%{ (* START HEADER *) open AST (* END HEADER *) %} (* Entry points *) %start program %type program %% (* RULES *) (* This parser leverages Menhir-specific features, in particular parametric rules, rule inlining and primitives to get the source locations of tokens from the lexer engine generated by ocamllex. We define below two rules, [reg] and [oreg]. The former parses its argument and returns its synthesised value together with its region in the source code (that is, start and end positions --- see module [Region]). The latter discards the value and only returns the region: this is mostly useful for parsing keywords, because those can be easily deduced from the AST node and only their source region has to be recorded there. *) %inline reg(X): X { let start = Pos.from_byte $symbolstartpos and stop = Pos.from_byte $endpos in let region = Region.make ~start ~stop in Region.{region; value=$1} } %inline oreg(X): reg(X) { $1.Region.region } (* Keywords, symbols, literals and virtual tokens *) kwd(X) : oreg(X) { $1 } sym(X) : oreg(X) { $1 } ident : reg(Ident) { $1 } constr : reg(Constr) { $1 } string : reg(Str) { $1 } eof : oreg(EOF) { $1 } (* The rule [sep_or_term(item,sep)] ("separated or terminated list") parses a non-empty list of items separated by [sep], and optionally terminated by [sep]. *) sep_or_term_list(item,sep): nsepseq(item,sep) { $1, None } | nseq(item sep {$1,$2}) { let (first,sep), tail = $1 in let rec trans (seq, prev_sep as acc) = function [] -> acc | (item,next_sep)::others -> trans ((prev_sep,item)::seq, next_sep) others in let list, term = trans ([],sep) tail in (first, List.rev list), Some term } (* Compound constructs *) par(X): sym(LPAR) X sym(RPAR) { {lpar=$1; inside=$2; rpar=$3} } brackets(X): sym(LBRACKET) X sym(RBRACKET) { {lbracket=$1; inside=$2; rbracket=$3} } (* Sequences Series of instances of the same syntactical category have often to be parsed, like lists of expressions, patterns etc. The simplest of all is the possibly empty sequence (series), parsed below by [seq]. The non-empty sequence is parsed by [nseq]. Note that the latter returns a pair made of the first parsed item (the parameter [X]) and the rest of the sequence (possibly empty). This way, the OCaml typechecker can keep track of this information along the static control-flow graph. The rule [sepseq] parses possibly empty sequences of items separated by some token (e.g., a comma), and rule [nsepseq] is for non-empty such sequences. See module [Utils] for the types corresponding to the semantic actions of those rules. *) (* Possibly empty sequence of items *) seq(item): (**) { [] } | item seq(item) { $1::$2 } (* Non-empty sequence of items *) nseq(item): item seq(item) { $1,$2 } (* Non-empty separated sequence of items *) nsepseq(item,sep): item { $1, [] } | item sep nsepseq(item,sep) { let h,t = $3 in $1, ($2,h)::t } (* Possibly empy separated sequence of items *) sepseq(item,sep): (**) { None } | nsepseq(item,sep) { Some $1 } (* Helpers *) type_name : ident { $1 } field_name : ident { $1 } module_name : constr { $1 } struct_name : Ident { $1 } (* Non-empty comma-separated values (at least two values) *) tuple(item): item sym(COMMA) nsepseq(item,sym(COMMA)) { let h,t = $3 in $1,($2,h)::t } (* Possibly empty semicolon-separated values between brackets *) list_of(item): sym(LBRACKET) sepseq(item,sym(SEMI)) sym(RBRACKET) { {opening = LBracket $1; elements = $2; terminator = None; closing = RBracket $3} } (* Main *) program: nseq(declaration) eof { {decl=$1; eof=$2} } declaration: reg(kwd(Let) let_bindings {$1,$2}) { Let $1 } | reg(kwd(LetEntry) let_binding {$1,$2}) { LetEntry $1 } | reg(type_decl) { TypeDecl $1 } (* Type declarations *) type_decl: kwd(Type) type_name sym(EQ) type_expr { {kwd_type=$1; name=$2; eq=$3; type_expr=$4} } type_expr: cartesian { TProd $1 } | reg(sum_type) { TSum $1 } | reg(record_type) { TRecord $1 } cartesian: reg(nsepseq(fun_type, sym(TIMES))) { $1 } fun_type: core_type { $1 } | reg(arrow_type) { TFun $1 } arrow_type: core_type sym(ARROW) fun_type { $1,$2,$3 } core_type: reg(path) { let {module_proj; value_proj} = $1.value in let selection_to_string = function Name ident -> ident.value | Component {value={inside;_}; _} -> fst inside.value in let module_str = match module_proj with None -> "" | Some (constr,_) -> constr.value ^ "." in let value_str = Utils.nsepseq_to_list value_proj |> List.map selection_to_string |> String.concat "." in let alias = module_str ^ value_str in TAlias {$1 with value=alias} } | reg(core_type type_constr {$1,$2}) { let arg, constr = $1.value in let lpar, rpar = Region.ghost, Region.ghost in let arg = {lpar; inside=arg,[]; rpar} in TApp Region.{$1 with value = constr, arg} } | reg(type_tuple type_constr {$1,$2}) { let arg, constr = $1.value in TApp Region.{$1 with value = constr, arg} } | reg(par(cartesian)) { let Region.{region; value={lpar; inside=prod; rpar}} = $1 in TPar Region.{region; value={lpar; inside = TProd prod; rpar}} } type_constr: type_name { $1 } | kwd(Set) { Region.{value="set"; region=$1} } | kwd(Map) { Region.{value="map"; region=$1} } | kwd(List) { Region.{value="list"; region=$1} } type_tuple: par(tuple(type_expr)) { $1 } sum_type: ioption(sym(VBAR)) nsepseq(reg(variant), sym(VBAR)) { $2 } variant: constr kwd(Of) cartesian { {constr=$1; args = Some ($2,$3)} } | constr { {constr=$1; args=None} } record_type: sym(LBRACE) sep_or_term_list(reg(field_decl),sym(SEMI)) sym(RBRACE) { let elements, terminator = $2 in { opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_decl: field_name sym(COLON) type_expr { {field_name=$1; colon=$2; field_type=$3} } (* Non-recursive definitions *) let_bindings: nsepseq(let_binding, kwd(And)) { $1 } let_binding: ident nseq(sub_irrefutable) option(type_annotation) sym(EQ) expr { let let_rhs = EFun (norm $2 $4 $5) in {pattern = PVar $1; lhs_type=$3; eq = Region.ghost; let_rhs} } | irrefutable option(type_annotation) sym(EQ) expr { {pattern=$1; lhs_type=$2; eq=$3; let_rhs=$4} } type_annotation: sym(COLON) type_expr { $1,$2 } (* Patterns *) irrefutable: reg(tuple(sub_irrefutable)) { PTuple $1 } | sub_irrefutable { $1 } sub_irrefutable: ident { PVar $1 } | sym(WILD) { PWild $1 } | unit { PUnit $1 } | reg(par(closed_irrefutable)) { PPar $1 } closed_irrefutable: reg(tuple(sub_irrefutable)) { PTuple $1 } | sub_irrefutable { $1 } | reg(constr_pattern) { PConstr $1 } | reg(typed_pattern) { PTyped $1 } typed_pattern: irrefutable sym(COLON) type_expr { {pattern=$1; colon=$2; type_expr=$3} } pattern: reg(sub_pattern sym(CONS) tail {$1,$2,$3}) { PList (PCons $1) } | reg(tuple(sub_pattern)) { PTuple $1 } | core_pattern { $1 } sub_pattern: reg(par(tail)) { PPar $1 } | core_pattern { $1 } core_pattern: ident { PVar $1 } | sym(WILD) { PWild $1 } | unit { PUnit $1 } | reg(Int) { PInt $1 } | kwd(True) { PTrue $1 } | kwd(False) { PFalse $1 } | string { PString $1 } | reg(par(ptuple)) { PPar $1 } | reg(list_of(tail)) { PList (Sugar $1) } | reg(constr_pattern) { PConstr $1 } | reg(record_pattern) { PRecord $1 } record_pattern: sym(LBRACE) sep_or_term_list(reg(field_pattern),sym(SEMI)) sym(RBRACE) { let elements, terminator = $2 in {opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_pattern: field_name sym(EQ) sub_pattern { {field_name=$1; eq=$2; pattern=$3} } constr_pattern: constr sub_pattern { $1, Some $2 } | constr { $1, None } ptuple: reg(tuple(tail)) { PTuple $1 } unit: reg(sym(LPAR) sym(RPAR) {$1,$2}) { $1 } tail: reg(sub_pattern sym(CONS) tail {$1,$2,$3}) { PList (PCons $1) } | sub_pattern { $1 } (* Expressions *) expr: base_cond__open(expr) { $1 } | match_expr(base_cond) { EMatch $1 } base_cond__open(x): base_expr(x) | conditional(x) { $1 } base_cond: base_cond__open(base_cond) { $1 } base_expr(right_expr): let_expr(right_expr) | fun_expr(right_expr) | disj_expr_level { $1 } | reg(tuple(disj_expr_level)) { ETuple $1 } conditional(right_expr): if_then_else(right_expr) | if_then(right_expr) { ECond $1 } if_then(right_expr): reg(kwd(If) expr kwd(Then) right_expr {$1,$2,$3,$4}) { IfThen $1 } if_then_else(right_expr): reg(kwd(If) expr kwd(Then) closed_if kwd(Else) right_expr { $1,$2,$3,$4,$5,$6 }) { IfThenElse $1 } base_if_then_else__open(x): base_expr(x) { $1 } | if_then_else(x) { ECond $1 } base_if_then_else: base_if_then_else__open(base_if_then_else) { $1 } closed_if: base_if_then_else__open(closed_if) { $1 } | match_expr(base_if_then_else) { EMatch $1 } match_expr(right_expr): reg(kwd(Match) expr kwd(With) option(sym(VBAR)) cases(right_expr) { $1,$2,$3, ($4, Utils.nsepseq_rev $5) }) | reg(match_nat(right_expr)) { $1 } match_nat(right_expr): kwd(MatchNat) expr kwd(With) option(sym(VBAR)) cases(right_expr) { let open Region in let cast_name = Name {region=ghost; value="assert_pos"} in let cast_path = {module_proj=None; value_proj=cast_name,[]} in let cast_fun = Path {region=ghost; value=cast_path} in let cast = ECall {region=ghost; value=cast_fun,$2} in $1, cast, $3, ($4, Utils.nsepseq_rev $5) } cases(right_expr): case(right_expr) { $1, [] } | cases(base_cond) sym(VBAR) case(right_expr) { let h,t = $1 in $3, ($2,h)::t } case(right_expr): pattern sym(ARROW) right_expr { $1,$2,$3 } let_expr(right_expr): reg(kwd(Let) let_bindings kwd(In) right_expr {$1,$2,$3,$4}) { ELetIn $1 } fun_expr(right_expr): reg(kwd(Fun) nseq(irrefutable) sym(ARROW) right_expr {$1,$2,$3,$4}) { let Region.{region; value = kwd_fun, patterns, arrow, expr} = $1 in EFun (norm ~reg:(region, kwd_fun) patterns arrow expr) } disj_expr_level: reg(disj_expr) { ELogic (BoolExpr (Or $1)) } | conj_expr_level { $1 } bin_op(arg1,op,arg2): arg1 op arg2 { {arg1=$1; op=$2; arg2=$3} } un_op(op,arg): op arg { {op=$1; arg=$2} } disj_expr: bin_op(disj_expr_level, sym(BOOL_OR), conj_expr_level) | bin_op(disj_expr_level, kwd(Or), conj_expr_level) { $1 } conj_expr_level: reg(conj_expr) { ELogic (BoolExpr (And $1)) } | comp_expr_level { $1 } conj_expr: bin_op(conj_expr_level, sym(BOOL_AND), comp_expr_level) { $1 } comp_expr_level: reg(lt_expr) { ELogic (CompExpr (Lt $1)) } | reg(le_expr) { ELogic (CompExpr (Leq $1)) } | reg(gt_expr) { ELogic (CompExpr (Gt $1)) } | reg(ge_expr) { ELogic (CompExpr (Geq $1)) } | reg(eq_expr) { ELogic (CompExpr (Equal $1)) } | reg(ne_expr) { ELogic (CompExpr (Neq $1)) } | cat_expr_level { $1 } lt_expr: bin_op(comp_expr_level, sym(LT), cat_expr_level) { $1 } le_expr: bin_op(comp_expr_level, sym(LE), cat_expr_level) { $1 } gt_expr: bin_op(comp_expr_level, sym(GT), cat_expr_level) { $1 } ge_expr: bin_op(comp_expr_level, sym(GE), cat_expr_level) { $1 } eq_expr: bin_op(comp_expr_level, sym(EQ), cat_expr_level) { $1 } ne_expr: bin_op(comp_expr_level, sym(NE), cat_expr_level) { $1 } cat_expr_level: reg(cat_expr) { EString (Cat $1) } | reg(append_expr) { EList (Append $1) } | cons_expr_level { $1 } cat_expr: bin_op(cons_expr_level, sym(CAT), cat_expr_level) { $1 } append_expr: cons_expr_level sym(APPEND) cat_expr_level { $1,$2,$3 } cons_expr_level: reg(cons_expr) { EList (Cons $1) } | add_expr_level { $1 } cons_expr: bin_op(add_expr_level, sym(CONS), cons_expr_level) { $1 } add_expr_level: reg(plus_expr) { EArith (Add $1) } | reg(minus_expr) { EArith (Sub $1) } | mult_expr_level { $1 } plus_expr: bin_op(add_expr_level, sym(PLUS), mult_expr_level) { $1 } minus_expr: bin_op(add_expr_level, sym(MINUS), mult_expr_level) { $1 } mult_expr_level: reg(times_expr) { EArith (Mult $1) } | reg(div_expr) { EArith (Div $1) } | reg(mod_expr) { EArith (Mod $1) } | unary_expr_level { $1 } times_expr: bin_op(mult_expr_level, sym(TIMES), unary_expr_level) { $1 } div_expr: bin_op(mult_expr_level, sym(SLASH), unary_expr_level) { $1 } mod_expr: bin_op(mult_expr_level, kwd(Mod), unary_expr_level) { $1 } unary_expr_level: reg(uminus_expr) { EArith (Neg $1) } | reg(not_expr) { ELogic (BoolExpr (Not $1)) } | call_expr_level { $1 } uminus_expr: un_op(sym(MINUS), core_expr) { $1 } not_expr: un_op(kwd(Not), core_expr) { $1 } call_expr_level: reg(call_expr) { ECall $1 } | core_expr { $1 } call_expr: call_expr_level core_expr { $1,$2 } core_expr: reg(Int) { EArith (Int $1) } | reg(Mtz) { EArith (Mtz $1) } | reg(Nat) { EArith (Nat $1) } | reg(path) { Path $1 } | string { EString (String $1) } | unit { EUnit $1 } | kwd(False) { ELogic (BoolExpr (False $1)) } | kwd(True) { ELogic (BoolExpr ( True $1)) } | reg(list_of(expr)) { EList (List $1) } | reg(par(expr)) { EPar $1 } | constr { EConstr $1 } | reg(sequence) { ESeq $1 } | reg(record_expr) { ERecord $1 } path: reg(struct_name) sym(DOT) nsepseq(selection,sym(DOT)) { let head, tail = $3 in let seq = Name $1, ($2,head)::tail in {module_proj=None; value_proj=seq} } | module_name sym(DOT) nsepseq(selection,sym(DOT)) { {module_proj = Some ($1,$2); value_proj=$3} } | ident { {module_proj = None; value_proj = Name $1, []} } selection: ident { Name $1 } | reg(par(reg(Int))) { Component $1 } record_expr: sym(LBRACE) sep_or_term_list(reg(field_assignment),sym(SEMI)) sym(RBRACE) { let elements, terminator = $2 in {opening = LBrace $1; elements = Some elements; terminator; closing = RBrace $3} } field_assignment: field_name sym(EQ) expr { {field_name=$1; assignment=$2; field_expr=$3} } sequence: kwd(Begin) sep_or_term_list(expr,sym(SEMI)) kwd(End) { let elements, terminator = $2 in {opening = Begin $1; elements = Some elements; terminator; closing = End $3} }