propagate source code locations

This commit is contained in:
Galfour 2019-05-28 15:36:14 +00:00
parent 50868302c6
commit c32ace3afc
8 changed files with 278 additions and 225 deletions

View File

@ -30,7 +30,7 @@ let literal ppf (l:literal) = match l with
| Literal_address s -> fprintf ppf "@%S" s | Literal_address s -> fprintf ppf "@%S" s
| Literal_operation _ -> fprintf ppf "Operation(...bytes)" | Literal_operation _ -> fprintf ppf "Operation(...bytes)"
let rec expression ppf (e:expression) = match e with let rec expression ppf (e:expression) = match Location.unwrap e with
| E_literal l -> literal ppf l | E_literal l -> literal ppf l
| E_variable name -> fprintf ppf "%s" name | E_variable name -> fprintf ppf "%s" name
| E_application (f, arg) -> fprintf ppf "(%a)@(%a)" expression f expression arg | E_application (f, arg) -> fprintf ppf "(%a)@(%a)" expression f expression arg

View File

@ -35,76 +35,79 @@ let t_map key value = (T_constant ("map", [key ; value]))
let make_name (s : string) : name = s let make_name (s : string) : name = s
let e_var (s : string) : expression = E_variable s let e_var ?loc (s : string) : expression = Location.wrap ?loc @@ E_variable s
let e_literal ?loc l : expression = Location.wrap ?loc @@ E_literal l
let e_unit ?loc () : expression = Location.wrap ?loc @@ E_literal (Literal_unit)
let e_int ?loc n : expression = Location.wrap ?loc @@ E_literal (Literal_int n)
let e_nat ?loc n : expression = Location.wrap ?loc @@ E_literal (Literal_nat n)
let e_bool ?loc b : expression = Location.wrap ?loc @@ E_literal (Literal_bool b)
let e_string ?loc s : expression = Location.wrap ?loc @@ E_literal (Literal_string s)
let e_address ?loc s : expression = Location.wrap ?loc @@ E_literal (Literal_address s)
let e_tez ?loc s : expression = Location.wrap ?loc @@ E_literal (Literal_tez s)
let e_bytes ?loc b : expression = Location.wrap ?loc @@ E_literal (Literal_bytes (Bytes.of_string b))
let e_record ?loc map : expression = Location.wrap ?loc @@ E_record map
let e_tuple ?loc lst : expression = Location.wrap ?loc @@ E_tuple lst
let e_some ?loc s : expression = Location.wrap ?loc @@ E_constant ("SOME", [s])
let e_none ?loc () : expression = Location.wrap ?loc @@ E_constant ("NONE", [])
let e_map_update ?loc k v old : expression = Location.wrap ?loc @@ E_constant ("MAP_UPDATE" , [k ; v ; old])
let e_map ?loc lst : expression = Location.wrap ?loc @@ E_map lst
let e_list ?loc lst : expression = Location.wrap ?loc @@ E_list lst
let e_pair ?loc a b : expression = Location.wrap ?loc @@ E_tuple [a; b]
let e_constructor ?loc s a : expression = Location.wrap ?loc @@ E_constructor (s , a)
let e_matching ?loc a b : expression = Location.wrap ?loc @@ E_matching (a , b)
let e_matching_bool ?loc a b c : expression = e_matching ?loc a (Match_bool {match_true = b ; match_false = c})
let e_accessor ?loc a b = Location.wrap ?loc @@ E_accessor (a , b)
let e_accessor_props ?loc a b = e_accessor ?loc a (List.map (fun x -> Access_record x) b)
let e_variable ?loc v = Location.wrap ?loc @@ E_variable v
let e_failwith ?loc v = Location.wrap ?loc @@ E_failwith v
let e_skip ?loc () = Location.wrap ?loc @@ E_skip
let e_loop ?loc cond body = Location.wrap ?loc @@ E_loop (cond , body)
let e_sequence ?loc a b = Location.wrap ?loc @@ E_sequence (a , b)
let e_let_in ?loc binder rhs result = Location.wrap ?loc @@ E_let_in { binder ; rhs ; result }
let e_annotation ?loc expr ty = Location.wrap ?loc @@ E_annotation (expr , ty)
let e_application ?loc a b = Location.wrap ?loc @@ E_application (a , b)
let e_binop ?loc name a b = Location.wrap ?loc @@ E_constant (name , [a ; b])
let e_constant ?loc name lst = Location.wrap ?loc @@ E_constant (name , lst)
let e_look_up ?loc x y = Location.wrap ?loc @@ E_look_up (x , y)
let e_assign ?loc a b c = Location.wrap ?loc @@ E_assign (a , b , c)
let e_unit () : expression = E_literal (Literal_unit) let make_option_typed ?loc e t_opt =
let e_int n : expression = E_literal (Literal_int n)
let e_nat n : expression = E_literal (Literal_nat n)
let e_bool b : expression = E_literal (Literal_bool b)
let e_string s : expression = E_literal (Literal_string s)
let e_address s : expression = E_literal (Literal_address s)
let e_tez s : expression = E_literal (Literal_tez s)
let e_bytes b : expression = E_literal (Literal_bytes (Bytes.of_string b))
let e_record map : expression = E_record map
let e_tuple lst : expression = E_tuple lst
let e_some s : expression = E_constant ("SOME", [s])
let e_none : expression = E_constant ("NONE", [])
let e_map_update k v old : expression = E_constant ("MAP_UPDATE" , [k ; v ; old])
let e_map lst : expression = E_map lst
let e_list lst : expression = E_list lst
let e_pair a b : expression = E_tuple [a; b]
let e_constructor s a : expression = E_constructor (s , a)
let e_match a b : expression = E_matching (a , b)
let e_match_bool a b c : expression = e_match a (Match_bool {match_true = b ; match_false = c})
let e_accessor a b = E_accessor (a , b)
let e_accessor_props a b = e_accessor a (List.map (fun x -> Access_record x) b)
let e_variable v = E_variable v
let e_failwith v = E_failwith v
let e_skip = E_skip
let e_loop cond body = E_loop (cond , body)
let e_sequence a b = E_sequence (a , b)
let e_let_in binder rhs result = E_let_in { binder ; rhs ; result }
let e_annotation expr ty = E_annotation (expr , ty)
let e_application a b = E_application (a , b)
let e_binop name a b = E_constant (name , [a ; b])
let make_option_typed e t_opt =
match t_opt with match t_opt with
| None -> e | None -> e
| Some t -> e_annotation e t | Some t -> e_annotation ?loc e t
let ez_e_record lst = let ez_e_record ?loc lst =
let aux prev (k, v) = SMap.add k v prev in let aux prev (k, v) = SMap.add k v prev in
let map = List.fold_left aux SMap.empty lst in let map = List.fold_left aux SMap.empty lst in
e_record map e_record ?loc map
let e_typed_none t_opt = let e_typed_none ?loc t_opt =
let type_annotation = t_option t_opt in let type_annotation = t_option t_opt in
e_annotation e_none type_annotation e_annotation ?loc (e_none ?loc ()) type_annotation
let e_typed_list lst t = let e_typed_list ?loc lst t =
e_annotation (e_list lst) (t_list t) e_annotation ?loc (e_list lst) (t_list t)
let e_map lst k v = e_annotation (e_map lst) (t_map k v) let e_typed_map ?loc lst k v = e_annotation ?loc (e_map lst) (t_map k v)
let e_lambda (binder : string) let e_lambda ?loc (binder : string)
(input_type : type_expression option) (input_type : type_expression option)
(output_type : type_expression option) (output_type : type_expression option)
(result : expression) (result : expression)
: expression = : expression =
E_lambda { Location.wrap ?loc @@ E_lambda {
binder = (make_name binder , input_type) ; binder = (make_name binder , input_type) ;
input_type = input_type ; input_type = input_type ;
output_type = output_type ; output_type = output_type ;
result ; result ;
} }
let e_record (lst : (string * expr) list) : expression = let e_record ?loc map = Location.wrap ?loc @@ E_record map
let aux prev (k, v) = SMap.add k v prev in
let map = List.fold_left aux SMap.empty lst in let e_ez_record ?loc (lst : (string * expr) list) : expression =
E_record map let map = SMap.of_list lst in
e_record ?loc map
let get_e_accessor = fun t -> let get_e_accessor = fun t ->
match t with match t with
@ -130,3 +133,10 @@ let get_e_list = fun t ->
match t with match t with
| E_list lst -> ok lst | E_list lst -> ok lst
| _ -> simple_fail "not a pair" | _ -> simple_fail "not a pair"
let get_e_failwith = fun e ->
match Location.unwrap e with
| E_failwith fw -> ok fw
| _ -> simple_fail "not a failwith"
let is_e_failwith e = to_bool @@ get_e_failwith e

