Temporarily reverted cleanup which prevented GIT from properly merging.

This commit is contained in:
Georges Dupéron 2019-03-10 20:58:23 +01:00
parent 29df2ff9aa
commit d547616caa

228
AST2.ml
View File

@ -2,30 +2,26 @@
exception TODO of string exception TODO of string
module I = AST
open Region open Region
module In = AST module SMap = Map.Make(String)
module SMap = Utils.String.Map module O = struct
module Out =
struct
type type_name = string type type_name = string
type variable = string type var_name = string
type ast = { type ast = {
types : type_decl list; types : type_decl list;
parameter : typed_var;
storage : typed_var; storage : typed_var;
operations : typed_var; operations : typed_var;
declarations : decl list; declarations : decl list;
prev : In.t; prev : I.ast;
} }
and typed_var = { name:var_name; ty:type_expr }
and typed_var = {name: variable; ty: type_expr} and type_decl = { name:string; ty:type_expr }
and type_decl = {name: variable; ty: type_expr} and decl = { name:var_name; ty:type_expr; value: expr }
and decl = {name: variable; ty: type_expr; value: expr}
and type_expr = and type_expr =
Prod of type_expr list Prod of type_expr list
| Sum of (type_name * type_expr) list | Sum of (type_name * type_expr) list
@ -36,40 +32,30 @@ module Out =
| Unit | Unit
| Int | Int
| TODO | TODO
and expr = and expr =
App of { operator: operator; arguments: expr list } App of { operator: operator; arguments: expr list }
| Variable of variable | Variable of var_name
| Constant of constant | Constant of constant
| Lambda of lambda | Lambda of {
and lambda = {
parameters: type_expr SMap.t; parameters: type_expr SMap.t;
declarations: decl list; declarations: decl list;
instructions: instr list; instructions: instr list;
result : expr result: expr;
} }
and operator = Add | Sub | Lt | Gt | Function of string and operator = Add | Sub | Lt | Gt | Function of string
and constant = and constant =
Unit Unit
| Int of Z.t | Int of int
and instr = and instr =
Assignment of { name: variable; value: expr } | Assignment of { name: var_name; value: expr }
| While of { condition: expr; body: instr list } | While of { condition: expr; body: instr list }
| ForCollection of { list: expr; key: variable; | ForCollection of { list: expr; key: var_name; value: var_name option; body: instr list }
value: variable option;
body: instr list }
| If of { condition: expr; ifso: instr list; ifnot: instr list } | If of { condition: expr; ifso: instr list; ifnot: instr list }
| Match of { expr: expr; cases: (pattern * instr list) list } | Match of { expr: expr; cases: (pattern * instr list) list }
| DropUnit of expr (* expr returns unit, drop the result. *) | DropUnit of expr (* expr returns unit, drop the result. *)
| Fail of { expr: expr } | Fail of { expr: expr }
| Null
and pattern = and pattern =
PVar of variable PVar of var_name
| PWild | PWild
| PInt of Z.t | PInt of Z.t
| PBytes of MBytes.t | PBytes of MBytes.t
@ -80,20 +66,20 @@ module Out =
| PNone | PNone
| PSome of pattern | PSome of pattern
| Cons of pattern * pattern | Cons of pattern * pattern
| Null
| PTuple of pattern list | PTuple of pattern list
end end
let map f l = List.(rev_map f l |> rev) (* open Sanity: *)
let (|>) v f = f v (* pipe f to v *)
(* TODO: check that List.to_seq, SMap.of_seq are not broken let (@@) f v = f v (* apply f on v *)
let (@.) f g x = f (g x) (* compose *)
let map f l = List.rev (List.rev_map f l)
(* TODO: check that List.to_seq, List.append and SMap.of_seq are not broken
(i.e. check that they are tail-recursive) *) (i.e. check that they are tail-recursive) *)
