapLookUp lookup -> print_map_lookup lookup | ParExpr pexpr -> print_par_expr pexpr and print_tuple {value=node; _} = let lpar, sequence, rpar = node in print_token lpar "("; print_nsepseq "," print_expr sequence; print_token rpar ")" and print_list {value=node; _} = let lbra, sequence, rbra = node in print_token lbra "["; print_nsepseq "," print_expr sequence; print_token rbra "]" and print_empty_list {value=node; _} = let lpar, (lbracket, rbracket, colon, type_expr), rpar = node in print_token lpar "("; print_token lbracket "["; print_token rbracket "]"; print_token colon ":"; print_type_expr type_expr; print_token rpar ")" and print_set {value=node; _} = let lbrace, sequence, rbrace = node in print_token lbrace "{"; print_nsepseq "," print_expr sequence; print_token rbrace "}" and print_empty_set {value=node; _} = let lpar, (lbrace, rbrace, colon, type_expr), rpar = node in print_token lpar "("; print_token lbrace "{"; print_token rbrace "}"; print_token colon ":"; print_type_expr type_expr; print_token rpar ")" and print_none_expr {value=node; _} = let lpar, (c_None, colon, type_expr), rpar = node in print_token lpar "("; print_token c_None "None"; print_token colon ":"; print_type_expr type_expr; print_token rpar ")" and print_fun_call {value=node; _} = let fun_name, arguments = node in print_var fun_name; print_tuple arguments and print_constr_app {value=node; _} = let constr, arguments = node in print_constr constr; print_tuple arguments and print_some_app {value=node; _} = let c_Some, arguments = node in print_token c_Some "Some"; print_tuple arguments and print_map_lookup {value=node; _} = let {value = lbracket, expr, rbracket; _} = node.index in print_var node.map_name; print_token node.selector "."; print_token lbracket "["; print_expr expr; print_token rbracket "]" and print_par_expr {value=node; _} = let lpar, expr, rpar = node in print_token lpar "("; print_expr expr; print_token rpar ")" and print_pattern {value=sequence; _} = print_nsepseq "<:" print_core_pattern sequence and print_core_pattern = function PVar var -> print_var var | PWild wild -> print_token wild "_" | PInt i -> print_int i | PBytes b -> print_bytes b | PString s -> print_string s | PUnit region -> print_token region "Unit" | PFalse region -> print_token region "False" | PTrue region -> print_token region "True" | PNone region -> print_token region "None" | PSome psome -> print_psome psome | PList pattern -> print_list_pattern pattern | PTuple ptuple -> print_ptuple ptuple and print_psome {value=node; _} = let c_Some, patterns = node in print_token c_Some "Some"; print_patterns patterns and print_patterns {value=node; _} = let lpar, core_pattern, rpar = node in print_token lpar "("; print_core_pattern core_pattern; print_token rpar ")" and print_list_pattern = function Sugar sugar -> print_sugar sugar | Raw raw -> print_raw raw and print_sugar {value=node; _} = let lbracket, sequence, rbracket = node in print_token lbracket "["; print_sepseq "," print_core_pattern sequence; print_token rbracket "]" and print_raw {value=node; _} = let lpar, (core_pattern, cons, pattern), rpar = node in print_token lpar "("; print_core_pattern core_pattern; print_token cons "<:"; print_pattern pattern; print_token rpar ")" and print_ptuple {value=node; _} = let lpar, sequence, rpar = node in print_token lpar "("; print_nsepseq "," print_core_pattern sequence; print_token rpar ")" and print_terminator = function Some semi -> print_token semi ";" | None -> ()