View File

@ -35,7 +35,7 @@ let rec assert_value_eq (a, b: (expression * expression )) : unit result =
Format.asprintf "\n@[<v>- %a@;- %a]" PP.expression a PP.expression b Format.asprintf "\n@[<v>- %a@;- %a]" PP.expression a PP.expression b
in in
trace (fun () -> error (thunk "not equal") error_content ()) @@ trace (fun () -> error (thunk "not equal") error_content ()) @@
match (a , b) with match (Location.unwrap a , Location.unwrap b) with
| E_literal a , E_literal b -> | E_literal a , E_literal b ->
assert_literal_eq (a, b) assert_literal_eq (a, b)
| E_literal _ , _ -> | E_literal _ , _ ->
@ -113,8 +113,8 @@ let rec assert_value_eq (a, b: (expression * expression )) : unit result =
) )
| E_list _, _ -> | E_list _, _ ->
simple_fail "comparing list with other stuff" simple_fail "comparing list with other stuff"
| (E_annotation (a , _) , b) -> assert_value_eq (a , b) | (E_annotation (a , _) , _b') -> assert_value_eq (a , b)
| (a , E_annotation (b , _)) -> assert_value_eq (a , b) | (_a' , E_annotation (b , _)) -> assert_value_eq (a , b)
| (E_variable _, _) | (E_lambda _, _) | (E_variable _, _) | (E_lambda _, _)
| (E_application _, _) | (E_let_in _, _) | (E_application _, _) | (E_let_in _, _)
| (E_accessor _, _) | (E_accessor _, _)

View File

@ -42,7 +42,7 @@ and let_in = {
result : expr ; result : expr ;
} }
and expression = and expression' =
(* Base *) (* Base *)
| E_literal of literal | E_literal of literal
| E_constant of (name * expr list) (* For language constants, like (Cons hd tl) or (plus i j) *) | E_constant of (name * expr list) (* For language constants, like (Cons hd tl) or (plus i j) *)
@ -72,6 +72,8 @@ and expression =
(* Annotate *) (* Annotate *)
| E_annotation of expr * type_expression | E_annotation of expr * type_expression
and expression = expression' Location.wrap
and access = and access =
| Access_tuple of int | Access_tuple of int
| Access_record of string | Access_record of string