let append_map f l = map f l |> List.flatten let append_map f l = map f l |> List.flatten
let append l1 l2 = List.append l1 l2
let append l = List.(rev l |> rev_append) let list_to_map l = l |> List.to_seq |> SMap.of_seq
let list_to_map l = l |> List.to_seq |> SMap.of_seq (* Why lazy ? *)
let fold_map f a l = let fold_map f a l =
let f (acc, l) elem = let f (acc, l) elem =
let acc', elem' = f acc elem let acc', elem' = f acc elem
@ -111,39 +97,40 @@ let s_sepseq : ('a,'sep) Utils.sepseq -> 'a list =
None -> [] None -> []
| Some nsepseq -> s_nsepseq nsepseq | Some nsepseq -> s_nsepseq nsepseq
let s_name ({value=name; region}: string reg) = let s_name {value=name; region} : O.var_name =
ignore region; name let () = ignore (region) in
name
let rec s_cartesian {value=sequence; region} : Out.type_expr = let rec s_cartesian {value=sequence; region} : O.type_expr =
let () = ignore region in let () = ignore (region) in
Prod (map s_type_expr (s_nsepseq sequence)) Prod (map s_type_expr (s_nsepseq sequence))
and s_sum_type {value=sequence; region} : Out.type_expr = and s_sum_type {value=sequence; region} : O.type_expr =
let () = ignore region in let () = ignore (region) in
let _todo = sequence in let _todo = sequence in
(* Sum (map s_type_expr (s_nsepseq sequence)) *) (* Sum (map s_type_expr (s_nsepseq sequence)) *)
TODO TODO
and s_record_type {value=(kwd_record, field_decls, kwd_end); region} : Out.type_expr = and s_record_type {value=(kwd_record, field_decls, kwd_end); region} : O.type_expr =
let () = ignore (kwd_record,region,kwd_end) in let () = ignore (kwd_record,region,kwd_end) in
let _todo = (* s_field_decls *) field_decls in let _todo = (* s_field_decls *) field_decls in
TODO TODO
and s_type_app {value=node; region} : Out.type_expr = and s_type_app {value=node; region} : O.type_expr =
let () = ignore region in let () = ignore (region) in
let _todo = node in let _todo = node in
TODO TODO
(* let type_name, type_tuple = node in *) (* let type_name, type_tuple = node in *)
(* s_var type_name; *) (* s_var type_name; *)
(* s_type_tuple type_tuple *) (* s_type_tuple type_tuple *)
and s_par_type {value=node; region} : Out.type_expr = and s_par_type {value=node; region} : O.type_expr =
let () = ignore region in let () = ignore (region) in
let _todo = node in let _todo = node in
TODO TODO
and s_var {region; value=lexeme} : Out.type_expr = and s_var {region; value=lexeme} : O.type_expr =
let () = ignore region in let () = ignore (region) in
let _todo = lexeme in let _todo = lexeme in
TODO TODO
@ -152,7 +139,7 @@ and s_var {region; value=lexeme} : Out.type_expr =
s_type_expr type_expr; s_type_expr type_expr;
s_token rpar ")"*) s_token rpar ")"*)
and s_type_expr : In.type_expr -> Out.type_expr = function and s_type_expr : I.type_expr -> O.type_expr = function
Prod cartesian -> s_cartesian cartesian Prod cartesian -> s_cartesian cartesian
| Sum sum_type -> s_sum_type sum_type | Sum sum_type -> s_sum_type sum_type
| Record record_type -> s_record_type record_type | Record record_type -> s_record_type record_type
@ -161,97 +148,97 @@ and s_type_expr : In.type_expr -> Out.type_expr = function
| TAlias type_alias -> s_var type_alias | TAlias type_alias -> s_var type_alias
let s_type_decl In.{value={kwd_type;name;kwd_is;type_expr;terminator}; region} : Out.type_decl = let s_type_decl I.{value={kwd_type;name;kwd_is;type_expr;terminator}; region} : O.type_decl =
let () = ignore (kwd_type,kwd_is,terminator,region) in let () = ignore (kwd_type,kwd_is,terminator,region) in