View File

@ -206,7 +206,7 @@ and ifthenelse
let%bind cond' = bind_map_location expression cond in let%bind cond' = bind_map_location expression cond in
let%bind branch_true' = bind_map_location expression branch_true in let%bind branch_true' = bind_map_location expression branch_true in
let%bind branch_false' = bind_map_location expression branch_false in let%bind branch_false' = bind_map_location expression branch_false in
ok @@ O.(e_match_bool (unwrap cond') (unwrap branch_true') (unwrap branch_false')) ok @@ O.(e_matching_bool (unwrap cond') (unwrap branch_true') (unwrap branch_false'))
and ifthen and ifthen
: (I.expression Location.wrap * I.expression Location.wrap) -> O.expression result : (I.expression Location.wrap * I.expression Location.wrap) -> O.expression result
@ -214,7 +214,7 @@ and ifthen
let (cond , branch_true) = it in let (cond , branch_true) = it in
let%bind cond' = bind_map_location expression cond in let%bind cond' = bind_map_location expression cond in
let%bind branch_true' = bind_map_location expression branch_true in let%bind branch_true' = bind_map_location expression branch_true in
ok @@ O.(e_match_bool (unwrap cond') (unwrap branch_true') (e_unit ())) ok @@ O.(e_matching_bool (unwrap cond') (unwrap branch_true') (e_unit ()))
and match_ and match_
: I.expression Location.wrap * I.e_match_clause Location.wrap list -> O.expression result : I.expression Location.wrap * I.e_match_clause Location.wrap list -> O.expression result
@ -231,7 +231,7 @@ and match_
ok (x' , y') in ok (x' , y') in
bind_map_list aux clauses in bind_map_list aux clauses in
let%bind matching = match_clauses clauses' in let%bind matching = match_clauses clauses' in
ok O.(e_match expr' matching) ok O.(e_matching expr' matching)
and record and record
= fun r -> = fun r ->
@ -244,7 +244,7 @@ and record
in in
let%bind r' = bind_map_list (bind_map_location aux) r in let%bind r' = bind_map_list (bind_map_location aux) r in
let lst = List.map ((fun (x, y) -> unwrap x, unwrap y) >| unwrap) r' in let lst = List.map ((fun (x, y) -> unwrap x, unwrap y) >| unwrap) r' in
ok @@ O.(e_record lst) ok @@ O.(e_ez_record lst)
and expression_main : I.expression_main Location.wrap -> O.expression result = fun em -> and expression_main : I.expression_main Location.wrap -> O.expression result = fun em ->
let return x = ok @@ x in let return x = ok @@ x in
@ -334,13 +334,13 @@ and expression_main : I.expression_main Location.wrap -> O.expression result = f
and identifier_application : (string Location.wrap) list * string Location.wrap -> O.expression option -> _ result = fun (lst , v) param_opt -> and identifier_application : (string Location.wrap) list * string Location.wrap -> O.expression option -> _ result = fun (lst , v) param_opt ->
let constant_name = String.concat "." ((List.map unwrap lst) @ [unwrap v]) in let constant_name = String.concat "." ((List.map unwrap lst) @ [unwrap v]) in
match List.assoc_opt constant_name constants , param_opt with match List.assoc_opt constant_name constants , param_opt with
| Some s , None -> ok O.(E_constant (s , [])) | Some s , None -> ok O.(e_constant s [])
| Some s , Some param -> ( | Some s , Some param -> (
let params = let params =
match param with match Location.unwrap param with
| E_tuple lst -> lst | E_tuple lst -> lst
| _ -> [ param ] in | _ -> [ param ] in
ok O.(E_constant (s , params)) ok O.(e_constant s params)
) )
| None , param_opt -> ( | None , param_opt -> (
let%bind () = let%bind () =

View File

@ -16,16 +16,18 @@ let get_value : 'a Raw.reg -> 'a = fun x -> x.value
open Operators.Simplify.Pascaligo open Operators.Simplify.Pascaligo
let r_split = Location.r_split
let return expr = ok @@ fun expr'_opt -> let return expr = ok @@ fun expr'_opt ->
let expr = expr in let expr = expr in
match expr'_opt with match expr'_opt with
| None -> ok @@ expr | None -> ok @@ expr
| Some expr' -> ok @@ e_sequence expr expr' | Some expr' -> ok @@ e_sequence expr expr'
let return_let_in binder rhs = ok @@ fun expr'_opt -> let return_let_in ?loc binder rhs = ok @@ fun expr'_opt ->
match expr'_opt with match expr'_opt with
| None -> simple_fail "missing return" (* Hard to explain. Shouldn't happen in prod. *) | None -> simple_fail "missing return" (* Hard to explain. Shouldn't happen in prod. *)
| Some expr' -> ok @@ e_let_in binder rhs expr' | Some expr' -> ok @@ e_let_in ?loc binder rhs expr'
let rec simpl_type_expression (t:Raw.type_expr) : type_expression result = let rec simpl_type_expression (t:Raw.type_expr) : type_expression result =
match t with match t with
@ -88,11 +90,12 @@ and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result
let rec simpl_expression (t:Raw.expr) : expr result = let rec simpl_expression (t:Raw.expr) : expr result =
let return x = ok x in let return x = ok x in
let simpl_projection = fun (p:Raw.projection) -> let simpl_projection = fun (p : Raw.projection Region.reg) ->
let (p' , loc) = r_split p in
let var = let var =
let name = p.struct_name.value in let name = p'.struct_name.value in
e_variable name in e_variable name in
let path = p.field_path in let path = p'.field_path in
let path' = let path' =
let aux (s:Raw.selection) = let aux (s:Raw.selection) =
match s with match s with
@ -100,97 +103,112 @@ let rec simpl_expression (t:Raw.expr) : expr result =
| Component index -> Access_tuple (Z.to_int (snd index.value)) | Component index -> Access_tuple (Z.to_int (snd index.value))
in in
List.map aux @@ npseq_to_list path in List.map aux @@ npseq_to_list path in
return @@ E_accessor (var, path') return @@ e_accessor ~loc var path'
in in
match t with match t with
| EAnnot a -> ( | EAnnot a -> (
let (expr , type_expr) = a.value in let ((expr , type_expr) , loc) = r_split a in
let%bind expr' = simpl_expression expr in let%bind expr' = simpl_expression expr in
let%bind type_expr' = simpl_type_expression type_expr in let%bind type_expr' = simpl_type_expression type_expr in
return @@ e_annotation expr' type_expr' return @@ e_annotation ~loc expr' type_expr'
) )
| EVar c -> ( | EVar c -> (
let c' = c.value in let (c' , loc) = r_split c in
match List.assoc_opt c' constants with match List.assoc_opt c' constants with
| None -> return @@ E_variable c.value | None -> return @@ e_variable ~loc c.value
| Some s -> return @@ E_constant (s , []) | Some s -> return @@ e_constant ~loc s []
) )
| ECall x -> ( | ECall x -> (
let (name, args) = x.value in let ((name, args) , loc) = r_split x in
let f = name.value in let (f , f_loc) = r_split name in
let args' = npseq_to_list args.value.inside in let (args , args_loc) = r_split args in
let args' = npseq_to_list args.inside in
match List.assoc_opt f constants with match List.assoc_opt f constants with
| None -> | None ->
let%bind arg = simpl_tuple_expression args' in let%bind arg = simpl_tuple_expression ~loc:args_loc args' in
return @@ E_application (e_variable f, arg) return @@ e_application ~loc (e_variable ~loc:f_loc f) arg
| Some s -> | Some s ->
let%bind lst = bind_map_list simpl_expression args' in let%bind lst = bind_map_list simpl_expression args' in
return @@ E_constant (s , lst) return @@ e_constant ~loc s lst
) )
| EPar x -> simpl_expression x.value.inside | EPar x -> simpl_expression x.value.inside
| EUnit _ -> return @@ E_literal Literal_unit | EUnit reg ->
| EBytes x -> return @@ E_literal (Literal_bytes (Bytes.of_string @@ fst x.value)) let loc = Location.lift reg in
return @@ e_literal ~loc Literal_unit
| EBytes x ->
let (x' , loc) = r_split x in
return @@ e_literal ~loc (Literal_bytes (Bytes.of_string @@ fst x'))
| ETuple tpl -> | ETuple tpl ->
let (Raw.TupleInj tpl') = tpl in let (Raw.TupleInj tpl') = tpl in
simpl_tuple_expression let (tpl' , loc) = r_split tpl' in
@@ npseq_to_list tpl'.value.inside simpl_tuple_expression ~loc @@ npseq_to_list tpl'.inside
| ERecord r -> | ERecord r ->
let%bind fields = bind_list let%bind fields = bind_list
@@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v)) @@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v))
@@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr)) @@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr))
@@ pseq_to_list r.value.elements in @@ pseq_to_list r.value.elements in
let aux prev (k, v) = SMap.add k v prev in let aux prev (k, v) = SMap.add k v prev in
return @@ E_record (List.fold_left aux SMap.empty fields) return @@ e_record (List.fold_left aux SMap.empty fields)
| EProj p' -> ( | EProj p -> simpl_projection p
let p = p'.value in | EConstr (ConstrApp c) -> (
simpl_projection p let ((c, args) , loc) = r_split c in
let (args , args_loc) = r_split args in
let%bind arg =
simpl_tuple_expression ~loc:args_loc
@@ npseq_to_list args.inside in
return @@ e_constructor ~loc c.value arg
) )
| EConstr (ConstrApp c) ->
let (c, args) = c.value in
let%bind arg =
simpl_tuple_expression
@@ npseq_to_list args.value.inside in
return @@ E_constructor (c.value, arg)
| EConstr (SomeApp a) -> | EConstr (SomeApp a) ->
let (_, args) = a.value in let ((_, args) , loc) = r_split a in
let (args , args_loc) = r_split args in
let%bind arg = let%bind arg =
simpl_tuple_expression simpl_tuple_expression ~loc:args_loc
@@ npseq_to_list args.value.inside in @@ npseq_to_list args.inside in
return @@ E_constant ("SOME", [arg]) return @@ e_constant ~loc "SOME" [arg]
| EConstr (NoneExpr _) -> | EConstr (NoneExpr reg) -> (
return @@ E_constant ("NONE" , []) let loc = Location.lift reg in
return @@ e_none ~loc ()
)
| EArith (Add c) -> | EArith (Add c) ->
simpl_binop "ADD" c.value simpl_binop "ADD" c
| EArith (Sub c) -> | EArith (Sub c) ->
simpl_binop "SUB" c.value simpl_binop "SUB" c
| EArith (Mult c) -> | EArith (Mult c) ->
simpl_binop "TIMES" c.value simpl_binop "TIMES" c
| EArith (Div c) -> | EArith (Div c) ->
simpl_binop "DIV" c.value simpl_binop "DIV" c
| EArith (Mod c) -> | EArith (Mod c) ->
simpl_binop "MOD" c.value simpl_binop "MOD" c
| EArith (Int n) -> | EArith (Int n) -> (