Out.{ name = s_name name; ty = s_type_expr type_expr } O.{ name = s_name name; ty = s_type_expr type_expr }
let s_storage_decl In.{value={kwd_storage; store_type; terminator}; region} : Out.typed_var = let s_parameter_decl I.{value={kwd_parameter;name;colon;param_type;terminator};region} : O.typed_var =
let () = ignore (kwd_parameter,colon,terminator,region) in
O.{ name = s_name name; ty = s_type_expr param_type }
let s_storage_decl I.{value={kwd_storage; store_type; terminator}; region} : O.typed_var =
let () = ignore (kwd_storage,terminator,region) in let () = ignore (kwd_storage,terminator,region) in
Out.{ name = "storage"; ty = s_type_expr store_type } O.{ name = "storage"; ty = s_type_expr store_type }
let s_operations_decl In.{value={kwd_operations;op_type;terminator}; region} : Out.typed_var = let s_operations_decl I.{value={kwd_operations;op_type;terminator}; region} : O.typed_var =
let () = ignore (kwd_operations,terminator,region) in let () = ignore (kwd_operations,terminator,region) in
Out.{ name = "operations"; ty = s_type_expr op_type } O.{ name = "operations"; ty = s_type_expr op_type }
let s_expr : In.expr -> Out.expr = function let s_expr : I.expr -> O.expr = function
| _ -> raise (TODO "simplify expressions") | _ -> raise (TODO "simplify expressions")
let s_case : In.case -> Out.pattern * (Out.instr list) = function let s_case : I.case -> O.pattern * (O.instr list) = function
| _ -> raise (TODO "simplify pattern matching cases") | _ -> raise (TODO "simplify pattern matching cases")
let s_const_decl In.{value; region} : Out.decl = let s_const_decl I.{value={kwd_const;name;colon;vtype;equal;init;terminator}; region} : O.decl =
let In.{kwd_const; name; colon;
const_type; equal; init; terminator} = value in
let () = ignore (kwd_const,colon,equal,terminator,region) in let () = ignore (kwd_const,colon,equal,terminator,region) in
Out.{name = s_name name; O.{ name = s_name name; ty = s_type_expr vtype; value = s_expr init }
ty = s_type_expr const_type;
value = s_expr init}
let s_param_const {value=(kwd_const,variable,colon,type_expr); region} : string * Out.type_expr = let s_param_const {value=(kwd_const,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_const,colon,region) in let () = ignore (kwd_const,colon,region) in
s_name variable, s_type_expr type_expr s_name variable, s_type_expr type_expr
let s_param_var {value=(kwd_var,variable,colon,type_expr); region} : string * Out.type_expr = let s_param_var {value=(kwd_var,variable,colon,type_expr); region} : string * O.type_expr =
let () = ignore (kwd_var,colon,region) in let () = ignore (kwd_var,colon,region) in
s_name variable, s_type_expr type_expr s_name variable, s_type_expr type_expr
let s_param_decl : In.param_decl -> string * Out.type_expr = function let s_param_decl : I.param_decl -> string * O.type_expr = function
ParamConst p -> s_param_const p ParamConst p -> s_param_const p
| ParamVar p -> s_param_var p | ParamVar p -> s_param_var p
let s_parameters ({value=(lpar,param_decl,rpar);region} : In.parameters) : (string * Out.type_expr) list = let s_parameters ({value=(lpar,param_decl,rpar);region} : I.parameters) : (string * O.type_expr) list =
let () = ignore (lpar,rpar,region) in let () = ignore (lpar,rpar,region) in
let l = (s_nsepseq param_decl) in let l = (s_nsepseq param_decl) in
map s_param_decl l map s_param_decl l
let rec s_var_decl {value; region} : Out.decl = let rec s_var_decl I.{value={kwd_var;name;colon;vtype;ass;init;terminator}; region} : O.decl =
let In.{kwd_var; name; colon;
var_type; ass; init; terminator} = value in
let () = ignore (kwd_var,colon,ass,terminator,region) in let () = ignore (kwd_var,colon,ass,terminator,region) in
Out.{name = s_name name; O.{
ty = s_type_expr var_type; name = s_name name;
value = s_expr init} ty = s_type_expr vtype;
value = s_expr init
}
and s_local_decl : In.local_decl -> Out.decl = function and s_local_decl : I.local_decl -> O.decl = function
LocalLam decl -> s_lambda_decl decl LocalLam decl -> s_lambda_decl decl
| LocalConst decl -> s_const_decl decl | LocalConst decl -> s_const_decl decl
| LocalVar decl -> s_var_decl decl | LocalVar decl -> s_var_decl decl
and s_instructions ({value=sequence; region} : In.instructions) : Out.instr list = and s_instructions ({value=sequence; region} : I.instructions) : O.instr list =
let () = ignore region in let () = ignore (region) in
append_map s_instruction (s_nsepseq sequence) append_map s_instruction (s_nsepseq sequence)
and s_instruction : In.instruction -> Out.instr list = function and s_instruction : I.instruction -> O.instr list = function
Single instr -> s_single_instr instr Single instr -> s_single_instr instr
| Block block -> (s_block block) | Block block -> (s_block block)
and s_conditional In.{kwd_if;test;kwd_then;ifso;kwd_else;ifnot} : Out.instr = and s_conditional I.{kwd_if;test;kwd_then;ifso;kwd_else;ifnot} : O.instr =
let () = ignore (kwd_if,kwd_then,kwd_else) in let () = ignore (kwd_if,kwd_then,kwd_else) in
If { condition = s_expr test; ifso = s_instruction ifso; ifnot = s_instruction ifnot } If { condition = s_expr test; ifso = s_instruction ifso; ifnot = s_instruction ifnot }
and s_match_instr In.{kwd_match;expr;kwd_with;lead_vbar;cases;kwd_end} : Out.instr = and s_match_instr I.{kwd_match;expr;kwd_with;lead_vbar;cases;kwd_end} : O.instr =
let {value=cases;region} = cases in let {value=cases;region} = cases in
let () = ignore (kwd_match,kwd_with,lead_vbar,kwd_end,region) in let () = ignore (kwd_match,kwd_with,lead_vbar,kwd_end,region) in
Match { expr = s_expr expr; cases = map s_case (s_nsepseq cases) } Match { expr = s_expr expr; cases = map s_case (s_nsepseq cases) }
and s_ass_instr {value=(variable,ass,expr); region} : Out.instr = and s_ass_instr {value=(variable,ass,expr); region} : O.instr =
let () = ignore (ass,region) in let () = ignore (ass,region) in
Assignment { name = s_name variable; value = s_expr expr } Assignment { name = s_name variable; value = s_expr expr }
and s_while_loop {value=(kwd_while, expr, block); region} : Out.instr list = and s_while_loop {value=(kwd_while, expr, block); region} : O.instr list =
let () = ignore (kwd_while,region) in let () = ignore (kwd_while,region) in
[While {condition = s_expr expr; body = s_block block}] [While {condition = s_expr expr; body = s_block block}]
and s_for_loop : In.for_loop -> Out.instr list = function and s_for_loop : I.for_loop -> O.instr list = function
ForInt for_int -> s_for_int for_int ForInt for_int -> s_for_int for_int
| ForCollect for_collect -> s_for_collect for_collect | ForCollect for_collect -> s_for_collect for_collect
and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : In.for_int reg) : Out.instr list = and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : I.for_int reg) : O.instr list =
let {value=(variable,ass_kwd,expr);region = ass_region} = ass in let {value=(variable,ass_kwd,expr);region = ass_region} = ass in
let () = ignore (kwd_for,ass_region,ass_kwd,kwd_to,region) in let () = ignore (kwd_for,ass_region,ass_kwd,kwd_to,region) in
let name = s_name variable in let name = s_name variable in