let n = Z.to_int @@ snd @@ n.value in let (n , loc) = r_split n in
return @@ E_literal (Literal_int n) let n = Z.to_int @@ snd n in
| EArith (Nat n) -> return @@ e_literal ~loc (Literal_int n)
let n = Z.to_int @@ snd @@ n.value in )
return @@ E_literal (Literal_nat n) | EArith (Nat n) -> (
| EArith (Mtz n) -> let (n , loc) = r_split n in
let n = Z.to_int @@ snd @@ n.value in let n = Z.to_int @@ snd @@ n in
return @@ E_literal (Literal_tez n) return @@ e_literal ~loc (Literal_nat n)
)
| EArith (Mtz n) -> (
let (n , loc) = r_split n in
let n = Z.to_int @@ snd @@ n in
return @@ e_literal ~loc (Literal_tez n)
)
| EArith _ -> simple_fail "arith: not supported yet" | EArith _ -> simple_fail "arith: not supported yet"
| EString (String s) -> | EString (String s) ->
let (s , loc) = r_split s in
let s' = let s' =
let s = s.value in (* S contains quotes *)
String.(sub s 1 ((length s) - 2)) String.(sub s 1 ((length s) - 2))
in in
return @@ E_literal (Literal_string s') return @@ e_literal ~loc (Literal_string s')
| EString _ -> simple_fail "string: not supported yet" | EString _ -> simple_fail "string: not supported yet"
| ELogic l -> simpl_logic_expression l | ELogic l -> simpl_logic_expression l
| EList l -> simpl_list_expression l | EList l -> simpl_list_expression l
| ESet _ -> simple_fail "set: not supported yet" | ESet _ -> simple_fail "set: not supported yet"
| ECase c -> | ECase c -> (
let%bind e = simpl_expression c.value.expr in let (c , loc) = r_split c in
let%bind e = simpl_expression c.expr in
let%bind lst = let%bind lst =
let aux (x : Raw.expr Raw.case_clause) = let aux (x : Raw.expr Raw.case_clause) =
let%bind expr = simpl_expression x.rhs in let%bind expr = simpl_expression x.rhs in
@ -198,84 +216,103 @@ let rec simpl_expression (t:Raw.expr) : expr result =
bind_list bind_list
@@ List.map aux @@ List.map aux
@@ List.map get_value @@ List.map get_value
@@ npseq_to_list c.value.cases.value in @@ npseq_to_list c.cases.value in
let%bind cases = simpl_cases lst in let%bind cases = simpl_cases lst in
return @@ E_matching (e, cases) return @@ e_matching ~loc e cases
| EMap (MapInj mi) -> )
| EMap (MapInj mi) -> (
let (mi , loc) = r_split mi in
let%bind lst = let%bind lst =
let lst = List.map get_value @@ pseq_to_list mi.value.elements in let lst = List.map get_value @@ pseq_to_list mi.elements in
let aux : Raw.binding -> (expression * expression) result = fun b -> let aux : Raw.binding -> (expression * expression) result = fun b ->
let%bind src = simpl_expression b.source in let%bind src = simpl_expression b.source in
let%bind dst = simpl_expression b.image in let%bind dst = simpl_expression b.image in
ok (src, dst) in ok (src, dst) in
bind_map_list aux lst in bind_map_list aux lst in
return (E_map lst) return @@ e_map ~loc lst
| EMap (MapLookUp lu) -> )
let%bind path = match lu.value.path with | EMap (MapLookUp lu) -> (
| Name v -> return (E_variable v.value) let (lu , loc) = r_split lu in
| Path p -> simpl_projection p.value let%bind path = match lu.path with
| Name v -> (
let (v , loc) = r_split v in
return @@ e_variable ~loc v
)
| Path p -> simpl_projection p
in in
let%bind index = simpl_expression lu.value.index.value.inside in let%bind index = simpl_expression lu.index.value.inside in
return (E_look_up (path, index)) return @@ e_look_up ~loc path index
)
and simpl_logic_expression (t:Raw.logic_expr) : expression result = and simpl_logic_expression (t:Raw.logic_expr) : expression result =
let return x = ok x in let return x = ok x in
match t with match t with
| BoolExpr (False _) -> | BoolExpr (False reg) -> (
return @@ E_literal (Literal_bool false) let loc = Location.lift reg in
| BoolExpr (True _) -> return @@ e_literal ~loc (Literal_bool false)
return @@ E_literal (Literal_bool true) )
| BoolExpr (True reg) -> (
let loc = Location.lift reg in
return @@ e_literal ~loc (Literal_bool true)
)
| BoolExpr (Or b) -> | BoolExpr (Or b) ->
simpl_binop "OR" b.value simpl_binop "OR" b
| BoolExpr (And b) -> | BoolExpr (And b) ->
simpl_binop "AND" b.value simpl_binop "AND" b
| BoolExpr (Not b) -> | BoolExpr (Not b) ->
simpl_unop "NOT" b.value simpl_unop "NOT" b
| CompExpr (Lt c) -> | CompExpr (Lt c) ->
simpl_binop "LT" c.value simpl_binop "LT" c
| CompExpr (Gt c) -> | CompExpr (Gt c) ->
simpl_binop "GT" c.value simpl_binop "GT" c
| CompExpr (Leq c) -> | CompExpr (Leq c) ->
simpl_binop "LE" c.value simpl_binop "LE" c
| CompExpr (Geq c) -> | CompExpr (Geq c) ->
simpl_binop "GE" c.value simpl_binop "GE" c
| CompExpr (Equal c) -> | CompExpr (Equal c) ->
simpl_binop "EQ" c.value simpl_binop "EQ" c
| CompExpr (Neq c) -> | CompExpr (Neq c) ->
simpl_binop "NEQ" c.value simpl_binop "NEQ" c
and simpl_list_expression (t:Raw.list_expr) : expression result = and simpl_list_expression (t:Raw.list_expr) : expression result =
let return x = ok x in let return x = ok x in
match t with match t with
| Cons c -> | Cons c ->
simpl_binop "CONS" c.value simpl_binop "CONS" c
| List lst -> | List lst -> (
let (lst , loc) = r_split lst in
let%bind lst' = let%bind lst' =
bind_map_list simpl_expression @@ bind_map_list simpl_expression @@
pseq_to_list lst.value.elements in pseq_to_list lst.elements in
return @@ E_list lst' return @@ e_list ~loc lst'
| Nil _ -> )
return @@ E_list [] | Nil reg -> (
let loc = Location.lift reg in
return @@ e_list ~loc []
)
and simpl_binop (name:string) (t:_ Raw.bin_op) : expression result = and simpl_binop (name:string) (t:_ Raw.bin_op Region.reg) : expression result =
let return x = ok x in let return x = ok x in
let (t , loc) = r_split t in
let%bind a = simpl_expression t.arg1 in let%bind a = simpl_expression t.arg1 in
let%bind b = simpl_expression t.arg2 in let%bind b = simpl_expression t.arg2 in
return @@ E_constant (name, [a;b]) return @@ e_constant ~loc name [ a ; b ]
and simpl_unop (name:string) (t:_ Raw.un_op) : expression result = and simpl_unop (name:string) (t:_ Raw.un_op Region.reg) : expression result =
let return x = ok x in let return x = ok x in
let (t , loc) = r_split t in
let%bind a = simpl_expression t.arg in let%bind a = simpl_expression t.arg in
return @@ E_constant (name, [a]) return @@ e_constant ~loc name [ a ]
and simpl_tuple_expression (lst:Raw.expr list) : expression result = and simpl_tuple_expression ?loc (lst:Raw.expr list) : expression result =
let return x = ok x in let return x = ok x in
match lst with match lst with
| [] -> return @@ E_literal Literal_unit | [] -> return @@ e_literal Literal_unit
| [hd] -> simpl_expression hd | [hd] -> simpl_expression hd
| lst -> | lst -> (
let%bind lst = bind_list @@ List.map simpl_expression lst in let%bind lst = bind_list @@ List.map simpl_expression lst in
return @@ E_tuple lst return @@ e_tuple ?loc lst
)
and simpl_local_declaration : Raw.local_decl -> _ result = fun t -> and simpl_local_declaration : Raw.local_decl -> _ result = fun t ->
match t with match t with
@ -284,26 +321,28 @@ and simpl_local_declaration : Raw.local_decl -> _ result = fun t ->
and simpl_lambda_declaration : Raw.lambda_decl -> _ result = fun l -> and simpl_lambda_declaration : Raw.lambda_decl -> _ result = fun l ->
match l with match l with
| FunDecl f -> | FunDecl f -> (
let%bind (name , e) = simpl_fun_declaration (f.value) in let (f , loc) = r_split f in
return_let_in name e let%bind (name , e) = simpl_fun_declaration ~loc f in
return_let_in ~loc name e
)
| ProcDecl _ -> simple_fail "no local procedure yet" | ProcDecl _ -> simple_fail "no local procedure yet"
| EntryDecl _ -> simple_fail "no local entry-point yet" | EntryDecl _ -> simple_fail "no local entry-point yet"
and simpl_data_declaration : Raw.data_decl -> _ result = fun t -> and simpl_data_declaration : Raw.data_decl -> _ result = fun t ->
match t with match t with
| LocalVar x -> | LocalVar x ->
let x = x.value in let (x , loc) = r_split x in
let name = x.name.value in let name = x.name.value in
let%bind t = simpl_type_expression x.var_type in let%bind t = simpl_type_expression x.var_type in
let%bind expression = simpl_expression x.init in let%bind expression = simpl_expression x.init in
return_let_in (name , Some t) expression return_let_in ~loc (name , Some t) expression
| LocalConst x -> | LocalConst x ->
let x = x.value in let (x , loc) = r_split x in
let name = x.name.value in let name = x.name.value in
let%bind t = simpl_type_expression x.const_type in let%bind t = simpl_type_expression x.const_type in
let%bind expression = simpl_expression x.init in let%bind expression = simpl_expression x.init in
return_let_in (name , Some t) expression return_let_in ~loc (name , Some t) expression
and simpl_param : Raw.param_decl -> (type_name * type_expression) result = fun t -> and simpl_param : Raw.param_decl -> (type_name * type_expression) result = fun t ->
match t with match t with
@ -318,7 +357,7 @@ and simpl_param : Raw.param_decl -> (type_name * type_expression) result = fun t
let%bind type_expression = simpl_type_expression c.param_type in let%bind type_expression = simpl_type_expression c.param_type in
ok (type_name , type_expression) ok (type_name , type_expression)
and simpl_fun_declaration : Raw.fun_decl -> ((name * type_expression option) * expression) result = fun x -> and simpl_fun_declaration : loc:_ -> Raw.fun_decl -> ((name * type_expression option) * expression) result = fun ~loc x ->
let open! Raw in let open! Raw in
let {name;param;ret_type;local_decls;block;return} : fun_decl = x in let {name;param;ret_type;local_decls;block;return} : fun_decl = x in
(match npseq_to_list param.value.inside with (match npseq_to_list param.value.inside with
@ -338,12 +377,8 @@ and simpl_fun_declaration : Raw.fun_decl -> ((name * type_expression option) * e
let%bind result = let%bind result =
let aux prec cur = cur (Some prec) in let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in bind_fold_right_list aux result body in
let expression = E_lambda { let expression : expression = e_lambda ~loc binder (Some input_type)
binder = (binder , Some input_type) ; (Some output_type) result in
input_type = Some input_type ;
output_type = Some output_type ;
result
} in
let type_annotation = Some (T_function (input_type, output_type)) in let type_annotation = Some (T_function (input_type, output_type)) in
ok ((name , type_annotation) , expression) ok ((name , type_annotation) , expression)
) )
@ -355,7 +390,7 @@ and simpl_fun_declaration : Raw.fun_decl -> ((name * type_expression option) * e
(arguments_name , type_expression) in (arguments_name , type_expression) in
let%bind tpl_declarations = let%bind tpl_declarations =
let aux = fun i x -> let aux = fun i x ->
let expr = E_accessor (E_variable arguments_name , [ Access_tuple i ]) in let expr = e_accessor (e_variable arguments_name) [ Access_tuple i ] in
let type_ = Some (snd x) in let type_ = Some (snd x) in
let ass = return_let_in (fst x , type_) expr in let ass = return_let_in (fst x , type_) expr in
ass ass
@ -372,24 +407,20 @@ and simpl_fun_declaration : Raw.fun_decl -> ((name * type_expression option) * e
let%bind result = let%bind result =
let aux prec cur = cur (Some prec) in let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in bind_fold_right_list aux result body in
let expression = E_lambda { let expression = e_lambda ~loc binder (Some input_type) (Some output_type) result in
binder = (binder , Some input_type) ;
input_type = Some input_type ;
output_type = Some output_type ;
result
} in
let type_annotation = Some (T_function (input_type, output_type)) in let type_annotation = Some (T_function (input_type, output_type)) in
ok ((name.value , type_annotation) , expression) ok ((name.value , type_annotation) , expression)
) )
) )
and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t -> and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t ->
let open! Raw in let open! Raw in
let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in
match t with match t with
| TypeDecl x -> | TypeDecl x -> (
let {name;type_expr} : Raw.type_decl = x.value in let (x , loc) = r_split x in
let {name;type_expr} : Raw.type_decl = x in
let%bind type_expression = simpl_type_expression type_expr in let%bind type_expression = simpl_type_expression type_expr in
ok @@ loc x @@ Declaration_type (name.value , type_expression) ok @@ Location.wrap ~loc (Declaration_type (name.value , type_expression))
)
| ConstDecl x -> | ConstDecl x ->
let simpl_const_decl = fun {name;const_type;init} -> let simpl_const_decl = fun {name;const_type;init} ->
let%bind expression = simpl_expression init in let%bind expression = simpl_expression init in
@ -398,11 +429,11 @@ and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fu
ok @@ Declaration_constant (name.value , type_annotation , expression) ok @@ Declaration_constant (name.value , type_annotation , expression)
in in
bind_map_location simpl_const_decl (Location.lift_region x) bind_map_location simpl_const_decl (Location.lift_region x)