let condition, operator = match down with Some kwd_down -> ignore kwd_down; Out.Gt, Out.Sub let condition, operator = match down with Some kwd_down -> ignore kwd_down; O.Gt, O.Sub
| None -> Out.Lt, Out.Add in | None -> O.Lt, O.Add in
let step = s_step step let step = s_step step
in [ in [
Assignment { name; value = s_expr expr }; Assignment { name; value = s_expr expr };
@ -259,17 +246,17 @@ and s_for_int ({value={kwd_for;ass;down;kwd_to;bound;step;block}; region} : In.f
While { While {
condition = App { operator = condition; condition = App { operator = condition;
arguments = [Variable name; s_expr bound] }; arguments = [Variable name; s_expr bound] };
body = List.append (s_block block) body = append (s_block block)
[Out.Assignment { name; [O.Assignment { name;
value = App { operator; value = App { operator;
arguments = [Variable name; step]}}] arguments = [Variable name; step]}}]
} }
] ]
and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : In.for_collect reg) : Out.instr list = and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : I.for_collect reg) : O.instr list =
let () = ignore (kwd_for,kwd_in) in let () = ignore (kwd_for,kwd_in) in
[ [
Out.ForCollection { O.ForCollection {
list = s_expr expr; list = s_expr expr;
key = s_name var; key = s_name var;
value = s_bind_to bind_to; value = s_bind_to bind_to;
@ -277,31 +264,34 @@ and s_for_collect ({value={kwd_for;var;bind_to;kwd_in;expr;block}; _} : In.for_c
} }
] ]
and s_step : (In.kwd_step * In.expr) option -> Out.expr = function and s_step : (I.kwd_step * I.expr) option -> O.expr = function
Some (kwd_step, expr) -> let () = ignore (kwd_step) in s_expr expr Some (kwd_step, expr) -> let () = ignore (kwd_step) in s_expr expr
| None -> Constant (Int Z.one) | None -> Constant (Int 1)
and s_bind_to : (In.arrow * In.variable) option -> Out.variable option = function and s_bind_to : (I.arrow * I.variable) option -> O.var_name option = function
Some (arrow, variable) -> Some (arrow, variable) -> let () = ignore (arrow) in Some (s_name variable)
let () = ignore arrow in Some (s_name variable)
| None -> None | None -> None
and s_loop : In.loop -> Out.instr list = function and s_loop : I.loop -> O.instr list = function
While while_loop -> s_while_loop while_loop While while_loop -> s_while_loop while_loop
| For for_loop -> s_for_loop for_loop | For for_loop -> s_for_loop for_loop
and s_fun_call {value=(fun_name, arguments); region} : Out.expr = and s_fun_call {value=(fun_name, arguments); region} : O.expr =
let () = ignore region in let () = ignore (region) in
App { operator = Function (s_name fun_name); arguments = s_arguments arguments } App { operator = Function (s_name fun_name); arguments = s_arguments arguments }
and s_arguments {value=(lpar, sequence, rpar); region} = and s_arguments {value=(lpar, sequence, rpar); region} =
let () = ignore (lpar,rpar,region) in let () = ignore (lpar,rpar,region) in
map s_expr (s_nsepseq sequence); map s_expr (s_nsepseq sequence);
and s_fail ((kwd_fail, expr) : (In.kwd_fail * In.expr)) : Out.instr = and s_fail ((kwd_fail, expr) : (I.kwd_fail * I.expr)) : O.instr =
ignore kwd_fail; Fail {expr = s_expr expr} let () = ignore (kwd_fail) in
Fail { expr = s_expr expr }
and s_single_instr : In.single_instr -> Out.instr list = function
and s_single_instr : I.single_instr -> O.instr list = function
Cond {value; _} -> [s_conditional value] Cond {value; _} -> [s_conditional value]
| Match {value; _} -> [s_match_instr value] | Match {value; _} -> [s_match_instr value]
| Ass instr -> [s_ass_instr instr] | Ass instr -> [s_ass_instr instr]