| LambdaDecl (FunDecl x) -> | LambdaDecl (FunDecl x) -> (
let aux f x = let (x , loc) = r_split x in
let%bind ((name , ty_opt) , expr) = f x in let%bind ((name , ty_opt) , expr) = simpl_fun_declaration ~loc x in
ok @@ Declaration_constant (name , ty_opt , expr) in ok @@ Location.wrap ~loc (Declaration_constant (name , ty_opt , expr))
bind_map_location (aux simpl_fun_declaration) (Location.lift_region x) )
| LambdaDecl (ProcDecl _) -> simple_fail "no proc declaration yet" | LambdaDecl (ProcDecl _) -> simple_fail "no proc declaration yet"
| LambdaDecl (EntryDecl _)-> simple_fail "no entry point yet" | LambdaDecl (EntryDecl _)-> simple_fail "no entry point yet"
@ -418,7 +449,10 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
let%bind expr = simpl_expression e.value.fail_expr in let%bind expr = simpl_expression e.value.fail_expr in
return @@ e_failwith expr return @@ e_failwith expr
) )
| Skip _ -> return @@ e_skip | Skip reg -> (
let loc = Location.lift reg in
return @@ e_skip ~loc ()
)
| Loop (While l) -> | Loop (While l) ->
let l = l.value in let l = l.value in
let%bind cond = simpl_expression l.cond in let%bind cond = simpl_expression l.cond in
@ -427,8 +461,8 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
return @@ e_loop cond body return @@ e_loop cond body
| Loop (For _) -> | Loop (For _) ->
simple_fail "no for yet" simple_fail "no for yet"
| Cond c -> | Cond c -> (
let c = c.value in let (c , loc) = r_split c in
let%bind expr = simpl_expression c.test in let%bind expr = simpl_expression c.test in
let%bind match_true = match c.ifso with let%bind match_true = match c.ifso with
| ClauseInstr i -> simpl_instruction_block i | ClauseInstr i -> simpl_instruction_block i
@ -438,9 +472,10 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
| ClauseBlock b -> simpl_statements @@ fst b.value.inside in | ClauseBlock b -> simpl_statements @@ fst b.value.inside in
let%bind match_true = match_true None in let%bind match_true = match_true None in
let%bind match_false = match_false None in let%bind match_false = match_false None in
return @@ E_matching (expr, (Match_bool {match_true; match_false})) return @@ e_matching expr ~loc (Match_bool {match_true; match_false})
)
| Assign a -> ( | Assign a -> (
let a = a.value in let (a , loc) = r_split a in
let%bind value_expr = match a.rhs with let%bind value_expr = match a.rhs with
| Expr e -> simpl_expression e | Expr e -> simpl_expression e
| NoneExpr _ -> simple_fail "no none assignments yet" | NoneExpr _ -> simple_fail "no none assignments yet"
@ -448,7 +483,7 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
match a.lhs with match a.lhs with
| Path path -> ( | Path path -> (
let (name , path') = simpl_path path in let (name , path') = simpl_path path in
return @@ E_assign (name , path' , value_expr) return @@ e_assign ~loc name path' value_expr
) )
| MapPath v -> ( | MapPath v -> (
let v' = v.value in let v' = v.value in
@ -458,11 +493,11 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
let%bind key_expr = simpl_expression v'.index.value.inside in let%bind key_expr = simpl_expression v'.index.value.inside in
let old_expr = e_variable name.value in let old_expr = e_variable name.value in
let expr' = e_map_update key_expr value_expr old_expr in let expr' = e_map_update key_expr value_expr old_expr in
return @@ E_assign (name.value , [] , expr') return @@ e_assign ~loc name.value [] expr'
) )
) )
| CaseInstr c -> ( | CaseInstr c -> (
let c = c.value in let (c , loc) = r_split c in
let%bind expr = simpl_expression c.expr in let%bind expr = simpl_expression c.expr in
let%bind cases = let%bind cases =
let aux (x : Raw.instruction Raw.case_clause Raw.reg) = let aux (x : Raw.instruction Raw.case_clause Raw.reg) =
@ -473,25 +508,25 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
@@ List.map aux @@ List.map aux
@@ npseq_to_list c.cases.value in @@ npseq_to_list c.cases.value in
let%bind m = simpl_cases cases in let%bind m = simpl_cases cases in
return @@ E_matching (expr, m) return @@ e_matching ~loc expr m
) )
| RecordPatch r -> ( | RecordPatch r -> (
let r = r.value in let r = r.value in
let (name , access_path) = simpl_path r.path in let (name , access_path) = simpl_path r.path in
let%bind inj = bind_list let%bind inj = bind_list
@@ List.map (fun (x:Raw.field_assign) -> let%bind e = simpl_expression x.field_expr in ok (x.field_name.value, e)) @@ List.map (fun (x:Raw.field_assign Region.reg) ->
@@ List.map (fun (x:_ Raw.reg) -> x.value) let (x , loc) = r_split x in
let%bind e = simpl_expression x.field_expr in ok (x.field_name.value, e , loc)
)
@@ pseq_to_list r.record_inj.value.elements in @@ pseq_to_list r.record_inj.value.elements in
let%bind expr = let%bind expr =
let aux = fun (access , v) -> let aux = fun (access , v , loc) ->
E_assign (name , access_path @ [ Access_record access ] , v) in e_assign ~loc name (access_path @ [ Access_record access ]) v in
let assigns = List.map aux inj in let assigns = List.map aux inj in
match assigns with match assigns with
| [] -> simple_fail "empty record patch" | [] -> simple_fail "empty record patch"
| hd :: tl -> ( | hd :: tl -> (
let aux acc cur = let aux acc cur = e_sequence (acc) (cur) in
e_sequence (acc) (cur)
in
ok @@ List.fold_left aux hd tl ok @@ List.fold_left aux hd tl
) )
in in
@ -499,15 +534,16 @@ and simpl_single_instruction : Raw.single_instr -> (_ -> expression result) resu
) )
| MapPatch _ -> simple_fail "no map patch yet" | MapPatch _ -> simple_fail "no map patch yet"
| SetPatch _ -> simple_fail "no set patch yet" | SetPatch _ -> simple_fail "no set patch yet"
| MapRemove r -> | MapRemove r -> (
let v = r.value in let (v , loc) = r_split r in
let key = v.key in let key = v.key in
let%bind map = match v.map with let%bind map = match v.map with
| Name v -> ok v.value | Name v -> ok v.value
| _ -> simple_fail "no complex map remove yet" in | _ -> simple_fail "no complex map remove yet" in
let%bind key' = simpl_expression key in let%bind key' = simpl_expression key in
let expr = E_constant ("MAP_REMOVE", [key' ; e_variable map]) in let expr = e_constant ~loc "MAP_REMOVE" [key' ; e_variable map] in
return @@ E_assign (map , [] , expr) return @@ e_assign ~loc map [] expr
)
| SetRemove _ -> simple_fail "no set remove yet" | SetRemove _ -> simple_fail "no set remove yet"
and simpl_path : Raw.path -> string * Ast_simplified.access_path = fun p -> and simpl_path : Raw.path -> string * Ast_simplified.access_path = fun p ->