@ -311,13 +301,13 @@ and s_single_instr : In.single_instr -> Out.instr list = function
[] []
| Fail {value; _} -> [s_fail value] | Fail {value; _} -> [s_fail value]
and s_block In.{value={opening;instr;terminator;close}; _} : Out.instr list = and s_block I.{value={opening;instr;terminator;close}; _} : O.instr list =
let () = ignore (opening,terminator,close) in let () = ignore (opening,terminator,close) in
s_instructions instr s_instructions instr
and s_fun_decl In.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_decls;block;kwd_with;return;terminator}; region} : Out.decl = and s_fun_decl I.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_decls;block;kwd_with;return;terminator}; region} : O.decl =
let () = ignore (kwd_function,colon,kwd_is,kwd_with,terminator,region) in let () = ignore (kwd_function,colon,kwd_is,kwd_with,terminator,region) in
Out.{ O.{
name = s_name name; name = s_name name;
ty = Function { args = map snd (s_parameters param); ret = s_type_expr ret_type }; ty = Function { args = map snd (s_parameters param); ret = s_type_expr ret_type };
value = Lambda { value = Lambda {
@ -328,41 +318,41 @@ and s_fun_decl In.{value={kwd_function;name;param;colon;ret_type;kwd_is;local_de
} }
} }
and s_proc_decl In.{value={kwd_procedure;name;param;kwd_is;local_decls;block;terminator}; region} = and s_proc_decl I.{value={kwd_procedure;name;param;kwd_is;local_decls;block;terminator}; region} =
let () = ignore (kwd_procedure,kwd_is,terminator,region) in let () = ignore (kwd_procedure,kwd_is,terminator,region) in
Out.{ O.{
name = s_name name; name = s_name name;
ty = Function { args = map snd (s_parameters param); ret = Unit }; ty = Function { args = map snd (s_parameters param); ret = Unit };
value = Lambda { value = Lambda {
parameters = s_parameters param |> list_to_map; parameters = s_parameters param |> list_to_map;
declarations = map s_local_decl local_decls; declarations = map s_local_decl local_decls;
instructions = s_block block; instructions = s_block block;
result = Out.Constant Out.Unit result = O.Constant O.Unit
} }
} }
and s_lambda_decl : In.lambda_decl -> Out.decl = function and s_lambda_decl : I.lambda_decl -> O.decl = function
FunDecl fun_decl -> s_fun_decl fun_decl FunDecl fun_decl -> s_fun_decl fun_decl
| ProcDecl proc_decl -> s_proc_decl proc_decl | ProcDecl proc_decl -> s_proc_decl proc_decl
| EntryDecl entry_decl -> failwith "TODO"
let s_main_block (block: In.block reg) : Out.decl = let s_main_block (block: I.block reg) : O.decl =
Out.{ O.{
name = "main"; name = "main";
ty = Function { args = []; ret = Unit }; ty = Function { args = []; ret = Unit };
value = Lambda { value = Lambda {
parameters = SMap.empty; parameters = SMap.empty;
declarations = []; declarations = [];
instructions = s_block block; instructions = s_block block;
result = Out.Constant Out.Unit result = O.Constant O.Unit
} }
} }
let s_ast (ast : In.ast) : Out.ast = let s_ast (ast : I.ast) : O.ast =
let In.{types;constants;storage;operations;lambdas;block;eof} = ast in let I.{types;constants;parameter;storage;operations;lambdas;block;eof} = ast in
let () = ignore (eof) in let () = ignore (eof) in
Out.{ O.{
types = map s_type_decl types; types = map s_type_decl types;
parameter = s_parameter_decl parameter;
storage = s_storage_decl storage; storage = s_storage_decl storage;
operations = s_operations_decl operations; operations = s_operations_decl operations;
declarations = List.flatten [(map s_const_decl constants); declarations = List.flatten [(map s_const_decl constants);