View File

@ -210,7 +210,7 @@ and type_expression : environment -> ?tv_opt:O.type_value -> I.expression -> O.a
let content () = Format.asprintf "Expression: %a\nLog: %s\n" I.PP.expression ae (L.get()) in let content () = Format.asprintf "Expression: %a\nLog: %s\n" I.PP.expression ae (L.get()) in
error title content in error title content in
trace main_error @@ trace main_error @@
match ae with match Location.unwrap ae with
(* Basic *) (* Basic *)
| E_failwith _ -> simple_fail "can't type failwith in isolation" | E_failwith _ -> simple_fail "can't type failwith in isolation"
| E_variable name -> | E_variable name ->
@ -394,7 +394,8 @@ and type_expression : environment -> ?tv_opt:O.type_value -> I.expression -> O.a
let%bind ex' = type_expression e ex in let%bind ex' = type_expression e ex in
match m with match m with
(* Special case for assert-like failwiths. TODO: CLEAN THIS. *) (* Special case for assert-like failwiths. TODO: CLEAN THIS. *)
| I.Match_bool { match_false ; match_true = E_failwith fw } -> ( | I.Match_bool { match_false ; match_true } when I.is_e_failwith match_true -> (
let%bind fw = I.get_e_failwith match_true in
let%bind fw' = type_expression e fw in let%bind fw' = type_expression e fw in
let%bind mf' = type_expression e match_false in let%bind mf' = type_expression e match_false in
let%bind () = let%bind () =
@ -526,55 +527,54 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
match e.expression with match e.expression with
| E_literal l -> | E_literal l ->
let%bind l = untype_literal l in let%bind l = untype_literal l in
return (E_literal l) return (e_literal l)
| E_constant (n, lst) -> | E_constant (n, lst) ->
let%bind lst' = bind_list let%bind lst' = bind_map_list untype_expression lst in
@@ List.map untype_expression lst in return (e_constant n lst')
return (E_constant (n, lst'))
| E_variable n -> | E_variable n ->
return (E_variable n) return (e_variable n)
| E_application (f, arg) -> | E_application (f, arg) ->
let%bind f' = untype_expression f in let%bind f' = untype_expression f in
let%bind arg' = untype_expression arg in let%bind arg' = untype_expression arg in
return (E_application (f', arg')) return (e_application f' arg')
| E_lambda {binder;input_type;output_type;result} -> | E_lambda {binder;input_type;output_type;result} ->
let%bind input_type = untype_type_value input_type in let%bind input_type = untype_type_value input_type in
let%bind output_type = untype_type_value output_type in let%bind output_type = untype_type_value output_type in
let%bind result = untype_expression result in let%bind result = untype_expression result in
return (E_lambda {binder = (binder , Some input_type);input_type = Some input_type;output_type = Some output_type;result}) return (e_lambda binder (Some input_type) (Some output_type) result)
| E_tuple lst -> | E_tuple lst ->
let%bind lst' = bind_list let%bind lst' = bind_list
@@ List.map untype_expression lst in @@ List.map untype_expression lst in
return (E_tuple lst') return (e_tuple lst')
| E_tuple_accessor (tpl, ind) -> | E_tuple_accessor (tpl, ind) ->
let%bind tpl' = untype_expression tpl in let%bind tpl' = untype_expression tpl in
return (E_accessor (tpl', [Access_tuple ind])) return (e_accessor tpl' [Access_tuple ind])
| E_constructor (n, p) -> | E_constructor (n, p) ->
let%bind p' = untype_expression p in let%bind p' = untype_expression p in
return (E_constructor (n, p')) return (e_constructor n p')
| E_record r -> | E_record r ->
let%bind r' = bind_smap let%bind r' = bind_smap
@@ SMap.map untype_expression r in @@ SMap.map untype_expression r in
return (E_record r') return (e_record r')
| E_record_accessor (r, s) -> | E_record_accessor (r, s) ->
let%bind r' = untype_expression r in let%bind r' = untype_expression r in
return (E_accessor (r', [Access_record s])) return (e_accessor r' [Access_record s])
| E_map m -> | E_map m ->
let%bind m' = bind_map_list (bind_map_pair untype_expression) m in let%bind m' = bind_map_list (bind_map_pair untype_expression) m in
return (E_map m') return (e_map m')
| E_list lst -> | E_list lst ->
let%bind lst' = bind_map_list untype_expression lst in let%bind lst' = bind_map_list untype_expression lst in
return (E_list lst') return (e_list lst')
| E_look_up dsi -> | E_look_up dsi ->
let%bind dsi' = bind_map_pair untype_expression dsi in let%bind (a , b) = bind_map_pair untype_expression dsi in
return (E_look_up dsi') return (e_look_up a b)
| E_matching (ae, m) -> | E_matching (ae, m) ->
let%bind ae' = untype_expression ae in let%bind ae' = untype_expression ae in
let%bind m' = untype_matching untype_expression m in let%bind m' = untype_matching untype_expression m in
return (E_matching (ae', m')) return (e_matching ae' m')
| E_failwith ae -> | E_failwith ae ->
let%bind ae' = untype_expression ae in let%bind ae' = untype_expression ae in
return (E_failwith ae') return (e_failwith ae')
| E_sequence _ | E_sequence _
| E_loop _ | E_loop _
| E_assign _ -> simple_fail "not possible to untranspile statements yet" | E_assign _ -> simple_fail "not possible to untranspile statements yet"
@ -582,7 +582,7 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
let%bind tv = untype_type_value rhs.type_annotation in let%bind tv = untype_type_value rhs.type_annotation in
let%bind rhs = untype_expression rhs in let%bind rhs = untype_expression rhs in
let%bind result = untype_expression result in let%bind result = untype_expression result in
return (E_let_in {binder = (binder , Some tv);rhs;result}) return (e_let_in (binder , (Some tv)) rhs result)
and untype_matching : type o i . (o -> i result) -> o O.matching -> (i I.matching) result = fun f m -> and untype_matching : type o i . (o -> i result) -> o O.matching -> (i I.matching) result = fun f m ->
let open I in let open I in

View File

@ -22,16 +22,21 @@ let make (start_pos:Lexing.position) (end_pos:Lexing.position) : t =
let virtual_location s = Virtual s let virtual_location s = Virtual s
let dummy = virtual_location "dummy" let dummy = virtual_location "dummy"
let generated = virtual_location "generated"
type 'a wrap = { type 'a wrap = {
wrap_content : 'a ; wrap_content : 'a ;
location : t ; location : t ;
} }
let wrap ~loc wrap_content = { wrap_content ; location = loc } let wrap ?(loc = generated) wrap_content = { wrap_content ; location = loc }
let unwrap { wrap_content ; _ } = wrap_content let unwrap { wrap_content ; _ } = wrap_content
let map f x = { x with wrap_content = f x.wrap_content } let map f x = { x with wrap_content = f x.wrap_content }
let pp_wrap f ppf { wrap_content ; _ } = Format.fprintf ppf "%a" f wrap_content let pp_wrap f ppf { wrap_content ; _ } = Format.fprintf ppf "%a" f wrap_content
let lift_region : 'a Region.reg -> 'a wrap = fun x -> let lift_region : 'a Region.reg -> 'a wrap = fun x ->
wrap ~loc:(File x.region) x.value wrap ~loc:(File x.region) x.value
let lift : Region.region -> t = fun x -> File x
let r_extract : 'a Region.reg -> t = fun x -> File x.region
let r_split : 'a Region.reg -> ('a * t) = fun x -> x.value , File x.region